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1989 Max Jakob Memorial Award Lecture 

Y. Mori 
Tokyo Institute of Technology, 

Meguro, Tokyo 157, Japan 

Some Optimizing Examples in 
Forced Convective Heat Transfer 
Three examples are selected as representative cases concerning the basic convective 
heat transfer in the heat exchanger field, each of which has a specified parameter 
for optimizing the individual specif ic condition. First, the chemical vapor deposition 
of a silicone layer for SiHA on the hot bottom wall of a horizontal rectangular furnace 
duct is discussed, assuming that a spatially uniform thickness of the layer is the 
optimal one. Second, the compact heat exchanger is studied with the insertion of a 
twisted strip in each channel so that the outlet temperature of the heated gas becomes 
uniform by changing the twist pitch appropriate to each channel. Third, a shell and 
helical tube heat exchanger is discussed for controlling flow-induced tube vibration 
by inserting separating plates between the tube arrays and optimizing the interval 
of the plates. 

1 Introduction 
Energy saving and economic incentives since the energy crisis 

have promoted studies of heat transfer enhancement. How
ever, problems related to the reliability and global environ
mental impact of power plants or thermal systems have recently 
been attracting attention, together with economic improve
ment. In other words, recently, the need to enhance heat trans
fer performance or to develop more efficient thermal equipment 
or plants has sometimes been overshadowed by the requirement 
for more reliable or environmentally acceptable conditions. 

In order to satisfy a specific condition or optimize the con
ditions, an appropriate parameter should be selected so as to 
meet the requirement for the said condition. Three examples 
are discussed as typical cases: one from the field of semicon
ductor production, that is, high-technology field, and two oth
ers that are associated with fossil fuel and nuclear power plants. 
In consideration of the thermal engineering standpoint of cop
ing with global carbon dioxide problems, among heat ex
changer problems in energy conservation and alternative ener
gies, reliable compact plate-fin heat exchangers are discussed 
for the former case and improvement of the reliability and 
enhanced heat transfer performance of shell-and-tube high-
temperature heat exchangers for gas-cooled nuclear reactors 
is discussed for the latter case. 

In the first example, the heat transfer problem associated 
with the metal-organic chemical vapor deposition problem 
(CVD) in a horizontal and rectangular furnace duct, for pro
ducing silicon or gallium-arsenate layers from the raw gas, is 
discussed. In the CVD duct with a hot bottom wall and a cold 
top wall, the thickness of the deposit layer is required to be 
uniform. However, in a conventional duct with a hot bottom 
wall and cooled top and side walls, a pair of roll cells are 
known to play an essential role, as reported by Moffat and 
Jensen (1986). In this case, the thickness distribution of the 
deposit layer, shown by the hatched zone in Fig. 1(a), is thin 
in the middle and thick near the side walls. On the other hand, 
when the side walls are heated enough, the cells rotate in the 
opposite direction. Thus it is understood that the parameter 

Contributed by the Heat Transfer Division and presented at the 26th National 
Heat Transfer Conference, Philadelphia, PA, August 6-9, 1989. Manuscript 
received by the Heat Transfer Division November 17, 1989; revision received 
February 6, 1990. Keywords: Heat Exchangers, High-Temperature Phenomena, 
Mixed Convection. 

that controls the thickness distribution is the temperature of 
the side walls. 

The second example is related to a compact plate-fin regen
erative heat exchanger for high-temperature uses such as in 
gas turbine and fuel cell plants. Only a few fully reliable units 
for long-term operation have been successfully developed, 
mainly due to large thermal stress, as reported by Mori et al. 
(1985). High thermal stress is often caused by undesirable 
temperature distributions in the hottest part of the heat ex
changer, such as the region between the hot gas inlet and the 
heated gas outlet, as shown by point M in Fig. 1(b). A uniform 
temperature distribution at the heated gas outlet is preferable 
from the thermal stress standpoint. In order to satisfy this 
condition, twisted strips of various twist pitches are inserted 
in all channels. In this case, the parameter to decrease the 
highest outlet temperature is the twist pitch of the strips. 

The third example mainly concerns the flow-induced tube-
vibration problem of the shell and spiral tube high-temperature 
heat exchanger generally reviewed by Savkar (1986). Up to the 
present many studies of flow-induced tube vibration have been 
reported, because this is one of the most serious problems 
associated with shell-and-tube heat exchangers. A proposal is 
made in this paper to be applied to the in-line tube array 
construction shown in Fig. 1(c). It will be shown that insertion 
of separating plates between the in-line tube arrays, and se
lection of the optimal lateral pitch H of the plates, shown in 
Fig. 1(d), can control tube vibration. 

2 Optimal Condition of Uniform Growth Rate of the 
Deposit Layer in a CVD Duct 

An experimental and theoretical discussion is made of a 
horizontal rectangular duct with a hot bottom wall (Mori et 
al., 1989). The duct used for the experiments had almost the 
same dimensions as the actual CVD duct used for producing 
the silicon layer, and is 30 mm high and 60 mm wide. The 
duct 1 m long and is set downstream of a wind tunnel. The 
test portion of the duct is set 120 mm upstream of the duct 
exit. The flow in the test portion was fully developed. The 
upper wall of the duct is made of a 8-mm-thick transparent 
plastic plate for flow visualization. The bottom and side walls 
are made of 10-mm bakelite plates. 10-/im pieces of stainless 

268/Vol. 112, MAY 1990 Transactions of the ASME 

Copyright © 1990 by ASME
Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



HOT WALL 

(a) 

LAYER 

COLD FLUID DUCT 

O O O O 

O O O O 

o o o o 
o o o o 

( c ) 

HOT FLUID DUCT 

.» o 
o 
o 
o 

0 O 

o o 
o o 
0 O 

o 
o 
o 
o 

(d) 
Fig. 1 Model pictures of discussed examples 

steel foil are stuck on the inner surface of the cork plates 
covering the bakelite plate and heated by an a-c current. The 
side walls are divided into two parts in the middle, in order 
to heat them separately. Air was used as the working fluid. 
Experiments were chiefly performed under the condition of 
Reynolds number of 220 and Grashof number of 5 X 105, 
which are almost the same order of magnitude as a conven
tional CVD furnace duct for producing the silicon layer. Meas
ured temperatures are nondimensionalized by the temperature 
difference between the bottom and top walls and expressed by 
6. The nondimensional temperatures of the upper and lower 
half side walls are expressed by the subscripts swu and swl, 
respectively. 

In the numerical analysis, the flow and temperature fields 
were assumed to be two dimensional, steady, laminar, and 
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Fig. 2 Temperature and stream function distributions when the lower 
side wall is heated and for optimal measured temperature 

fully developed. The Boussinesq approximation was used with 
the assumption of the constant physical properties of fluid. 
The flow and temperature fields were assumed symmetric with 
respect to the middle vertical plane, and only the left half of 
the duct was analyzed by dividing it into 40 x 40 cells of equal 
size. An SOR numerical calculation method was used. When 
the side walls are not heated, the correlation between the ex
perimental and numerical results for the temperature field is 
rather good, but not in complete agreement due to the slight 
thermal conduction to the side walls from the hot bottom wall. 
Figures 2(a) and 2(b) show the results when the lower half of 
the side wall is heated to the same temperature as that of the 
bottom wall. As shown in Fig. 2(a), the temperature correlation 
between theory and experiment is excellent. The rolling direc
tion of the cell shown by the calculated stream function map 
in Fig. 2(b) is opposite to that when the side walls are not 
heated. In consideration of the temperature distributions in 
the two cases where the lower half of the side wall is not heated 
and heated up, and also of the fact that in the former case the 

C = constant 
d' - width 
de = hydraulic diameter of duct 
D = tube diameter 
g - gravitational acceleration 

Gr = Grashof number = g/3A7tf3/v1 

H = plate distance 
Nu = Nusselt number 

p = pressure 
Pr = Prandtl number 
Re = Reynolds number = ude/v 
Tb = bulk temperature 

Tw = wall temperature 
u = mean fluid velocity 
x - coordinate in the horizontal 

direction , 
y = coordinate vertical to x direc

tion in a cross section 
z = coordinate in the flow direc

tion 
a = heat transfer coefficient 
0 — thermal expansion coefficient 

A/7 = pressure drop 
AT = temperature difference 

Az 
i) 

e 
X 
V 

i 

p 
* max 

z direction distance 
nondimensional coordinate 
of y 
nondimensional temperature 
difference 
thermal conductivity of fluid 
kinematic viscosity 
nondimensional coordinate 
of x 
density 
maximum value of stream 
function 
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Fig. 4 Inserted twisted strip and cross section of compact plate-fin 
heat exchanger 

maximum temperature of the fluid is at the middle section and 
in the latter it is near the side wall, the uniform temperature 
distribution on a horizontal plane cross section is considered 
to be attainable when the side wall is adequately heated. The 
resulting temperature distribution to satisfy this optimal con
dition, which is obtained after several trial-and-error experi
ments, is shown in Fig. 2(c) by open squares, circles, and 
triangles for different horizontal planes. As seen in Fig. 2(c), 
there is a big difference between the experimental results shown 
by solid lines and the numerical results by the broken lines. 
From the flow visualization experiments made under the op
timal condition, the flow was found to be an oscillating one. 
The measured temperature distributions shown in Figs. 2(a) 
are the time-averaged values. It was also confirmed that two 
pairs of vortices exist unsteadily in the cross section. This 
unsteady flow is considered to be caused by transition insta
bility initially due to the occurrence of an inflection point in 
the velocity profile of the secondary flow descending on the 
hot side wall. 

The important points related to this unsteady second flow 
are, first, that the unsteady flow has predominating frequencies 
in the spectrum starting at 0.019 Hz. The second point is that 
the fluctuating motion has an amplitude large enough to make 
the time-averaged value of the growth rate of the layer spatially 
uniform. This unsteady flow might develop into a kind of 
chaotic flow field. Theoretical and experimental studies on the 
chaotic flow mainly discuss the free convection in a horizontal 
cubic container reviewed from the heat transfer standpoint by 
Yang (1989). The flow field explained above might be of a 
chaotic character, but to identify it exactly as a chaotic flow 
several experiments have to be carried out, for example, to 
check if whether Lyapunov index is positive as reported by 
Sano and Samada (1985). The experiment reported in this paper 
uses combined flow; few papers have discussed this kind of 
combined flow from the chaotic standpoint. Figure 3 shows 
the pattern of a grouping of the convective cells related to the 
temperatures of the side walls. The horizontal axis is the av
erage temperature of the lower half wall and the vertical axis 
is that of the upper half. The values of Reynolds and Grashof 
numbers for this pattern are the same as those of Fig. 2. The 
expression for the circulating direction of the secondary flow 
is shown in the left half of the cross section. The pattern of 
Fig. 3 is divided into four regions. In regions I and IV, the 
results of experimental and numerical studies are in agreement, 
but in the other two regions, II and III, they are different. 
Region III is useful from a practical standpoint as it has the 
uniform time-averaged growth rate of the deposit layer on the 

bottom wall. The flow pattern shown in Fig. 3 may depend 
strongly on the Reynolds and Grashof numbers. 

3 Optimal Temperature Distribution of the Heated Gas 
Outlet of the Compact Plate-Fin Heat Exchanger 

With increasing demand for electric power and with the need 
for decentralized power stations, research and development of 
advanced gas turbine and fuel cell plants attracts the concern 
of utility people. One R&D problem related to these plants is 
the installation of power plants in densely populated urban 
areas, which requires the development of compact plate-fin 
heat exchangers for high-temperature applications, as reviewed 
by Bergles (1985). The plate-fin compact heat exchanger con
sists of many stages of hot and cold gas channels, as shown 
in Fig. 4(b). The stages lie one upon another. A stage consisting 
of square channels is usually used as the cold gas passage, 
while the hot gas channel has a rectangular cross section with 
an aspect ratio larger than unity. One of the important factors 
to consider in the study of regenerative compact plate-fin heat 
exchangers is enhanced reliability, particularly by relaxing ther
mal stresses. The insertion of twisted strips as shown in Fig. 
4(a) in the channels for this purpose is taken up in this paper. 
When the shape of the channel is square for use with a cold 
gas flow, the twisted strip is easily inserted in the channel. 
However, in the case of a rectangular channel for hot gas flow, 
the aspect ratio of the cross section can be approximated by 
the integer 2 or 3 instead of the fractional number without 
serious problems. Experiments on flow and heat transfer per
formance when a twisted strip is installed in a square cross 
section have been reported earlier by Mori et al. (1985). In the 
following, the results of experiments with rectangular channels 
having aspect ratios of 2 and 3 are shown together with those 
for square channels. For the rectangular channel having aspect 
ratio of 2 and 3, it is proposed to insert a separator of extremely 
thin plate, as shown in Fig. 4(b). The gap between the twisted 
strips and the channel is within 1 mm. The effect of the twisted 
strips is to enhance the heat transfer performance by the in
duced secondary flow, but it should be noted that in addition 
to this effect, additional heat transfer enhancement is available 
at high temperatures. 

Experiments on friction and heat transfer performance were 
performed in channels having aspect ratios of 1, 2, and 3, and 
with a bare duct. The kinds of twisted strip are shown in Fig. 
5, where the symbols of the experimental data are also indi
cated. Experiments were performed at room temperature and 
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at several high temperatures up to 650°C. The friction coef
ficient/defined by [Ap/pu2/2] • [de/4 Az], which is obtained 
in the experiments, is proportional to the -0.06 power of Re. 
The effect of the physical properties on it is dependent on the 
power of - 0.1 of the ratio Tw/Tb in the turbulent region. This 
is shown in the following formula reported by Mori et al. 
(1976) where C is the proportionality constant and is a function 
of R and the ratio of strip width d' and twist pitch P. 

Square duct : 
Rectangular duct : 

C = 8.70i? + 2.52 
C = 7.33/? +2.50 

R= (ird'/Pf/[l+(.ird'/P)2} 
The experimental results were correlated as Nusselt numbers, 
defined by ude/\. The Nusselt number is found to be pro
portional to the 0.8 power of the Reynolds number in the 
turbulent region and to the power of - 0.5 of the ratio of the 
wall and fluid bulk temperatures as shown in Fig. 5. The reason 
that the data for the aspect ratio of 3 are slightly larger than 
those of other aspect ratios is that in calculating Nusselt number 
the surface area of the separator is not taken into consideration. 
The construction of the conventional compact plate-fin heat 
exchanger is symmetric. To make a comparison of experi
mental and predicted results, the tested heat exchanger was 
not as large in size, as explained later on. However, this fact 
causes hardly any disadvantage in applying the results to prac
tical compact heat exchangers. As seen from the middle right-
hand picture of Fig. 1(6), the heat exchanger consists of three 
sections: the two crossflow sections set at each side of the 
counterflow section. The insertion oftwisted strips in the chan
nels of the crossflow section is not advisable, because the length 
of the strips varies from channel to channel and is not effective 
enough. Therefore, twisted strips were installed in the channels 
of the hot and cold gas stages of the counterflow section. For 
bare channels in the crossflow section, the results reported so 
far by Rohsenow and Hartnett (1973) are used in the calcu
lations. In the calculations of the temperature fields of hot 
and cold gases, under the condition of making the pressure 
drop in each channel equal, the flow rate distribution in the 
channels with twisted strips was calculated by several trial-and-
error calculations to get the optimal twist-pitch distribution of 
strips, until a uniform outlet temperature of the heated gas is 
obtained. As the twist pitch of the strip is different in each 
channel, the transferred heat would vary with each channel. 
The stage consists of 25 channels in parallel. In Fig. 6, the 
calculated results without strips are shown by chained lines, 
while those with the strips of optimal twist pitch are shown 
by solid and broken lines for the given total exchanged heat 
when the inlet temperature of the hot gas is 650°C and that 
of cold gas is 230°C. The counterflow section is 1000 mm long 
and 355 mm wide. Thirteen stages are for cold gas and 12 for 

10 15 20 25 

DUCT NUMBER 
Fig. 6 Optimal temperature and twisted-pitch distributions 

hot gas flows. The heat exchanged is about 40 kW. As seen 
from Fig. 6, the maximum temperature of the heated gas is 
reduced because of the optimal twist-pitch distribution, re
sulting in the relaxation of the thermal stress. The distribution 
of the ratios of twisted pitch of the strip is shown in the lowest 
part of the figure by a solid line. The optimal pitch distribution 
changes discontinuously because the twisted strips were divided 
into seven groups to facilitate easy production of the twisted 
strips. When the twist pitch is small, the strong secondary flow 
induced causes remarkable heat transfer enhancement. As ex
plained above, the parameter to optimize the outlet temper
ature of the heated gas by making it uniform is the twist pitch 
of inserted strips. The optimizing procedure is easily performed 
by iterative numerical calculations. The optimizing procedure 
developed in this paper can be applicable to the relaxation of 
thermal stresses when the numerical calculation method of 
three-dimensional stress distribution of a complicated honey
comb structure is developed. 

4 Control of Tube Vibration of High-Temperature 
Shell and Tube Heat Exchanger by Insertion of Flat 
Plates at Optimal Intervals for Separating Tube Arrays 

Among various kinds of heat exchangers, only the metallic 
shell-and-tube heat exchanger of adequate construction may 
be available with high reliability at about 900 °C when a proper 
metal is used. One of the important problems in the devel
opment of the high temperature gas-gas heat exchangers of 
shell-and-tube type is the tube vibration caused by vortex shed
ding or vortex interaction. Mori et al. (1986) reported that the 
von Karman vortices behind tubes cause strong pressure fluc
tuations of a constant frequency around the upstream tubes. 
This is the main course of tube vibration. In consideration of 
the pressure fluctuation caused when von Karman vortices are 
the main cause of the tube vibration, in the case of the in-line 
tube array construction, the insertion of separating flat plates 
between the parallel tube arrays is discussed in order to make 
the distance between the plates optimal. The experimental setup 
for this problem has seven tubes of the in-line arrangement 
between the two parallel flat plates. Three tubes in the middle 
are elastically supported. The transverse and lateral displace-
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Fig. 7 Experimental rig lor heat transfer enhancement performance by 
separating plates 

ments of the three tubes were measured. The tube diameter D 
was fixed at 20 mm and the distance H between the separating 
plates was varied. The experimental results proved that when 
H/D was larger than 2, the transverse displacement was as 
large as that of a single cylinder in an open flow. By reducing 
the ratio H/D below 2, the transverse displacement becomes 
smaller. The optimal value of H/D ratio was found as 1.53. 
The pitch of the tubes was taken to be almost the same value 
as the distance between the plates. Thus the tube vibration is 
well controlled by optimizing the distance between the sepa
rating plates. The other important role of the plates separating 
in-line tube arrays is the heat transfer enhancement by surface 
radiative heat transfer between the plates and the tubes. Figure 
7 shows a heat transfer experimental device that has almost 
the same configuration used for the study of tube vibration. 
The flow and heat transfer model shown in Fig. 7 is applicable 
to shell-and-tube heat exchangers of the helical and U-tube 
type. The heated gas flows in the tube. At high temperatures, 
a lot of radiative heat is expected to be transferred from the 
separating plates to the tube surface, and significant heat trans
fer enhancement is anticipated. The experimental results were 
reported by Mori et al. (1976). The heat transfer enhancement 
factor E, which is defined as the effective heat transfer coef
ficient divided by the purely convective heat transfer coefficient 
divided by the purely convective heat transfer coefficient, is 
about 1.1 at low temperatures and increases up to 1.7 at a 
temperature of 900°C. The flat thin plates inserted between 
the in-line tube arrays can not only control the tube vibration 
but also make a contribution to heat transfer enhancement 
(Watanabe et al., 1983). 

Based on the fundamental research explained above, a high-
temperature He-He heat exchanger was built and tested in 
Japan using funds from the Ministry of International Trade 
and Industry as an important component in an advanced high-
temperature gas cooled nuclear reactor system, which heats 
He up to 950°C and will be useful not only for generation of 
electricity but for production of hydrogen. The heat exchanger 
consists of helical coil tubes and has such advantages as axially 
symmetric construction, acceptability of thermal elongation, 
feasibility of scale-up, and capability of in-service inspection. 
The high-temperature heat exchanger thus designed and man
ufactured based on experimental data described above, and 
shown in Fig. 8, was tested as reported by Mori (1985). In 
place of separating flat plates, layers of thin cylindrical shell 
6 mm thick are installed between the helical tube layers. No 
tube vibration was observed and heat transfer enhancement 
by radiation was observed. Based on this success, a larger high-
temperature heat exchanger of the same construction as that 
in Fig. 8, having helical tubes, separate cylindrical shells, and 
a capacity of about 10 MW exchanged heat, is now under 
construction in Japan for use in the thermal system of an 
experimental high-temperature gas-cooled nuclear reactor for 

SEC. He OUTLET 
(925 "CI 

PRIM. He INLET 
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Fig. 8 High-temperature shell-spiral tube heat exchanger with sepa
rating cylindrical shells 

multipurpose applications, such as for the production of hy
drogen as a future clean fuel. 

5 Conclusion 
This paper discusses three typical problems closely related 

to heat transfer. The subject of the discussion is to find a 
parameter highly related to heat transfer and controlling the 
essential performance of the phenomenon, and to optimize the 
parameter in order to satisfy the condition required for the 
problems. The three topics taken up are the deposition of the 
semi-conductor layer in a CVD furnace as an example from 
the high-technology field, enhancement of reliability of a com
pact heat exchanger at high temperatures, and development 
of a shell-and-tube heat exchanger for a high-temperature gas-
cooled nuclear reactor system. Based on theoretical and ex
perimental studies, the following conclusions on the controlling 
parameter and optimal condition in the case of the three ex
amples are obtained. 

In the CVD furnace problem, the parameter controlling 
spatial uniformity of the deposit layer thickness is found to 
be the side wall temperature distribution and the optimal con
dition of the distribution is experimentally obtained. The op
timal case is an unsteady flow containing two pairs of vortices 
and the time-averaged temperatures of the horizontal planes 
are uniform. 

In the compact plate-fin heat exchanger study, a proposal 
to insert a twisted strip with twist pitch appropriate to each 
channel is made for the purpose of making the outlet tem
perature of the heated gas uniform. The optimal twist-pitch 
distribution is numerically calculated. The final target of de
velopment of a reliable compact plate-fin heat exchanger should 
be the relaxation of the maximum thermal stress of the ex
changer. 

In the flow-induced tube vibration problem of the shell-and-
tube heat exchanger, installation of separating plates between 
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the in-line tube array is proposed. By setting the optimal in
terval between the plates, tube vibration is fully controlled and 
heat transfer is enhanced by radiation when used in a system 
such as a gas-cooled nuclear reactor. 

The principle of the studies in this paper is applicable to 
heat transfer problems in which the optimal condition is a 
factor other than heat transfer enhancement, for example, 
enhancement of the reliability of the heat exchanger and other 
similar factors. 
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An Improved Algorithm for Inverse 
Design of Thermal Problems With 
Multiple Materials 
An optimization scheme and matrix partitioning strategy are developed in conjunc
tion with a boundary element solution procedure for inverse design in heat transfer. 
The optimal control problem is to locate interior heating or cooling passages inside a 
coated conducting domain to achieve a desired boundary temperature when the heat 
flux is specified (or vice versa). As the interior passages can be parameterized with a 
few variables, the optimization problem is of low dimension, the matrix partitioning 
scheme for the boundary element system and optimization search procedure lead to 
a fast computational scheme for this class of problems. 

Introduction 

Inverse design problems arise in many areas of engineering 
and typically involve an analysis calculation for temperature, 
stress, flow velocities, and so on, coupled to an iterative op
timization scheme to achieve the design goal from an initial 
configuration. Examples include least-weight design for struc
tures, shock-free design in aerodynamics, and thermal 
management in heat transfer problems. In the present study 
we consider a class of problems for inverse design in heat 
transfer that lead to a low-order optimization problem cou
pled with a large-scale analysis calculation. That is, there are 
relatively few control variables for the optimization, but the 
analysis calculation potentially may be prohibitive if many op
timization steps are needed. Moreover, the design problems in 
question involve a natural separation of the analysis variables 
to subclasses that are influenced only to limiting degrees by 
changes in the design variables. This leads to a natural parti
tioning of the associated matrix problem that can be exploited 
in computations. 

More specifically the focus of the present study deals with 
an improved algorithm when a boundary element method is 
applied for steady heat transfer calculations of optimization 
problems with multiple material layers. Our work is a natural 
extension of previous studies initiated on this class of 
problems by Kennon (1984), Kennon and Dulikravich (1985), 
Chiang (1985), and Chiang et al. (1987). The design objective 
in these studies is to locate interior cooling or heating passages 
within the domain so that a given surface temperature or flux 
is achieved. Related applications arise for internally cooled 
turbine blades and cooling of electronic equipment. Since the 
problems considered involve the surface field, a boundary ele
ment method for heat transfer analysis is appropriate. This is 
to be embedded efficiently within an optimization algorithm. 

The turbine blade application has been the subject of 
previous experimental design studies by Hay et al. (1983), and 
Hannis and Smith (1983), and provides a test case for model 
comparison. A main distinction in the present algorithm is the 
form of partitioning introduced in the boundary element 
problem when there are multiple layers (material coatings). 
This new block partitioning scheme implies that the matrix 
calculations at each optimization step are significantly reduced 
when compared with previous schemes. As a result, computa
tion time for representative calculations may be reduced by as 
much as an order of magnitude for problems where a 
moderate number of optimizations steps are required. A new 
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search strategy and other improvements to the optimization 
scheme further accelerate convergence and improve the 
robustness of the algorithm. 

Analysis 

1 Problem Statement. Consider heat transfer in a domain 
with specified outer boundary temperature and containing 
several layers as coatings. The primary inverse problem is to 
determine the location and size of coolant passages in the in
terior to produce a desired heat flux distribution at the outer 
surface. Certain auxiliary constraints such as the minimum 
distance of approach of the coolant "holes" to the outer 
boundary or to one another are also specified. 

If the temperature u is specified on the interior coolant 
boundaries and the temperature on the exterior boundary, 
then the associated boundary value problem can be solved to 
determine a flux on the outer boundary. This will, in general, 
differ from the design flux Q. The error Q - q on the outer 
surface can be used to construct an objective function E = E 
(Q — q) for the optimization problem with respect to the 
parameters controlling the coolant passage location and size. 
In the present studies the coolant passages will be circular and 
hence the control variables are the locations (xh yt) of the cir
cle centers and their radii /-,-,/= 1, 2, . . . , m. Values of u,- [xh 
yh rt) may be incrementally adjusted in the optimization pro
cess to minimize E. 

Evidently there are few optimization variables, so this im
plies a low dimensional optimization problem is to be solved. 
The efficiency of the method then rests largely on the cost of 
solving the boundary-value problem approximately at each 
optimization step. A direct approach to the optimization 
problem would be to set up and solve successive boundary ele
ment systems for each new configuration as v is incrementally 
adjusted in the optimization step. This would necessitate full 
system formation and solution at each step, which implies that 
the procedure would not be practical in those cases where a 
moderate or large number of optimization steps are required. 
Clearly, as the locations of grid points on the outer boundary 
and interior layers are fixed, most of the entries in the bound
ary element system will not change throughout the procedure. 
This observation motivated the approaches in the previous 
studies (cited in the Introduction). The current work is a fur
ther extension on this class of algorithms that leads to a more 
efficient scheme in the case where the domain is layered. 

2 Boundary Element Formulation. Consider the 
multilayered domain 0, = Ufi,- shown in Fig. 1 with layer Q, 
bounded by contours Th Yi+, and interior "core" Q0 contain-
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Fig. 1 Annular subdomain fy bounded by r,- and r j + ̂  and containing 
inner passages r,< 

ing heating or cooling passages T0 = Uyj,j=l,2,...,J. 
The subdomain Q, has material property £, and fundamental 
solution for two-dimensional problems uf = (1/2TT£;) In (1/r) 
for diffusion operator V»(£v(» ) ) ' 

Applying Green's third identity to a representative annular 
subdomain Q, and introducing the fundamental solution gives 
the integral equation for x in Ui,. 

/3,-«(*) + 1 , 0 uk, 
duf 

-ufk. 
du 

ds 

+ L (•*• 
duf ^ , du \ , 
dn dn 

(1) 

where n denotes the outward normal direction from the 
respective boundaries of 0,, /3; = 6/2-K where 8 is the interior 
angle at x (6 = 2K if x is interior to fif), and the integrals on T,-, 
r , + , are oppositely directed. 

In particular, equation (1) holds for x on T, and T ; + , so we 
have a pair of boundary integral equations for !},-. For a con
tinuously turning boundary contour, j3, = l / 2 . Since we are 
dealing with a multilayered domain and r , + 1 is common to Q, 
and fi,+ 1, it proves convenient to orient integrals in the same 
direction and treat contour normals similarly. Reversing the 
direction of integration on T, and the associated normals 
preserves the signs in the first integral of equation (1). Setting 
q, = k; du/dn, q* = k,- duf/dn for the normal flux com
ponents, the boundary integral equation has the form 

j8,« (x) + \ (uqf- ufq,)ds + \ (ugf- u*qt )ds = 0 (2) 

and this is representative of the boundary integral contribu
tions for any layer in Q. 

But r , + 1 is shared by 0,- and fii+1 so that setting / + 1 for i 
in equation (2) yields a similar integral contribution on r,-+1 
from fl/+1. Both u and the normal flux q are continuous across 
r , + 1 so qi+l = qt here. Further, the fundamental solutions on 
0, and Q ; + 1 satisfy k,-uf = ki+luf+l, ktqf = ki+lqf+l on r / + 1 
so that 

(uqt+l-ufqi+i)ds = -— 
M'+l Ki+1 

(uqf-ufayds (3) 

Hence the contribution of the second integral in equation (2) 
for x on T,+ 1 can be obtained simply by scaling the value on 
r , + 1 from the previous layer by the factor kj/kl+l. Similarly, 
the value of the first integral in equation (2) for x on Tt would 
be available from the calculation on Q,_, by scaling with 

Introducing a boundary element discretization V1-, Tf+, and 
expansions uh, qih the boundary element system corre
sponding to equation (2) with control point xk on the bound- ' 
ary is defined by Brebbia (1980) or Carey and Oden (1983) 

PiUh{xk)+ \ (uhqf-ufqth)ds + \ (uhqf-ufqih)ds = 0 
•>ri J r ; + 1 

w h e r e in the i n t e g r a n d uh = uh (s), qh = q h (s), q* •• 
(4) 

qf (x*; 

s) and uf = uf (xk; s). Setting uh = constant in equation (4) 
determines /3,. Evaluating the integral contributions in equa
tion (4) by accumulating element integrals on T, and r , + 1, the 
boundary element equations for Q, with xk on r f can be writ
ten conveniently in block system form as 

Ht')U / + G^)(,/ + H ^ I u / + 1 + G ^ 1 a ; + 1 = 0 (5) 

where Hfp corresponds to the contributions from /3,- uh (xk) 
+ $ r . uh qfds, G\p to - §r., ufqjh ds, and so on. The first 
subscript of the block matrices in equation (5) corresponds to 
the contour- that control point xk traverses and the second 
subscript corresponds to the integral contour being evaluated. 
The superscript indicates the domain Q,-. Note that, as usual, 
the diagonal entries corresponding to /3; can be determined 
from the appropriate boundary angle at the control point or 
by means of an auxiliary problem for U = 1. Replacing the 
first subscript of each matrix in equation (5) by i + 1 gives the 
form of the second boundary element subsystem of Q: 
associated with \k on F / + {, 

Htf, ,u, + Gtf, ,q, + H t f , / + , n , + , + Gft , /+, q,+ , = 0 (6) 
The block boundary element system equations (5) and (6) 

can be computed for each subdomain sequentially and bound
ary conditions specified to construct a block partitioned 
system for the boundary-value problem on Q. Note also that, 
in view of equation (3) it follows that 

k k-
CH' + i) - ' fi I it anH H!'+1) -__ i_H! '> 
W + l i+l ~ i " ( + l i + l a n a " i + l i + l ~ ~ ni+l i+ K;. ki+i 

(7) 

w h e r e H/{'i ,+ 1 agrees with H/j1! /+1 except that the contribu
tion to the diagonal due to /3/+1 must first be scaled by the 
reciprocal ki+1/kj. Similar relations hold on F,- for the 0,_j 
and 0,- contributions. 

As an example, let us consider a single system (7V= 2) with Q 
= fi0 U Qj, and u specified on r0 and T2- From equations (5) 
and (6) the block-partitioned system is 

H$ G$ Hg? Gg? 0 0 

Hffi GS0o> Hi? Gj? 0 0 

0 0 Hft GJV Hj^ GŜ > 

0 0 HiV Gff H® G2? 

Ul 

Qi 

u 2 

Q2 

= 0 (8) 

Transposing terms involving prescribed boundary values u 0 , 
u2 and using equation (7), we have the block system 

G $ Hfi? Gg? 

Gff 

G2V 

- G S ? GiV 

c2y 

" Qo 1 

» i 

Qi 

L 1 2 . 

= _ 

~ H $ u 0 " 

H50^Uo 

H { > 2 

L H ^ u 2 _ 

(9) 
which can be solved for the unknown nodal temperature and 
flux values. 

In the context of the present optimization problem, bound
ary element systems such as equation (9) are to be solved many 
times, and our purpose now is to develop a special partitioning 
scheme, so that repeated solution is highly efficient. The first 
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important observation is that several of the entries in equation 
(9) do not change during successive optimization steps and 
hence do not need to be recomputed. More specifically, only 
the location of the interior passage boundaries 
r 0 = U Yy are altered. 

For notational convenience let us write the system equation 
(9) as 

Ax = f (10) 

where A is naturally partitioned to blocks A/;, as shown in 
equation (9), with A14 = A24 = A31 = A41 =0 . The central 
idea is to proceed to eliminate successively x4, then x3, etc., in 
a manner similar to the back-substitution step of Gaussian 
elimination. In this way the partitioned problem leads to a set 
of lower dimensional matrix inversion computations that need 
to be done only at the first optimization step. Successive op
timization steps then require elimination solution of a low 
dimensional problem for z, (i.e., for q0). 

Summarizing the main steps, from equation (10), 
xN = ™-NNiN — ANNANN_lxN_i — ANA,_2x/v_2 (11) 

This pre-eliminates x^ in favor of x,v_| and xN_2- This in
volves inversion of block ANN together with block matrix 
multiplications. Continuing to the equation for xN_lt and us
ing equation (11) for condensation we obtain 

KN~ 1 = (AN_ iw__ j — AN_ [N-™-NNANN_ J ) [fN_ ! 

— A/v- IN-^-NN^N + (AN_lNANNANN_2—AN_iN_2)XN-2\ U^) 

where requires inversion of the new composite block matrix on 
the right to pre-eliminate xN_ l. This procedure clearly can be 
carried to higher levels for xN^2, xN_3, • . • , x2, necessitating 
inversion of a composite block matrix at each step. Finally, 
the problem is reduced, by this condensation process, to solu
tion of the system for x, (i.e., q0), which must be solved at 
least once during each optimization step. All the prior conden
sation steps and matrix inversions still apply, and herein lies 
the efficiency of the method when a sufficiently large number 
optimization steps are needed. 

Each block matrix inverse is of size equal to the number of 
nodes «,- on the interface concerned. The matrix inversion is of 
order («,-)3 so the operation count for inversion of (TV- 1) 
blocks is 0(Efixn}). If «,- = 0 ( « ) for all />0 , we have 
0( (N- 1 )n3) operations. Note also that matrix multiplication 
requires the same number of operations as inversion so the 
total work estimate for the block condensation approach is 
0(k(N-l)n3) where k-l is an estimate of the average 
number of new block matrix products required per row. 

It is evident that this scheme is highly recursive and becomes 
increasingly complex as the size N of the block system in
creases. Moreover, it is important that matrix products from 
previous levels not be repeated at higher levels if k is to be kept 
small and optimal efficiency realized. To demonstrate these 
aspects of the algorithm we take the problem in equation (9) 
and carry out all the steps in algorithm form. 

Algorithm 

Row 4 Condensation (11) 
Compute A^1 and overstore1" A ^ ' — A ^ . 
Using equation (11), compute: A^'f4 — f4; 
A44 A42 —A42; A44 A43-*A43 

(so x4 = f4 - A42x2 - A43x3) 

Row 3 Condensation (12) 
Compute (A 3 3 -A 3 4 A 4 3 )~ ' ^A 3 3 

Compute f3 - A34f4 -~ f3 

indicates array overstore of entries. 

Compute A34A42 - A32 — A32 

Compute A33 f3 — f3 

Compute A33A32 — A32 

(so x3 = f3 - A32x2) 

Row 2 Condensation 
Compute (A22 + A 2 3A 3 2 ) -A 2 2 

Compute ( f f -A 2 3 f 3 ) - f£ 
Compute A^1 — A22 

Compute A22f2 — f 2 ' 
Compute A22A21 — A21 

(sox2 = f f -Af,x,) 

Reduced System for xx 

Compute (Af, - Af2A2*,) - Af3A32AJ, -Af , 
Compute f f - A fj f | - A f3 f3 - A f3 A32 f2 - f * 

(so A*ixl = f* for elimination solution). 

The entries with asterisks are recofhputed for each optirniza-
tion step. The major recalculations occur in the first row equa
tion for x, and some minor recalculations in the second row 
equation. 

3 Constrained Optimization Algorithm. The problem to 
be addressed is one of constrained optimization: The position 
and size of the internal coolant boundaries are to be adjusted 
to minimize the error objective function E on the exterior 
boundary subject to geometric constraints to ensure that the 
"holes" remaining within the innermost domain Q0 do not ap
proach one another too closely and have radii greater than a 
specified minimum level. The control variables for the op
timization problem are the coordinates (xh yt) of the hole 
centers and the hole radii /•,-, as indicated in the overview of 
Section 1. 

Several detailed features and refinements of the optimiza
tion algorithm related to the treatment of constraints, the line 
search strategy employed, and the gradient descent optimiza
tion procedure are now described. This scheme is employed in 
the numerical studies that follow in Section 4. We begin with 
some brief preliminaries describing the gradient optimization 
algorithm and then describe special features of the present 
constrained optimization procedure. 

Gradient Method. In gradient-based optimization 
schemes, gradient information V £ i s computed at the current 
iterate v„ for the objective function E and used to determine a 
descent direction d„. A line search minimization procedure 
then gives the size a„ of the step to be taken in this direction. 
The sequence of iterates generated along the optimization 
"path" are then given by 

v„+i=v„+a„d„ 

In this manner the optimization scheme reduces to successive 
steps in which search directions are determined and one-
dimensional minimization (line search) is conducted. 

As an example, the simplest strategy is the steepest descent 
method in which the direction is precisely d„ = — vE(\n), so 
that the initial local rate of decrease of E is greatest. However, 
this method does not include information related to the cur
vature of the objective function (second derivatives) which is 
naturally important near the minimum. Consequently, the 
rate of convergence may be very slow. If a local Taylor series 
expansion is introduced and truncated beyond second 
derivatives, then minimizing this quadratic yields the well 
known Newton-Raphson iteration V B + I = Y „ - G ; ' ( V - B „ ) 
where G„ is the Hessian of devaluated at v„. This method can 
be improved by augmenting it with a line search. The method 
is expensive (especially in the present context) and may fail if 
G„ is not positive definite. Further, for a quadratic function 
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E, G = I and the method then reverts to the steepest descent 
scheme. This form, together with the observation that a 
change of variables can accelerate the steepest descent (SD) 
scheme, leads naturally to the notion of preconditioning and 
the recursion 

v„ + i=v„ + a„H„(V£„) 

In the present work we employ a Davidon Fletcher Powell 
(DFP) scheme with periodic SD "restarts." In the DFP 
method the first step is by steepest descent and successive H„ 
are chosen to approximate the Hessian as a possitive definite 
secant update (Walsh, 1975). That is 

H , = I 

H „ + 1 = H „ + A „ + B „ , nzl 

where 

A " w / u / " ujH„u„ 

with 

w„=a„d„, d„ = - H „ ( V £ „ ) 

and 

If the scheme "stagnates" and is converging too slowly, we 
restart with a steepest descent step. 

Remark. Other optimization techniques such as the 
Polak-Ribiere conjugate gradient scheme may be similarly 
applied. 

Line Search with Constraints. The basic line search pro
cedure is to find the minimizer aopt in a quadratic fit to E for 
three points along the line. This search must also accom
modate the constraint that the "holes" lying within fi0 not ap
proach one another too closely. Let us consider a typical line 
search, and for notational convenience drop the step index n. 
To accommodate the constraints better, the search direction 
vector d is first normalized to unit length. Because of the 
geometric nature of the constraints it is easy to calculate the 
maximum allowable stepsize araax such that v still remains in 
the "feasible" region: By simply checking the distance from 
the current circle centers to the nearest point on the discretized 
interface in the direction of search and ensuring that holes do 
not "overlap," the value of amax is obtained. This then deter
mines the search interval. 

Having determined the interval [0, am a x] , we next locate 
VU) = v(0) + a( i ) d s u c h t h a t E(\) = £(V(D) satisfies £<» <£•«» and 
then v ( 2 )=v ( 0 ) + a(2)d such that £<2>>£<» with 0<a<" 
<ojP> < a

m a x . In the numerical calculations following, we first 
set al/amax=cp with parameters c, p specified. Early in the 
optimization procedure we set p = 1 so that the first point 
tested is at fractional distance c from the origin point. The 
search continues from this point toward v(0) until v(1) is 
located. If this partial line search fails, then a full line search is 
made. After v(1) is located, the interval (a(1), amax) is sampled 
to find v(2) and the quadratic minimization completed. 

Remarks: 
1 The sampling procedure for a(1) is modified as the op

timization proceeds by increasing p. At the outset p = 1 so the 
first trial for v(l) is moderately distant from v(0). Later in the 
optimization procedure p is increased so that the line search is 
carried out closer to the current iterate. 

2 If the search for v(1) fails due to the poor quality or 
properties of H, then the method is restarted with H = I for a 
steepest descent step. 

3 Subspace variants of the scheme in which some control 
variables are not adjusted can be developed and used to ac

celerate the scheme. For instance, the radii may be fixed 
(small) for several optimization steps during which the hole 
centers move close to their "target" distinctions. Then the 
radii can be varied to complete the optimization process. This 
arrangement shows a great deal of improvement in computa
tional efficiency, especially for cases with a large number of 
"holes." If a hole radius falls below a specified minimum 
value the hole can be "deleted." 

4 Multiple solutions may exist corresponding to local 
minima. (We show an example later.) In this case the value of 
E determines the suitability of the computed design. Other 
configurations can be computed and special techniques in
troduced to try to determine a global minimizer. For example, 
initial holes can be redistributed and more holes added, but 
this will increase the cost of computation. 

To summarize, the major steps in the algorithm are: 
1. Initialize: Select starting vector v(0), compute BEM 

solution, Evaluate error objective function. 
2. Optimization: 

For step k = 0, 1, 2, . . . , K 
Calculate VE(vk) by differencing BEM results 
Construct H and direction Ak 

Calculate amax 

Line search for ak 

Update yk+i=vk + akAk 

Test convergence criterion 
End. 

Algorithm Performance. We begin with some perform
ance studies for a representative problem to give an indica
tion of the relative computational efficiency of the main pro
cedural steps. The examples chosen correspond to heat 
transfer in a domain with a single layer coating and from one 
to three interior holes. A discretization of linear boundary 
elements was used in the numerical studies. The number of 
elements on the interface and outer boundary was doubled 
from 28 .to 56 to 112 to assess the effect of problem size on ef
ficiency. The number of elements per hole was also varied 
from 8 to 16 since this controls the size of the reduced 
problem. The objective function E is chosen to be the nor
malized discrete least-squares error in flux defined by 

/ £ / £ \ 1/2 

*=(E(&-?,)7 EG?) • 
Results are summarized in Table 1 for the calculation and 
broken down as a percentage of total CPU time. We separate 
specifically the following: formation of H, G block matrices; 
inversions (recall equations (11) and (12) and the associated 
condensation algorithm); matrix products in partition-
condensation scheme; and Gaussian elimination (G.E.) for 
final reduced system. The results are further separated to iden
tify those calculations that are made once only, denoted by 
(•), and those that are repeated at each subsequent step 
denoted by [•]. In most of the cases shown we see that the suc
cessive calculations that are repeated at each step are relatively 
inexpensive. The worst case is the first row of case 4 where 
there are 3 holes and 16 elements per hole. In this instance the 
reduced system is relatively large. At the other extreme, the 
fine outer mesh calculation in row 3 of case 1 demonstrates 
that the cost of repeated calculations is now negligible. We in
clude also in the last column the total CPU time for the first 
calculation. In later case studies the rate of convergence of the 
optimization scheme is explored. 

Remark. Note that this scheme involves a 4 x 4 block par
titioning. Numerical studies on the smallest test problem in 
Table 1 indicate a savings of approximately 45 percent for the 
initial inversion when compared with the coarser 2 x 2 parti
tion. The repeated calculations of the reduced problem are 30 
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Table 1 Performance of algorithm with mesh refinement and varying 
number of "holes" showing percent of total CPU time; (•) denotes initial 
calculation only, and [•] is for repeated optimization steps 

CONVERGENCE RATE 
DFP and SD 

Cases 1-4: 
# of Nodes 

Uuter: 28 
Inter: 28 
Hole: 8 
# of Holes: 1 
Outer: 06 
Inter: 56 
Hole: 8 
# of Holes: 1 
Outer: 112 
Inter: 112 
Hole: 8 
# of Holes: 1 
Outer: 20 
Inter: 28 
Hole: 8 
# of Holes: 3 
Outer: 56 
Inter: 56 
Hole: 8 
# of Holes: 3 
Outer: 112 
Inter: 112 
Hole: 8 
# of Holes: 3 
Outer: 28 
Inter: 28 
Hole: 8 
# of Holes: 5 
Outer: 56 
Inter: 56 
Hole: 8 
f of Holes: 5 
Outer: 112 
Inter: 112 
Hole: 8 
# of Holes: 5 
Outer: 2« 
Inter: 28 
Hole: 16 
# of Holes: 3 
Outer: 66 
Inter: 56 
Hole: 16 
# of Holes: 3 
Outer: 112 
Inter: 112 
Hole: 16 
# of Holes: 3 

Formatting 
H and G 

(41.11 
[5.9) 

(26.3) 
[ 2-0] 

(15.3) 
[ 0.62] 

(44.2) 
[16-9] 

(28.1) 
15.91 

(16.1) 
[1-8] 

(45.47) 
125.1] 

(29.4) 
[9-6] 

(16.6) 
[2.8] 

fSi, 

m 
ra 

Inverse 

% 

23.2 

30.6 

36.0 

17.5 

27.1 

33.9 

13.1 

24.3 

32.9 

10.8 

21.9 

31.5 

Partition 
(Non Repeated) 

% 

31.00 

40.40 

47.20 

23.80 

36.54 

45.60 

17.60 

32.10 

43.10 

14.90 

29.70 

42.20 

Partition 
(Repeated) 

% 
[ 4 . 4 ] 

[ 2 . 6 ] 

[ 1 . 5 ] 

[12.7] 

[ 7 . 8 ] 

[ 4 . 2 ] 

[19.8] 

[13.2] 

[ 7 . 2 ] 

[23.0 ] 

[15.71] 

[8.8] 

G.E. 

% 

[0.080] 

' [0.014] 

[0.002] 

[1.200] 

[0.200] 

[0.040] 

[3.900] 

[0.900] 

[0.200] 

[5.600] 

[1.S00] 

[0.300] 

Overall CPll(s) 
for the 1st 
Calculation 

12.14 

71.30 

475.50 

15.80 

78.80 

492.50 

21.40 

89.70 

520.52 

25.30 

96.90 

532.40 

250. 300. 150. 200. 
CPU(sec) 

Fig. 2 Comparison between steepest descent and Davidon Fletcher 
Powell schemes 

ITER 0 
ERROR= 47.2% 

ITER 4 
ERROR= 1.2* 

Fig. 3 Solution iterates 0, 4 for Problem 1; the shaded circle is the 
"target" and the open circle is the optimization iterate 

Table 2 Comparison of DFP, FR, and PR schemes; target (4.5, 13), 
r = 0.6 

Initial 
Guess 

x y 
(8,10) 

r = 0.1 
x y 

(6,11) 
r = 0.1 

OPT 
Scheme 

DFP 
FR 
PR 

DFP 
PR 
PR 

# of Iterations 
& Error Level 
12 (1.06%) 
13 (71.5%) 
14 (71.5%) 
18 (1%) 
30 (1%) 
30 (1%) 

# o f S D 
Restarts 

0 
2 
2 
0 
0 
4 

percent less than in the 2 x 2 partition. The efficiency increases 
with mesh refinement. 

Comparison of Optimization Methods. In Fig. 2 we com
pare the Steepest Descent and Davidon Fletcher Powell 
algorithm performance for a typical test problem. In the DFP 
scheme the method was restarted every 2 steps or 4 steps, 
respectively. 

As noted previously, other gradient optimization strategies 
such as the Fletcher Reeves (FR) and Polak Ribiere (PR) 
methods can be introduced instead of the DFP scheme. These 
conjugate-gradient methods are generally most suitable for 
large-scale optimization problems where there are many op
timization variables (Fletcher, 1980). For small-scale op
timization problems the DFP scheme is considered to be one 
of the most effective nonlinear search techniques. 

A comparison of the DFP, FR, and PR methods is included 
in Table 2 for a turbine blade with a single hole and two dif
ferent initial guesses. In the first case the starting guess is at (8, 
10) with r = 0.1, and is far from the solution (4.5, 13) with 
r=0.6. Both the FR and PR methods fail to reduce the error 
below 71 percent even with steepest descent restarts. In the 
second case with improved starting guess, all three methods 
converge, although PR requires restarting with steepest de
scent for the first four steps. 

ITER 0 CPU(S)= 35 
ERROR= 43.9% 

ITER 2 CPU(S)= 139 
ERROR= 32.3% 

ITER 5 CPU(S)=311 
ERROR= 23.0% 

ITER 8 CPU(S)=495 
ERROR= 4.2% 

Fig. 4 Convergence history for Problem 2 at iterates 0, 2, 5, 8 

Case Studies 
Problem 1. The first problem is a simple test case for 

Laplace's equation in a "layered" annular domain between 
concentric circles. The analytic solution is for a concentric in
ner hole of radius 0.5. The interface is at r= 0.8 and the outer 
surface at r=l.2. In the numerical study the inner hole is 
located, at (0.6, 0.0) with radius 0.1. 

The initial configuration and the results after four iterations 
are shown in Fig. 3 for calculations on the HARRIS 800 com
puter with discretizations of 8, 16, and 16 nodes for the inner, 
interface, and outer boundaries, respectively. The error objec
tive function E starts at 47.2 percent and this decreases to 1.2 
percent after four iterations. Numerical mesh refinement 
studies also revealed for this example the need for care in the 
matrix inversion step of the partition solution scheme. Full 
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STRUT WITH 3 INTERNAL HOLES 
Convergence Rate 

ITER 0 CPU(S>= 12 
ERROR= 94.6% 

ITER 2 CPU(S)= 22 
ERRORS 71.1% 

ITER 6 CPU(S)= 46 
ERROR= 24.3% 

ITER IB CPU(S)=123 
ERROR= 1.0% 

10 
0. 500. 2500. 1000. 1500. 2000. 

GPU(sec) 

Fig. 5 Comparison of convergence rate for Problem 2 

Strut with 3 Holes 
Comparison ol convergence rate 

J A g i I 

Present (input 1) 

— © — Chiang (input \) 
—&-- Chiang (input 2) 

h " ^ - ® i • • • - - • -

! % ! 
i : 

i | 

0. 500. 1000. 1500. 2000. 2500. 5 
CPU(sec) 

Fig. 6 Convergence comparison with inferior initial guess 

pivoting was used to prevent errors due to scaling and finite 
precision calculations. 

Problem 2. The second test problem is a strut with three 
holes that was also studied by Chiang (1985). The target is the 
configuration with three shaded holes shown in Fig. 4 and the 
open circles correspond to the current optimization solution 
step. There are 24 nodes on the interface and 24 on the ex
terior. Each inner hole has eight nodes. The initial configura
tion and solution at iterates 0, 2, 5, 8, are shown in the figure. 
By iteration eight the error is less than 5 percent and by itera
tion 16 (not shown) it is 0.2 percent. The convergence of the 
algorithm is graphed in Fig. 5 as a solid line and can be com
pared with the second solid line curve from Chiang (1985). To 
test the sensitivity of the schemes to the initial iterate, the 
problem was recomputed with the initial x coordinate of the 
largest hole perturbed 0.1 unit upward. The comparative 
results are shown in Fig. 6 as dashed lines. 

Problem 3. The final test problem corresponds to internal 
cooling of a coated turbine blade. Here the purpose is to test 
the algorithm performance when the initial choice is remote. 
Optimization proceeds with fixed small radius for the first few 
steps until the target is sufficiently close and then the radius is 
also adjusted. The initial configuration gives E equal to 94 
percent. After 18 iterates the error is of order one percent. The 
sequence of configuration iterates is given in Fig. 7. 

The turbine blade problem was next computed for an exam
ple with five interior passages from the starting iterate shown 
in Fig. 8. The interesting feature of this calculation is the 
demonstration of nonunique solutions. By iteration 6 one of 
the holes has essentially disappeared and the size of one of the 
remaining holes increases to accommodate the boundary error 
better. As observed earlier, several local minima for the objec
tive function may exist and the final solution may depend on 
the starting configuration, as in the present instance. 

Fig. 7 Convergence history for Problem 3 

ITER 0 CPU(S> 
ERROR= 36.5% 

ITER 6 CPU(S)= 658 
ERRGR= 133% 

ITER 15 CPU(S)=1555 
ERROR= 9.6% 

ITER 20 CPU(S)=2086 
ERROR= 5.3% 

Fig. 8 Convergence history for Problem 8 exhibiting nonuniqueness 

Concluding Remarks 

The numerical results and performance studies indicate that 
for problems of practical interest involving coatings, the new 
partitioning scheme and algorithm are superior to previous 
strategies. This, in conjunction with the improved line search 
procedure, has been observed in some applications to improve 
computational efficiency by an order of magnitude. 
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A lethod for Analyzing Heat 
Conduction With High-Frequency 
Periodic Boundary Conditions 
A special method is developed for calculating the steady periodic temperature so
lution in solid bodies with high-frequency boundary conditions. The numerical 
difficulty associated with steep gradients and rapid temperature variation near the 
boundary is addressed by confining all transient temperatures to a narrow boundary 
layer of constant depth. The depth of the layer is specified in advance and depends 

D. A. Caulk only on the period of the boundary disturbance and the thermal diffusivity of the 
Engineering Mechanics Department, material. The transient solution in the surface layer is represented by a polynomial 

General Motors Research Laboratories, in its transverse coordinate, with time-varying coefficients determined by a Galerkin 
Warren, Ml 48090-9055 method. This solution is coupled with the steady interior solution by imposing 

continuity of temperature and time-averaged heat flux at the interface. Although 
the method is sufficiently general to handle nonlinear boundary conditions, it turns 
out to be particularly useful in the important case of a time-varying heat transfer 
coefficient. In the latter case, it is possible to decouple the solution process and 
determine the solution in the transient surface layer separately from the solution in 
the steady interior. This reduces the effort of determining the complete steady 
periodic solution to little more than a routine steady analysis. Comparison with an 
exact solution shows that the polynomial representation for the transient solution 
in the surface layer converges very rapidly with increasing order. Moreover, the 
solution at the surface turns out to be relatively insensitive to the choice of the layer 
depth as long as it is greater than a certain minimum value. An application to 
permanent mold casting is given, illustrating both the utility and accuracy of the 
method in a practical context. 

Introduction 
The practical importance of heat conduction problems with 

periodic boundary conditions was discussed by Carslaw and 
Jaeger (1959), who cited applications in geophysics, experi
mental measurement of thermal diffusivity, and thermal stresses 
in cylinder walls of internal combustion engines. The temper
ature solution in these problems is usually composed of both 
periodic and decaying parts, while approaching a steady pe
riodic solution in the limit of long time. The classical method 
for determining the steady periodic solution is to express the 
boundary condition in a series of harmonics and use Fourier 
transforms. Unfortunately, these methods are often slow to 
converge and only apply when the boundary conditions are 
linear with constant coefficients. 

An alternative approach is to integrate the diffusion equation 
directly, using a finite difference or finite element method. 
Determining the long time limit with such an approach is ex
tremely costly since the time step must be very small to avoid 
problems of numerically induced oscillations (Myers, 1978). 
To avoid these difficulties, Myers (1980) used a direct time 
integral of the spatially discretized equations, expressing the 
solution in terms of eigenvalues and eigenvectors that depend 
on the spatial discretization of the region. While this technique 
has some advantages, it is also restricted to linear boundary 
conditions with constant coefficients. 

When the period of the boundary disturbance is small com
pared to the normal time scale of heat conduction in the body, 
the periodic transient attenuates very rapidly with depth from 
the surface. This situation presents new difficulties of its own 

Contributed by the Heat Transfer Division for publication in the JOURNAI OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division April 20, 
1989; revision received August 23, 1989. Keywords: Materials Processing and 
Manufacturing Processes, Numerical Methods, Transient and Unsteady Heat 
Transfer. 

(Hogge and Gerrekens, 1983). Numerical integration must now 
contend with widely separated time scales associated with the 
two transients in the problem. The diffusion equation must be 
integrated over the entire body, with a time step controlled by 
the rapid temperature variation and (frequently) high temper
ature gradients in a narrow region near the boundary. Such 
analysis is not only time consuming, but the stiff equations 
that result usually require special methods of numerical inte
gration (Gear, 1971). 

Problems with high-frequency periodic boundary conditions 
occur in cyclic manufacturing processes, such as die casting 
and plastic injection molding, where molten material is re
peatedly injected into a mold cavity on a regular process cycle. 
Usually, the cycle is very short compared to the "startup" 
transient of the mold and it takes several cycles to reach a 
balance between periodic boundary heating at the cavity sur
face and steady internal cooling by the water lines in the mold. 
Once this occurs, the transient temperatures in the mold are 
confined to a relatively narrow region near the cavity surface 
and the temperatures in the bulk of the mold are essentially 
steady. A similar situation also occurs in internal combustion 
engines, where the combustion cycle is very short compared 
to the service transients of the engine. 

Since the boundary conditions in these problems are usually 
expressed in terms of heat transfer coefficients that depend on 
time, they fall outside the scope of traditional transform meth
ods. Updike (1984) tried to overcome this limitation in a one-
dimensional analysis of transient heat conduction in the cyl
inder wall of an internal combustion engine. He used a Fourier 
decomposition of the solution and satisfied the boundary con
ditions by collocation in time. His solution required at least 
40 modes to converge because of the high-frequency content 
in his boundary temperature. 
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In this paper, we present a new method for calculating the 
steady periodic solution with high-frequency boundary con
ditions, aimed at overcoming some of the problems mentioned 
above. The method, which imposes a prior restriction on the 
domain of the transient solution, applies to a general three-
dimensional body and is compatible with a variety of numerical 
techniques. The basic assumption is that all transient temper
ature variation occurs within a narrow boundary layer of con
stant thickness, and the solution everywhere else is steady. This 
assumption is similar to the transient penetration concept used 
by Goodman (1964), except that here the penetration distance 
is constant and specified in advance. In contrast, Goodman's 
penetration distance is introduced as an unknown function of 
time, which is determined as part of the solution. A time-
varying penetration depth is normally restricted to monotonic 
boundary conditions. Although nonmonotonic boundary con
ditions can be treated by introducing multiple, independent 
penetration depths, this approach would be unwieldy for a 
periodic boundary condition. The use of a constant penetration 
depth for periodic boundary conditions appears to be new. 

The temperature solution in the transient surface layer is 
represented by a polynomial expansion in the transverse co
ordinate, with time-varying coefficients. Heat flux is neglected 
in the other directions and the unknown coefficients are de
termined by a Galerkin method. Temperature continuity is 
imposed at the interface between the surface layer and the 
steady interior, but continuity of heat flux is enforced only in 
a time-averaged sense. This is another departure from the 
integral methods of Goodman, which impose strict continuity 
of heat flux. The Galerkin method is especially attractive in 
this context because it can handle a broad class of boundary 
conditions. 

The effectiveness of the present approach clearly depends 
on how the specific choice for the constant layer thickness 
affects the accuracy of the solution. This question is explored 
for the particular case of a half-space with a sinusoidal surface 
flux. The accuracy of the layer solution improves as the layer 
depth increases, but at the cost of slower convergence in the 
polynomial representation. Although these general trends are 
not too surprising, it turns out that very good accuracy can 
be achieved with remarkably few terms in the polynomial rep
resentation. In the half-space example, just four terms in the 
polynomial representation were sufficient to reduce the error 
in the boundary solution to well under one percent. Each 
subsequent term improved the accuracy by nearly an order of 
magnitude. 

Although the Galerkin method makes this approach espe
cially suited to nonlinear problems, it also has advantages in 
the frequently occurring case of a linear boundary condition 
with a time-varying heat transfer coefficient. In this case it is 
possible to decouple the solution procedure and determine the 
steady interior solution separately from the surface transient. 

As a practical example illustrating the usefulness of the ap
proach, we consider a problem from permanent mold casting 
in Section 4. The decoupled solution procedure is applied to 
this problem and we show how the entire effect of the one-
dimensional surface transient on the three-dimensional interior 
solution can be reduced to an effective steady heat transfer 
coefficient defined on the boundary. With only three poly
nomial terms, the solution compares extremely well with the 
results of a much more costly finite difference analysis of the 
same problem. 

Problem and Approach 
Consider a three-dimensional body subjected to a periodic 

thermal excitation on its boundary. Let tp be the period of 
excitation and a the thermal diffusivity of the material. We 
consider the case when (atp)

W2 is small compared with the body 
dimension L, so that the heat conduction equation may be 
expressed as 

30 atp 

L2 V20 (1) 

where 9 is the temperature and r 
The periodic boundary condition may take the general form 

t/tp is nondimensional time. 

f{6, q, xa, r ) = / ( 0 , q,xa, T + 1 ) = 0 (2) 

where q is the normal heat flux and xa (a = 1, 2) are curvilinear 
surface coordinates defined over the boundary. Since the coef
ficient of V20 on the right-hand side of equation (1) is small, 
the solution will be nearly steady everywhere in the body except 
very near the boundary, where a time-varying solution is nec
essary to satisfy the boundary condition (2). We idealize the 
solution by assuming that all transient temperature variation 
occurs within a narrow boundary layer of constant depth d, 
which depends only on a and tp. Let z be a third coordinate 
(Fig. 1) defined along the inward normal to the boundary 
surface, so that the transient surf ace layer is contained between 
the boundary and the interface z = d. The region enclosed by 
z = d is called the quasi-steady interior. We assume the tem
perature is continuous at the interface, but only require con-

N o m e n c l a t u r e 

bm = 

d = 

dc = 

h = 

K = 

k = 
L = 

N = 

q = 

constant coefficients in so
lution (21) q, = 
heat capacity per unit mass 
heat capacity of the cast
ing material per unit mass 
depth of the transient sur- qs = 
face layer 
half-thickness of the cast- t = 
ing *P = 
heat transfer coefficient 
between the casting and xa = 
the mold 
effective heat transfer z = 
coefficient for the steady 
interior solution a = 
thermal conductivity f = 
characteristic body dimen
sion 
number of terms in the v = 
polynomial expansion 
heat flux 6 = 

heat flux at the interface 
between the transient sur
face layer and the steady 
interior 
heat flux at the boundary 
surface 
time 
time period of the bound
ary disturbance 
curvilinear coordinates on 
the boundary surface 
thickness coordinate in the 
surface layer 
thermal diffusivity 
nondimensional thickness 
coordinate in the surface 
layer 
nondimensional parameter 
defined by equation (28) 
temperature 

A = 

/* = 

/*m = 

P = 
Pc = 

T = 

<t> = 

linear coefficient in solu
tion (14) 
coefficient functions in 
polynomial expansion 
casting temperature 
initial casting temperature 
surface temperature 
nondimensional parameter 
defined by equation (28) 
linear coefficient in solu
tion (14) 
linear coefficient in solu
tion (31) 
mass density 
mass density of the casting 
material 
nondimensional time 
nondimensional surface 
layer thickness 
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tinuity of heat flux in a time-averaged sense. The local radius 
of curvature on the boundary is assumed to be large compared 
to d so that the effect of boundary curvature may be reasonably 
neglected in the calculation of the transient solution. We also 
assume that the boundary condition (2) varies slowly on the 
scale of the layer depth, so that it is reasonable to neglect the 
heat flux parallel to the surface in the calculation of the tran
sient temperatures. 

With reference to the coordinates in Fig. 1, we assume that 
the temperature solution in the surface layer may be repre
sented by the finite polynomial 

d(xa, z, t) = d0(xa)+]2UXa, m-z/df (3) 

where 90 has been taken independent of time, consistent with 
the assumption of temperature continuity at z — d. The coef
ficient functions d„(xa, t) in equation (3) are determined by 
neglecting the heat flux parallel to xa and requiring that the 
heat conduction equation be satisfied in the following inte
grated sense: 

i{pcft+¥z)rdz=° (*=o1 ^ w 

where pc is the heat capacity per unit volume, q is the heat 
flux parallel to z, and f = 1 - z/d. This is a form of the Galerkin 
method. For n = 0, equation (4) can be integrated directly to 
give 

N 

pcdH 
1 

m+1 
, + Qi = Qs (5) 

where qs and <?, are values of the heat flux at the surface z = 0, 
and the interface z = d, respectively. For convenience, a su-
perposd dot denotes a partial derivative with respect to time. 
For n > 1, we first integrate equation (4) by parts to obtain 

pcd% 
1 

m + n + 1 -«J0V ld[=qs ( « = 1 , 2 N) 

(6) 

To evaluate the remaining integral in equation (6), we substitute 
from equation (3) 

« - - * £ - £ E,««-r~' (7) 

( « = 1 , 2 N) (8) 

where k is the thermal conductivity. Note that while equation 
(7) is used to compute the weighted integral of the heat flux 
in equation (6), it does not have to be compatible with the 
values of qs and q, determined by equations (5) and (8). The 
unknown functions qs(xa, t) and 6„ (xa, t) (« = 1, 2, . . . , N) 
are determined by the 'N equations (8), and the boundary con
dition 

/ N \ / N 

f(e0+^emqs,xa,r) = /k+E £ Qs> x<x T + l j = 0 

(9) 

which follows from equations (2) and (3). The interfacial heat 
flux #, is determined from equation (5). 

The surface layer solution is coupled to the steady interior 
solution through the interface conditions at z = d. Instead of 
imposing these conditions on each solution directly, it is more 
convenient to extend the interior solution to the surface of the 
body by identifying it with the time-averaged solution in the 
surface layer. This satisfies the interface conditions at z = d 
and eliminates the need to solve the steady problem over a 
subregion of the body. To make this work, it is necessary to 
derive a consistent time-averaged boundary condition for the 
extended interior solution. 

When the periodic boundary condition (2) is linear with 
constant coefficients, the time-averaged boundary condition 
may be obtained by integrating equation (2) directly. In this 
case, the transient and steady solutions decouple completely 
and the present approach offers no particular advantage over 
transform methods. Although the two solutions remain cou
pled when the boundary condition has time-varying coeffi
cients, the present approach can still be used to decouple the 
solution process and solve the steady problem separately from 
the surface transient. 

To show this, we first integrate the surface layer equations 
(8) over one time period to obtain 

Is 
mn 

, N 

d , m + n - 1 
(« = 1,2 N). (10) 

where an overbar designates the time-averaged value of a func
tion and we have used the fact that the solution is periodic. 
The N linear equations (10) have the unique solution 

e{=(d/k)qs (11) 

0„ = O (« = 2, JV) (12) 

Hence, the average temperature distribution in the surface layer 
is linear, as might be expected. From equations (3) and (11) 
the average temperature on the boundary is just 

N 

9S= 9{xa, 0, 0 = 0o+ J ) 0„ = 0o+ 0\ = do+ (d/k)qs (13) 
m = l 

This relationship is true for any periodic boundary condition. 
Next, we solve the surface layer equations (8) for the prescribed 
boundary condition (9) and derive an independent relationship 
between di and 60. When the boundary condition is linear, this 
relationship is also linear, and since 60 is constant, we can 
simply average it over the period to obtain 

6i=li{xa)[ea(xa)~d0] (14) 

and obtain 

where the coefficient functions /* and da depend only on the 
time-averaged surface layer solution at the point xa. We can 
now eliminate 60 between equations (13) and (14) to get 
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qt=(k/d) fe) (o.-o.) (15) 

which is the desired boundary condition on the time-averaged 
solution. The entire effect of the surface transient on the in
terior solution is embodied in the two coefficient functions n 
and da, which are completely independent of the interior so
lution. Hence, even though the two solutions remain coupled, 
it is not necessary to compute them simultaneously. The prod
uct 

(18) 

In this case the surface layer equations (8) become 
N . N 

, 2 r i 1 „• \-i mn 
* h - ^ ^ l *»+ L ^ 7 ^ 7 0m = *cos(2«t/tp) (19) 

where 
<l> = d/(atp)

W2 
..,/ (20) 

is the nondimensional layer depth and a superposed dot now 
designates 3/dr. The solution of equation (19) has the form 

6m = amcos(2vt/tp) + bmsm(2iTt/tp) (21) 

where am and bm are determined by the linear system 

2 T ^ 2 ] E 7 bm + T] 7 « m = </> 

™, m + n + l *•*', m + n-\ 
N 

m = l 

N 

- 2 ^ 2 £ — i — am + £ ^ ^ - 6 m = 0 
(22) 

The coefficients (21) may be substituted in the basic polynomial 
representation (3) to give the temperature distribution in the 
layer 

N 

0(z, t)=^am(l-z/d)mcos{2irt/tp) 

he=(k/d)\ (16) + J^bm(l-z/d)msm(2irt/tp) (23) 

may be interpreted in equation (15) as an effective heat transfer 
coefficient for the time-averaged solution, with 8a as an ef
fective ambient temperature. 

After the steady interior solution has been determined from 
the boundary condition (15), the resulting values of 6S and qs 
may then be used in equation (13) to compute the unknown 
interface temperature 60 and hence recover the explicit surface 
layer solution. 

The foregoing result has important practical significance. 
In many of the applications discussed in the introduction, the 
periodic boundary condition is expressed through a time-vary
ing heat transfer coefficient. The present approach makes it 
possible to decouple the solution procedure for these problems 
by first determining the solution in the surface layer as a linear 
function of 60 and then forming the boundary condition (15) 
for the steady interior solution. This decoupled solution pro
cess works even when the boundary condition (9) is such that 
the layer solution must be determined numerically. 

Regardless of the form of the boundary condition, the so
lution clearly depends on the choice for the surface layer depth 
d. In the next section we use a particular example for which 
there is an exact solution to investigate the effect of d on the 
potential accuracy of the solution and the rate of convergence 
with the order of the polynomial representation (3). 

Effect of Layer Depth 
Consider a half-space z>0 with a periodic heat flux bound

ary condition 

k 

(atpV 
cos (2TTt/tp) (17) 

and a vanishing temperature at infinity. The exact solution of 
this problem is 

which, for specific values of <t> and N, may be compared with 
the exact solution (18). 

The solution (23) contains two sources of error. The first is 
in the physical approximation embodied in the transient surface 
layer assumption. For convenience, we call this the modeling 
error. The magnitude of the modeling error depends on the 
choice of the layer depth; as <l> increases, the layer includes 
more of the region actually affected by transient temperatures, 
and so the potential accuracy of the layer solution increases. 
The second source of error is in the approximate representation 
(3) for the layer solution. We call this the solution error. For
mally, we define the solution error as the magnitude of the 
remainder in the representation (3), after truncation to Nterms. 
The solution error not only depends on the number of poly
nomial terms in (3), but it also depends on the layer depth, 
since the nature of the solution changes as the layer depth is 
increased. 

Figure 2 displays the modeling error as a function of position 
for several values of the layer depth. The solution error has 
been suppressed in these results by using sufficient polynomial 
terms in equation (3) to guarantee solution accuracy to at least 
six significant figures. Since the error at any point z actually 
fluctuates on the same frequency as the boundary disturbance, 
we have plotted the amplitude of that error, corresponding to 
its maximum value over the period. The error values are ab
solute, after both solutions have been normalized such that 
the exact solution (18) has an amplitude of unity at z = 0. The 
modeling error decreases very rapidly as the layer depth in
creases. This is not too surprising since the amplitude of the 
exact solution (18) decreases exponentially with depth. The 
rate of convergence, however, is much more rapid near the 
surface. 

Figure 3 shows the solution error as a function of layer 
depth. Although it varies somewhat with z, only the average 
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Fig. 4 Modeling error (dashed line) and solution error (solid lines) at 
z=0 as a function of nondimensional layer depth <j> = d/(at^m 

value is displayed in Fig. 3 for simplicity. It is clear from the 
figure that the solution error for a given layer depth may be 
reduced by increasing N, and that larger values of N are re
quired to achieve the same solution accuracy as the layer depth 
is increased. Although a deeper layer includes more of the 
region actually affected by the transient, thereby increasing 
the potential accuracy of the solution, more polynomial terms 
are required to maintain a comparable solution error, and so 
realize that potential. Therefore, the layer must be deep enough 
to achieve a desired accuracy to the depth of interest, but not 
so deep that an excessive number of polynomial terms become 
necessary. 

In most practical situations, the surface solution is most 
important, and so the layer can be thin and the number of 
polynomial terms small. Figure 4 shows both sources of error 
at the point z = 0. The modeling error, shown by the dashed 
line, represents the potential accuracy in the layer solution. To 
achieve that potential, the solution error, represented by the 
solid lines, must be less than the modeling error. For example, 
suppose we desired a solution that was accurate at the surface 
to within 10"2. Then 0 would have to be at least 1.5 and N 
no less than 4. To avoid larger values of N, 4> must also be 
less than 2.6. 

In the present example, the boundary condition had a single 
frequency. When there is mixed frequency content, the layer 
thickness should be chosen based on the lowest frequency, 
corresponding to the greatest transient penetration. This will 

control the modeling error. The value of TV can then be selected 
empirically. Based on the above results, N should increase as 
higher frequencies become more significant in the solution. 

A Metal Casting Example 
To apply this general formulation to a problem in metal 

casting, we consider a mold consisting of at least two separate 
components that fit together around an empty cavity in the 
shape of the desired part. Liquid metal is either poured or 
injected into this cavity, where it cools and solidifies before 
being ejected. In a cyclic casting process, the mold ultimately 
reaches a periodic steady state in which the heat absorbed from 
the casting by each mold component is balanced by the heat 
removed by its internal cooling lines. Since the rate and se
quence of solidification in the casting depend strongly on the 
steady mold temperatures, it is important to be able conven
iently to calculate the effect of different cooling line config
urations on the steady periodic solution. 

Previous treatments of this problem rely on initial value 
formulations. Riegger (1981), Ohtsukaet al. (1982), and Gran-
chi et al. (1983) all assumed initial conditions based on em
pirical observations, carrying their time integration only as far 
as casting ejection. Since their solutions did not span a complete 
cycle, it is impossible to check how well their initial conditions 
simulate steady periodic conditions. Grant (1981) avoided any 
question of initial conditions by integrating his finite difference 
equations through at least ten casting cycles to approximate 
steady periodic conditions. This is a costly alternative, espe
cially when the mold is large. The present method avoids the 
inherent difficulties of an initial value formulation by using 
the transient surface layer approach to calculate the steady 
periodic solution directly. 

As an example, consider a mold for a thin casting that has 
a high thermal conductivity. Consistent with the assumption 
in the surface layer, we neglect any transient heat flux in the 
casting parallel to the cavity surface. We also neglect the trans
verse temperature gradients in the casting relative to those in 
the mold, so that at any point xa the casting may be regarded 
as a lumped mass. Let 6c(xa, f) denote the local temperature 
of the casting at the point xa. The latent heat of solidification 
is reflected in an equivalent heat capacity cc for the casting, 
which we assume to be constant in time. For simplicity, we 
consider a symmetric problem in which the mold temperatures 
are the same on both sides of the casting. A coating is usually 
applied to the cavity surface of the mold to protect it from 
thermal shock and act as a release agent. We assume that this 
coating can be represented by a heat transfer coefficient h. 
The casting is ejected at T = r < 1. After this we assume the heat 
flux at the cavity surface vanishes. 

Let dc denote the half-thickness of the casting, and pc the 
constant casting density. Then, the normal heat flux on the 
cavity surface at any time during the cycle is given by 

N 

0<T<r 
qs= < - m=o ' (24) 

(J), r<T<l 

With this boundary condition, the surface layer equations (8) 
may be written as 

N , N 

^(oc-ix). 

*2E —-—r^+ E (——T+MV 

= 4>A(dc-do),0<T<r (25) 
N 1 N 1 

* 2 E T ^ + E 7 + 0m = O r < r S l (26) 
^ m + n + 1 ^ m + n-1 

and for the casting 
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Fig. 5 Effective heat transfer coefficient as a function of nondimen-
sional layer depth for A = 10, i; = 1, and r=0.5 

5 

Fig. 6 Effective heat transfer coefficient as a function of A for different 
values oftf, the dashed line represents the limiting case when the tran
sient surface layer makes no contribution to h. 

r,0c=-A(&V0o-iX]> 0< T<r 

The nondimensional parameters A and r\ are defined by 

h(at„)U2 pcc,dc 
A=- v-

(27) 

(28) 
k pc{at„Yn 

where t\ is a ratio between the thermal capacities of the casting 
and the transient surface layer. The physical significance of A 
will become more apparent when we look at specific results. 
The coefficients dm satisfy the periodicity conditions 

eMir) = dm(j+\) (29) 

while the casting temperature satisfies the initial condition 

ec(.0) = d°c (30) 

This mixture of steady periodic and initial value problems is 
outside the scope of traditional transform methods, but it is 
an ideal application of the transient surface layer approach. 
The solution of equations (25)-(30) is a straightforward ex
ercise in linear algebra, and so we omit the details here. We 
note, however, that the solution for 6C and 6m will be linear in 
the difference ((Pc-60). Hence, 

6m = ^m{<S>, A , v, r, T)[6°C-00] (31) 

and since ((Pc- 60) is independent of time, the average value of 
6m is also linear in (6°-d0), so that 

This has the same form as equation (14). Hence, from equa
tions (15) and (16) the boundary condition on the time-averaged 
solution is simply 

qs=he{6°c-9s) (33) 

where he is an effective heat transfer coefficient defined by 

A,=* (k/d) (jzA 04) 

The boundary condition (33) can now be combined with suit
able boundary conditions on the other mold surfaces to com
pute the three-dimensional steady solution in the mold. Then 
the explicit transient temperature solution in the surface layer 
can be recovered directly from 

2>m(i-z/rfr-M> 
m=\ 

1 — Mi 
(35) 

which follows from equations (3), (13), and (31). 
As in the previous section, the solution to this problem also 

depends on the depth of the surface layer. Figure 5 displays 
the effective heat transfer coefficient from equation (34) as a 
function of the layer depth, assuming values of A = 10, rj= 1, 
and r=0 .5 , which are typical of aluminum die casting. Al
though the convergence rate is slower for larger values of d, 
the effective heat transfer coefficient he is nearly constant for 
values of <$> > 1.5. This is also true of the full transient solution, 
although we don't show the details here. 

If we select <j>= 1.5 and consider the case when r = 0.5, then 
Fig. 6 shows how he depends on h, or equivalently, on A. The 
effective heat transfer coefficient increases sharply at first, and 
becomes less sensitive to h for larger values of A. This can be 
explained if we first understand that he reflects both the con
ductive resistance of the surface coating and the effective re
sistance due to the thermal inertia of the transient surface layer. 
Both act as a barrier to the time-averaged flow of heat from 
the casting to the mold interior. Smaller values of A correspond 
to more insulative surface coatings, which tend to mask the 
influence of the surface layer inertia on the time-averaged 
solution. In this case the transient surface layer solution is 
weakly coupled to the steady interior solution and he-*rh. This 
limit is represented by the dashed line in Fig. 6. As A increases, 
the inertial resistance of the transient surface layer has a greater 
influence on he and the relative importance of h diminishes. 
Hence, A represents a ratio of the inertial resistance in the 
transient surface layer to the conductive resistance of the sur
face coating, as each affects the time-averaged flow of heat 
from the casting to the mold interior. 

The value of i) also affects this relationship. When i) is small, 
the casting cools more rapidly because of its relatively low 
thermal capacity. This reduces the temperature difference be
tween the casting and the mold surface compared to the tem
perature drop across the transient surface layer, and so 
diminishes the importance of h. Hence, the curves in Fig. 6 
corresponding to smaller values of ri level off more quickly. 
The asymptotic value is smaller because he is defined on the 
basis of the initial casting temperature (equation (33)) and the 
time-averaged effect of a decreasing casting temperature is 
reflected in a smaller value of he. 

For thin castings typical in die casting processes, 7/ is usually 
less than 1. For the petroleum-based liquids used to coat the 
dies, values of A are usually greater than 10. In this range, 
variations in the heat transfer coefficient h have almost no 
effect on the time-averaged steady temperatures in the die. 
They will, however, affect the transient solution in the casting 
and in the surface layer. 
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Fig. 7 Transient temperature solution at 2 = 0 from equation (35) for 
different values of N 
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Fig. 8 Temperature distribution through the thickness of the layer at 
three different times during the cycle; the dashed line is the time-
averaged distribution 

CASTING 

0.4 0.6 
T 

CASTING 

Fig. 9 Comparison of the transient surface layer solution (solid line) 
for (a) N=Z and (b) /V=3 with corresponding results from a finite dif
ference analysis (dashed line) 

are virtually indistinguishable. From a practical point of view, 
the accuracy of the layer solution with just N= 2 is remarkable. 

Figure 7 displays the normalized transient solution at z = 0, 
calculated from equation (35) for A=10 and r = 0.5. These 
results correspond to $ = 1.5, but like the time-averaged results 
in Fig. 5, the only effect of increasing <j> is to slow the rate of 
convergence in N. In this case, practical convergence is reached 
with just three polynomial terms. Figure 8 shows the corre
sponding temperature distribution through the layer at three 
times during the cycle for TV =3. 

In the previous section, we assessed the accuracy of the 
surface layer solution by comparing it with an analytical so
lution. In the present example, we compare with a finite dif
ference solution. To do this, we must specify the mold geometry 
and remaining boundary conditions. For simplicity, consider 
a one-dimensional die with a fixed temperature of zero at 
z = 5 (<xtp)

in. Again, we assume values of A=10, i\ = l, and 
r=0.5, and take 4>= 1.5. In this case, the time-averaged steady 
solution is linear in z and the complete temperature solution 
can be formed by combining it with equation (35). The cor
responding finite difference solution was found by starting 
with a uniform mold temperature and integrating through 
enough casting cycles to reach steady state. In this case, at 
least 35 cycles are necessary to achieve a periodic solution to 
four significant figures. Figure 9 compares the two solutions 
for both the casting temperature and the temperature at the 
cavity surface, each normalized by the initial casting temper
ature. Figure 9(a) shows the comparison for N=2 and Fig. 
9(b) shows the comparison for N= 3. At N= 4, the two results 

Discussion 
This paper provides an accurate and efficient means of ana

lyzing heat conduction problems with high-frequency periodic 
boundary conditions. The principal assumption is that all tran
sient temperatures occur within a narrow boundary layer of 
constant depth. As long as this layer includes most of the region 
actually affected by transient temperatures, the accuracy of 
the surface solution is not greatly affected by the specific choice 
of the layer depth. The transient solution in the surface layer 
can be represented very accurately by a low-order poly
nomial with time-varying coefficients determined by a Galerkin 
method. 

The problem of determining the steady periodic solution in 
a three-dimensional body is reduced to a set of first-order 
ordinary differential equations on the boundary, combined 
with a three-dimensional steady solution in the interior. These 
two solutions can be decoupled when the boundary conditions 
are linear, even if the coefficients depend on time. In this case, 
the entire effect of the surface transient on the steady interior 
solution can be reduced to an effective heat transfer coefficient, 
which is independent of the steady interior solution. Since the 
layer equations depend parametrically on the surface coordi
nates, they are not spatially coupled. Hence, it is only necessary 
to solve them at a finite number of boundary nodes—the same 
ones used to specify boundary conditions for the numerical 
solution of the steady problem. This reduces the effort of 
determining the steady periodic solution to little more than 
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finding the steady solution alone. Not only is the efficiency of 
the solution improved, but the numerical difficulties of the 
full-field transient solution are avoided. 

Finally, we note that the present method can be used to solve 
the unsteady periodic problem as well. It is only necessary to 
assume that the unsteady interior solution is quasi-static on 
the time scale of the periodic boundary disturbance. Equation 
(15) still serves as the appropriate boundary condition, together 
with initial conditions defined over the interior. After the un
steady interior solution has been determined, the complete 
solution involving both time scales can be formed by super
position. 
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A General Method for the 
Comparison of Compact Heat. 
Transfer Surfaces 
This paper presents a family of methods for comparing compact heat transfer sur
face configurations. It is shown how measures for the relative values of required 
hydraulic diameter, frontal area, total volume, pumping power, and number of 
transfer units for different surfaces can be derived and displayed, when any two of 
the above five parameters are held constant. A wide range of comparisons that are 
independent of the particular duty can be simply made. A further development 
allowing comparisons, where three of the five parameters are fixed, yields very clear 
and compact indications of the relative merits of different surfaces. 

1 Introduction 
A clear and simple statement of the relative merits of dif

ferent heat transfer surfaces is not easily made. It is particular
ly difficult to arrive at general conclusions that are valid for 
varying fluid properties and overall geometric sizes and 
shapes. The complexity of the problem is partially reduced by 
the use of nondimensional parameters to specify the surface 
characteristics—usually ./-and /-factor values expressed as 
functions of Reynolds number. However, the final statement 
of "performance" of a given heat transfer surface still needs 
to be specified in terms of at least four interrelated 
characteristics: heat transfer, fluid pumping power, size, and 
shape. A very wide range of different methods have been pro
posed for facilitating comparison and these have been well 
reviewed and summarized by Shah (1978). 

Four basic categories of comparison method were 
identified: 
(i) Direct comparison of j and/values. These methods in

clude the well-known "area goodness" comparison pro
posed by London (1964). 

(ii) Comparisons of heat transfer as a function of fluid 
pumping power. These include the "volume goodness" 
factor comparison (London and Ferguson, 1949). 

(iii) Comparison with a reference surface. Shah recommends 
the use of the methods of Bergles et al. (1974) from 
within this category, 

(iv) A miscellaneous category including methods that are 
either somewhat obscure in interpretation, or only have 
relevance to particular applications. 

Despite the wide choice of comparison methods, difficulties 
remain with all of them. For example, the "area goodness" 
factor only compares surfaces for a fixed fluid pressure drop, 
and even then the comparison is not completely quantitative. 
The "volume goodness" comparison requires hydraulic 
diameters to be fixed, and furthermore needs a set of repre
sentative fluid properties to be selected. While, this time, the 
results reveal a genuine ranking of surfaces, they do not repre
sent a fully quantitative comparison. The use of a reference 
surface for comparison requires a suitable surface to be 
chosen, and here too, representative fluid properties must be 
selected. In general all methods suffer either from complexity, 
or from lack of clarity in interpretation, and sometimes both. 

It is believed that the method of heat transfer surface com
parison proposed here overcomes these shortcomings. A suite 
of comparison procedures is presented that allows easily inter-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division December 
10, 1987; revision received July 2, 1989. Keywords: Finned Surfaces, Forced 
Convection, Heat Exchangers. 

preted quantitative comparison of the important "perform
ance" characteristics by the consideration of a range of 
parameters, without reference to any particular set of fluid 
properties and flow rates. 

Heat transfer surface comparisons range from those that at 
one extreme aim to give an indication of the intrinsic relative 
merits of different heat transfer surface geometries, indepen
dent of fluids and duty, to those at the other extreme in which 
comparisons between heat exchangers for particular heat 
transfer duties are required. In the former case a number of 
limiting assumptions are usually made, and these must be 
gradually abandoned as one moves toward the latter type of 
comparison. At the same time, the resulting comparisons 
range from the general and indicative at the one end, to the 
narrow but precise at the other. The former type of com
parison is discussed here. 

The analysis only considers the behavior of one fluid in the 
heat exchanger. The thermal resistance between the other fluid 
and its surface is assumed to be zero. In real compact surface 
heat exchangers with gases on the side under study and liquids 
on the other side, this assumption can be closely approached. 
A more significant assumption is that fin efficiency effects are 
ignored. The fin efficiency is strongly dependent upon the par
ticular fluid properties and flow rates, and upon the heat-
exchanger material and scale. This is not relevant where the 
surface is for use in a regenerative heat exchanger. It is as
sumed that the fluid properties can be identified by single 
values that are valid throughout the heat transfer matrix. 
Finally, contraction and expansion losses at the matrix inlet 
and outlet sections are ignored when fluid flow resistance is 
being considered. For detailed comparisons between heat ex
changers for a particular duty, the general methods can be 
used as indicators in the first instance, but the effects of the 
limiting assumptions must then be evaluated. 

2 The Heat Transfer Problem 

The method depends upon the consideration of a notional 
heat transfer problem: 

A heat exchanger is required to transfer heat from m (kg/s) 
of fluid at a rate of Q (W) with an available effective 
temperature difference of AT (K). 

The fluid properties are density p (kg/m3), specific heat 
capacity cp [J/(kgK)], dynamic viscosity p (Ns/m2), and 
Prandtl number Pr. 

The heat transfer requirement implies the need for the heat 
exchanger to have a number of heat transfer units Ntu, given 
by 
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N„=- Q 
mcpAT 

(1) 

In the first part of this paper, the assumption is made that Q 
and thus Nlu are fixed. Later sections consider the com
parisons of the relative values of iV,„ yielded by different sur
faces and geometries. Where Ntu is fixed the symbol Nfu is 
used. 

3 The Performance Calculation Equations 

For any solution to the above problem, of particular interest 
are: 

Total heat exchanger volume V (m3) 
Heat exchanger frontal area A (m2) 
Fluid pumping power P (W) 

The heat exchanger also has length in the fluid flow direction 
given by L= V/A. 

It is assumed that for any surface under consideration, 
values of j and / as functions of Reynolds number are 
available. Also needed are the hydraulic diameter d of the test 
surface for which the data were derived, and a, the ratio of 
minimum free flow area Ac to frontal area A. 

Hydraulic diameter is defined as 

d = 
AACL 4aAL 4aV 

(m) (2) 

where As is the total heat transfer surface area. Reynolds 
number is defined as 

Re = -
md md 

Ac\x oAji 

The Colburn modulus is defined as 

y = StPr2/3 

where the Stanton number 

hAr haA 
St = -

mcn mc„ 

(3) 

(4) 

(5) 

and where h is heat transfer coefficient, which by rearrange
ment of equation (4) and equation (5) can be expressed as 

h = - mc„ (W/m2K) (6) 
Pr2/3 A a 

Remembering the assumption of zero resistance on the other 
fluid side, the rate of heat transfer is given by 

Q = hAsAT (W) (7) 

and the pressure drop by 

2fm2L 2fm2L 
An = = 

pA2
cd pa2A2d 

The fluid pumping power is thus 

Apm 2fm3L P = -
p p2A2a2d 

Equation (3) can be rearranged to give 

d m 

(N/m2) 

(W) 

A=-
ffRe /* 

(m2) 

(8) 

(9) 

(10) 

Equation (7) can be rearranged after substitution for h from 
equation (6), for As from equation (2), for Q from equation 
(1), and subsequent substitution for A from equation (10) to 
yield 

V=-
d2 mN+Pr2/1 

4„ 
(m3) (11) 

oy'Re 

Remembering that L=V/A, and substituting for A from 
equation (10) and for V from equation (11), equation (9) 
becomes 

n /Re 2 w/x2/V+Pr2/3 

jd2 2p2 (W) (12) 

4 Comparison of Surfaces of Particular Scale 

Since the performance data for a particular surface are ex
pressed in nondimensional form, they can theoretically be ap
plied to any surface having the same geometric proportions 
but at different overall scales. However, it is often of value to 
compare the performance of different surfaces at the par
ticular scale for which the performance data were obtained, 
i.e., with the same hydraulic diameter as the test samples. This 
can be done by consideration of the equations presented in 
Section 3. 

Equations (10), (11), and (12) have deliberately been written 
so as to separate out those parameters that are associated with 
the required heat transfer duty, and those that are associated 
with a particular solution. Thus for any heat transfer duty, the 
second terms remain constant and the values of the first terms 
are direct measures of the relative frontal area, relative 
volume, and relative pumping power of the particular solu
tion. These are 

AS = -
aRe 

(m) (13) 

N o m e n c l a t u r e 

A 
Ac 

As 
CP 
d 
f 
h 
j 
L 
m 

Nm 

P 
Pr 
Q 

Re 
Re, 

St 
t 

V 

K) 

heat exchanger frontal area, m2 

minimum free flow area, m2 

total area for heat transfer, m2 

specific heat capacity, J/(kgK) 
hydraulic diameter, m 
friction factor = AppA2d/(2m2L) 
heat transfer coefficient, W/(m2 

j factor = StPr2/3 

heat exchanger length in fluid flow direction, m 
fluid mass flow rate, kg/s 
number of transfer units = hAs/(jncp) 
fluid pumping power, W 
Prandtl number 
heat transfer rate, W 
Reynolds number = md/(ixAc) 
Reynolds number = mt/(y.Ac) 
Stanton number = hAc/(mcp) 
strip width/pitch for reference surface, m 
heat exchanger volume, m3 

Ap = pressure drop, N/m 2 

AT = effective temperature difference, K 
H = dynamic viscosity, Ns/m2 

p = density, kg/m3 

a = minimum free flow to frontal area ratio 

Superscripts 
* = part of parameter associated with solution 
' = part of parameter associated with problem 

+ = constant (or fixed) parameter 

Subscripts 

A 
d 

Ntu 
o 
P 
V 

for constant frontal area 
for fixed hydraulic diameter 
for constant number of transfer units 
for reference surface 
for constant pumping power 
for constant heat exchanger volume 
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/Re 2 

' jd2 

(m2) 

(m-2) 

(14) 

(15) 

The suffix d indicates that parameters are for fixed hydraulic 
diameter for any particular surface and the asterisk indicates 
the part of the parameter associated with the particular 
solution. 

For each of the surfaces to be compared, the "relative 
pumping power" Pd can be plotted against "relative volume" 
Vd and the curves marked with the corresponding values of 
"relative frontal area," A*d. These curves allow a wide range 
of comparisons to be easily made. Figure 1 shows curves 
plotted for two different surfaces based on performance data 
taken from Kays and London (1984). Both are plate fin sur

faces with similar hydraulic diameter and values of a. The one 
is a plain fin (surface 11.1) and the other a strip fin (surface 
3/32-12.2). It can be seen that for the same total volume (e.g., 
Vd = lx 10~7) the plain fin surface will have pumping power 
some 38/6.4 = 5.9 times higher than the strip fin, but the fron
tal area will be smaller by a factor of 9/30 = 0.3 (points a and b 
on Fig. 1). For the two surfaces to perform the required duty 
with the same pumping power (e.g., for P^ = 20xl0 1 2 ) the 
total volumes will be in the ratio 9.4:5=1.9:1 with frontal 
areas in the ratio 14:17 = 1:1.2 (points c and d on Fig. 1). For 
the same frontal area (e.g., A*d= 15 X 10"7) the heat exchange 
volumes will be in the ratio 10.6:4.7 = 2.2:1 and the pumping 
powers in the ratio 16:24 = 2:3 (points e a n d / o n Fig. 1). It can 
be seen that the two surfaces have different relative merits 
when operated under different constraints, and the curves 
plotted in this way allow easy identification of these relative 
merits. 

Comparisons are often required on the basis of weight or 
cost. It is relatively easy to multiply the Vd values by the ap
propriate values of weight or cost per unit volume for each of 
the surfaces, and thus to make the required comparisons. 
These curves are of general application and do not depend 
upon the particular problem or fluid. The curves can be used 
to compare different surfaces or different configurations of a 
single surface. 

Since the surface performance data are in nondimensional 
form, it is valid for any value of scale as characterized by the 
hydraulic diameter. It is therefore possible, for a single sur
face, to plot a complete "carpet" of curves on a graph of V* 
against P* consisting of intersecting lines of constant 
hydraulic diameter and constant A *. This would allow com
parisons to include the possibility of different hydraulic 
diameters. However the comparison task becomes quite com
plex with so many data on display, particularly when sets of 
curves for more than one surface are overlaid on each other. 
Specific comparisons can be more easily made by using the 
methods described in the following sections. 

5 Comparisons for Fixed Frontal Area 

The characteristics of compact heat exchangers often need 
to be compared under the constraint that frontal area is fixed. 
Application of this condition allows the comparison of heat 
transfer surfaces without the need for scale to be specified. If 
A+ is the fixed frontal area, equation (10) can be rearranged 
as 

dA = ffRe 
IxA" 

m 
• = dA • d'A (m) (16) 

The subscript A implies the fixed frontal area condition, the 
asterisk implies the solution-related component, and the prime 
indicates the problem-related part. Since frontal area is now 
fixed, A+ joins the problem-related part of the equation. 

This relationship allows us to eliminate d from both equa
tions (11) and (12) to yield 

ffRe ^4+27V+Pr2/3 

vA=-

PA = 

i 4m 

f m3JV+Pr2/3 

V'A (m3) 

o2j 2/4 h2p2 
= PA • PA (W) 

(17) 

(18) 

A plot of VA against PA with the curves marked with values of 
dA allows the required comparisons to be made. Curves for 
the same surfaces as Fig. 1 are plotted in Fig. 2. They show 
that the pumping power depends little upon the scale 
(hydraulic diameter) of the surface. It shows the extent to 
which the "high-performance" strip fin can provide a solution 
of smaller volume (and thus smaller length L in this constant 
area case) within the limits of Reynolds number for which per
formance data are available. Any strip fin solution always has 
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a higher pumping power than any plain fin solution. Quan
titative comparisons can be made as before, and it can be seen 
that where there are solutions of the same frontal area and 
volume for the two surfaces, the strip fin solution requires a 
hydraulic diameter approximately twice that of the plain fin. 
(For the same a this implies half the heat transfer surface area; 
see equation (2).) 

If comparisons of weight are wanted rather than of volume, 
then as before, VA can be simply multiplied by the value of 
weight per unit volume for each surface, since this does not 
change with scale. However cost per unit volume is in all 
probability a function of scale, and simple comparisons on a 
cost basis are not possible. 

6 Comparisons for Fixed Heat Exchanger Volume 

A similar procedure can be followed if one wishes to com
pare the characteristics of different solutions having the same 
total volume K+ . We can now rearrange equation (11) and use 
it to eliminate d from equations (10) and (12) to yield 

rf„ = (q/Re)' 
LjV+mPr2''3J 

= d* • d'v (m) 

/ /' 1m r 4mV+ ~tm 

^ = b d •LA^PT^J
 =A-'Ai (m2) 

<r 8p2I/+ (W) 

(19) 

(20) 

(21) 

The corresponding curves are plotted in Fig. 3 for the same 
two surfaces as before. Similar quantitative comparisons can 
be made. In this case it can be seen that in general the strip fin 
is likely to have larger frontal area. The curves allow the 
relative frontal areas and their dependence on relative 
hydraulic diameter to be instantly assessed, together with the 
corresponding values of relative pumping power. 

7 Comparisons for Fixed Pumping Power 

If comparisons are now made of the different geometries 
that are able to deliver the required heat transfer under the 
constraint that pumping power has a fixed value P+, then 
rearrangement of equation (12) yields the resulting expression 
for hydraulic diameter 
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t-Vr-r-i1 r /Re 2V / 2 r ^>M 2 Pr 2 / 3 V / 2 ,,. w, , , , „ * 
~2p2]T+ J =dp'dP <m> C22) 

Substitution of this expression for d„ into equations (10) and 
(11) yields 

(23) 
r f -i 1/2 r/V+/M3Pr2/3n i/2 

y^.SS^L^.y. (m)) (M) 

In this case, the comparison can be more easily interpreted if 
flow length is considered rather than volume and 

,2n 1/2 

-Ntfmn2~Pr2l1/2 _ 
. 32p2P+ J ~ ^ P - - P LI • L' (m) (25) 

Figure 4 is a plot of A* against L* for the same two surfaces as 
before, with the corresponding values of d* marked on the 
curves. Again, a wide range of comparisons can be rapidly 
made between different geometric solutions using the same 
surface type, or between different surfaces. 

8 Comparison for Fixed Frontal Area and Volume 

Figures 2 and 3 both make it clear that in general it is possi
ble to find solutions to the notional heat transfer problem us
ing different surfaces that have both the same frontal area and 
volume. These solutions are represented by the intersections 
with horizontal lines on either Fig. 2 or Fig. 3. It can also be 
seen that for the two curves plotted, there are regions at either 
end of the Reynolds number ranges where there is no overlap. 
Where there is overlap the solution effectively relates the 
hydraulic diameters of the two surfaces to each other. Thus if 
we wish to compare the performance of surface a at some 
Reynolds number Re0, with a different surface b, it is 
necessary to determine the Reynolds number for surface b to 
which this corresponds. While this can be done, it implies that 
the appropriate calculations need to be carried out separately 
for each combination of surface pairs involved in any com
parison exercise. It also means that over parts of the Reynolds 
number ranges, no comparison can be made. 

Both these problems can be overcome by designating a 
reference surface against which all others can be compared, 
which in turn also allows direct comparisons among the 
others. The choice of reference surface is a problem. Bergles et 
al. (1974) and Soland et al. (1978) have used the Dit-
tus-Boelter equation for turbulent flow through a tube. For 
the surfaces under consideration here, the Reynolds number 
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ranges typically from 300 to 10,000, which means that at the 
low end, the turbulent flow equation is inappropriate. At very 
low values of Re, the solution for fully developed laminar duct 
flow (Nusselt number = const) may be appropriate, but not for 
very far into the range of interest here. Equations describing 
the transition from laminar to turbulent duct flow are 
available but the majority of compact surfaces do not 
demonstrate the traditional duct flow transition behavior, and 
usually both j and / change more or less monotonically with 
Reynolds number. 

The surface configuration eventually selected as reference 
surface is a notional strip fin, which- has infinitely small strip 
thickness (and thus a= 1) and strip width equal to strip pitch. 
The configuration is shown schematically in Fig. 5. It is then 
assumed that the performance is described by the equations 
governing laminar flow over a flat plate 

yo=0.664Re,- (26) 

fo = Vo (27) 
where Re, is the Reynolds number based on strip width t. The 
suffix o indicates values for the reference surface. The 
hydraulic diameter of this surface is given by 

d0 = 2t (m) (28) 

Equation (26) can therefore be rewritten to express j0 as a 
function of Reynolds number based on hydraulic diameter 

yo = 0.47Reo-
1/2 (29) 

The equation for j0 is valid for values of Re, up to 105 and 
therefore for Re0 values up to 5x 104. It is thus appropriate 
over the whole of the Reynolds number range of interest. It is 
also an appropriate choice because it represents an idealization 
of the generic strip fin surface type, which is widely recognized 
as having the potential for advantageous heat transfer 
characteristics. The choice of strip width equal to strip pitch is 
arbitrary and proves to have no effect on the comparison 
method at the end of the day. 

Equations (13) and (14) can be used to show that in the case 
under consideration here 

and 

d 

crRe 

d2 

d„ 
Re0 

d2 

cry'Re y'0Re0 

(m) 

(m2) 

(30) 

(31) 

The hydraulic diameter can be eliminated from these equa
tions to yield 

Jo 
ffRe Re„ 

(32) 

Substitution for j0 from equation (29) yields the relationship 
between Re and Re„ 

Re„ = 0.605 
aRel2/3 m (33) 

Thus for any value of Re for the surface under comparison, 
the corresponding value of Re0 for the reference surface can 
be calculated. This allows the corresponding ratio of hydraulic 
diameters to be calculated from equation (30) 

d aRe-=1.654(<rRe/2)1/3 (34) 
d„ Re„ 

The other parameter of interest is the ratio of the pumping 
powers. From equation (15) one can write 

P /Re2 / /0Re2 / 
jd2 I jo(f0 2ja2 (35) 

r — 

fluid flow 

a = 1 ; hydraulic diameter d0=2t 
Fig. 5 Notional offset strip reference surface 
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The comparison is made by plotting d/d0 against P/P0 for the 
surfaces under consideration, and marking the curves with 
values of Re0. Thus to compare the characteristics of different 
surfaces, points from the curves having the same Re0 value are 
considered. The pumping power and hydraulic diameter ratios 
for each can thus be identified and compared. For different 
surfaces, giving the same rate of heat transfer within the same 
volume and frontal area, one thus has a measure of the 
relative pumping power requirements and of the relative 
hydraulic diameters needed to perform the duty. Low pump
ing power is obviously advantageous. 

The scale of a surface has no effect on material content if all 
dimensions are truly to scale, but it does have a significant in
fluence on heat transfer surface area requirements; see equa
tion (2). Large hydraulic diameter is thus advantageous. There 
can be other practical advantages of larger hydraulic diameter. 
As the scale of a surface is reduced to the limit, it becomes in
creasingly difficult to scale down the material thickness fully, 
simply for manufacturing reasons. The ability to use a surface 
of larger hydraulic diameter helps to alleviate this problem. 

Curves for examples of several different generic types of 
surface are displayed in Fig. 6. A further advantage of the 
method becomes apparent. For any particular surface, the 
ratio values only cover relatively narrow ranges. This allows 
very simple statements of the relative merits of surfaces to be 
made. 

Comparison of plain and segmented strip plate fin surfaces, 
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Table 1 Relative parameter values for two parameters fixed or constant 
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Table 2 Parameter ratios and reference surface Reynolds number for 
three parameters fixed or constant 

a and b, for example, shows that the strip fin surface can per
form the same duty within the same size and shape, but can do 
so with a hydraulic diameter, double that of the plain fin. 

The disadvantage, however, will be a pumping power that is 
between 40 and 100 percent higher, depending upon the value 
of the Reynolds number in the reference surface at which the 
comparison is made. 

The very high pumping power penalties associated with pin 
fin and tube (or rod) bundles can be seen in the curves for sur
faces / , g, and h. To make matters worse, the required 
hydraulic diameter ratios also come down as the value of a 
decreases. 

Curves c and d are both for flat-sided tube and plate fin sur
faces that are identical except that in the case of d the fin is rip
pled. At low Reynolds numbers the rippled fin carries a 20 per
cent pumping power penalty with no associated advantages of 
scaling. At the higher Reynolds numbers, the pumping power 
penalty is 40 percent but a scaling advantage of between 15 
and 30 percent is apparent. The poor hydraulic diameter ratios 
relative to the plain plate fin arise because of the lower a 
values that result from the presence of the flat tubes. 

9 Other Comparisons for Fixed Heat Transfer 

In the previous sections, the four parameters d,A, V, and P 
have been considered as variables. Sections 4 to 7 have con
sidered the implications of fixing each in turn. The only ir
regularity has been that comparisons have been made for con
stant A, V, and P, while in Section 4, each surface was con
sidered to have its own fixed value of d. 

The results are summarized in the first part of Table 1. It 
would have been possible to make comparisons on the basis of 
a single constant hydraulic diameter for all surfaces, and in
deed some of the existing comparison methods do this. 
However, the practical value of such a comparison is not easi
ly seen. 

In section 8 the comparison procedure was based on the fix
ing of two of the variables A and V, and in principle it is possi
ble to derive a further five similar comparisons by fixing any 
two of the four variables, and calculating the corre
sponding ratios for the other two. 

It turns out that four of the comparisons yield curves similar 
in characteristics to those in Fig. 6, but none of them give such 
a clear physical interpretation of the relative merits of surfaces 
as the original. Attempts to compare surfaces transferring a 
given quantity of heat for the same frontal area and pumping 
power prove to be impossible as consideration of either Fig. 2 
or Fig. 4 will show. The original comparison based on surfaces 
transferring the same quantity of heat within the same frontal 
area and volume is believed to be the most valuable. 
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10 Comparisons for Variable Heat Transfer 

All comparisons so far have been for a constant heat 
transfer duty. Comparisons of the relative heat transfer 
capability of different surfaces and geometries are sometimes 
required. It is not possible to use the methods described here 
to assess the relative values of Q, the heat transferred, because 
Q and AT, the effective temperature difference, are in
terdependent. However comparison can be made on the basis 
of relative values of Nlu, the number of heat transfer units. If 
one now considers the variables of the system to bed, A, V, P, 
and Nlu, the number of possible comparison procedures of the 
type already described is greatly increased. All comparisons so 
far have been for constant Nlu. In principle it is possible to fix 
each of the others in turn and arrive at an equivalent range of 
comparisons. Table 1 displays the relative parameter values 
for all possible combinations in which two of the five 
parameters are fixed. It should be noted that the case of fixed 
A and fixed d is not presented because in this case the con
straints do not adequately define the solution. 

It can be seen that the value of d% is always equal to (<rRe), 
and A*d always equals (d/oRe). In many cases a relative 
parameter value is the reciprocal of another relative parameter 
value elsewhere in the table. 

The reasons become clear when the appropriate equations 
are considered. Plots similar to those in Figs. 1 to 4 can be 
prepared from values of the three relative parameters con
tained in any vertical column of Table 1. 

Several other comparisons of the type shown in Fig. 6 could 
be made by fixing any three of the five variables. In practice, 
not all of these will be useful. Of particular interest will be 
those comparisons in which A and V are held constant 
together with one of the other three parameters. Figure 6 
presents the case where the third constant parameter is number 
of transfer units, and Table 2 gives the corresponding ratios 
for the cases where the third constant or fixed parameter is 
pumping power and hydraulic diameter respectively. Also 
shown in Table 2 are the volume and pumping power ratios 
for the case where d is fixed and A and Nm are held constant. 
In this case, with fixed frontal area, the volume ratio V/V0 is 
identical to the flow length ratio L/L0. The choice of a value 
of d0 for insertion in the comparison parameters is arbitrary. 
It can be set equal to unity or alternatively a value near to 
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those of the surfaces under investigation can be chosen. This 
latter approach has the advantage that the comparison ratio 
values themselves should lie in the region of unity. 

It can be seen that the parameter (f/a2J), or its reciprocal, 
appears several times in Table 2. It also appears in the relative 
parameter expressions of Table 1, and consideration of the ap
propriate equations suggests why this should be so. All of the 
ratio parameters of Table 2 will cover a relatively small range 
of values for any particular surface. 

11 Relationship to Previously Identified Comparison 
Parameters 

A whole range of surface comparison parameters have been 
identified here, and it is not surprising that some of them are 
the same as, or similar to, such parameters identified by other 
workers. 

From the first group of comparison methods as categorized 
by Shah (1978) (the direct comparison of j and/values), Lon
don (1964) identifies j/f as being an indicator of the required 
heat exchanger frontal area for fixed heat transfer and 
pressure drop. The larger is j/f, the smaller the required fron
tal area is likely to be. By taking the expressions in the first 
column of Table 1 (i.e., the relative values of frontal area, 
volume, and pumping power for constant number of transfer 
units and fixed hydraulic diameter), it can be shown that if 
pumping power is also fixed 

/ 
- ^ *Ntu,d,P = —TT ( ' 

where A*Nlu^P. indicates relative frontal area for constant 
Ntll, P, and fixed d. 

To give a true comparison London's parameter should 
therefore have been (a2j/f). This is also identical to our NfUiP^A 
and equal to half of our (Nm/Nluo). The reciprocal of this 
parameter has been suggested by Larkin (1968) except that he 
includes a surface effectiveness term. It is a measure of pump
ing power per number of transfer units for fixed frontal area. 
The same parameter has been presented here as P*NW,A > which 
clearly has the same meaning. 

Bergwerk (1963) identifies the comparison parameter 
(/Re2//), which is identical to the expression given here for 
d*Nm,p- He does not explain the significance of the parameter 
but uses it instead of Reynolds number to plot experimental 
surface performance data. It is a parameter that can be easily 
calculated from given design conditions and facilitates his 
comparison procedures. Consideration of his equations con
firms the common origin of the parameter with d*NluP given 
here. 

Dahlgren and Jenssen (1970) use a parameter that is iden
tical to P* NlUyd given here, except that they use hydraulic 
radius rather than hydraulic diameter. In this case the 
parameter is also effectively a measure of relative pumping 
power for constant heat transfer and fixed hydraulic diameter, 
but the authors do not identify it clearly as such. A similar 
parameter is one of several used by Eckert and Irvine (1956). It 
only differs in that it uses Stanton number rather thany factor 
and it also includes a surface effectiveness term. It is inter

preted as the pumping power per unit volume for fixed heat 
exchanger effectiveness, i.e., for fixed number of transfer 
units. This is an equivalent interpretation to that made here. 

Soland et al. (1978) present a method for comparing plate 
fin surfaces of fixed scale, i.e., for fixed hydraulic diameter. 
The fixed scale allows them to take fin efficiency into account 
and their comparison parameters contain a surface effec
tiveness term. They introduce the further complication that 
the performance characteristics are reduced so that they relate 
to the surface areas of the unfinned bare plates. The two com
parison parameters are measures of pumping power per unit 
volume and number of transfer units per unit volume, for sur
faces with fixed hydraulic diameter, and these have forms 
identical to P*Vd and N*aVd as identified here. Consideration 
of the meanings of the two sets of parameters shows that this 
should be so. 

12 Conclusion 

A large but coherent family of heat transfer surface per
formance comparison methods has been presented. The three 
parameter plots of the type shown in Figs. 1-4 allow a wide 
range of easily comprehensible comparisons to be made. The 
comparison of relative pumping powers and relative scale 
(hydraulic diameters) as displayed in Fig. 6 provides simple 
and compact statements of the relative merit of different heat 
transfer surfaces. The paper has also shown how several of the 
previously identified performance parameters are related to 
each other. 
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The Second Law Quality of Energy 
Transformation in a Heat 
Exchanger 
This paper presents the entropy generation (irreversibility) concept as a convenient 
method for estimating the quality-of the heat exchange process in heat exchanger 
analysis. The entropy generation caused by finite temperature differences, scaled by 
the maximum possible entropy generation that can exist in an open system with two 
fluids, is used as the quantitative measure of the quality of energy transformation 
(the heat exchange process). This measure is applied to a two-fluid heat exchanger 
of arbitrary flow arrangement. The influence of different parameters (inlet 
temperature ratio, fluid flow heat capacity rate ratio, flow arrangements) and the 
heat exchanger thermal size (number of heat transfer units) on the quality of energy 
transformation for different types of heat exchangers is discussed. In this analysis it 
is assumed that the contribution of fluid friction to entropy generation is negligible. 

Introduction 

For comparative evaluation of the energy transformation in 
heat exchangers, it is necessary to have a quantitative measure 
of the "quality" or "level of excellence" of performance. As 
is known from thermodynamics (Hatsopoulos and Keenan, 
1965; Haywood, 1980), the measure of excellence of every 
thermal process is the reversibility of this process. The 
measure of the level of irreversibility is entropy generation 
(Bejan, 1982b) or, in other words, entropy is the scale used to 
determine quantitatively the quality of thermal energy 
transformation. 

Irreversibility due to heat transfer is the principal form of 
quality reduction in a heat exchanger (reduction in the quality 
of thermal energy as it is transferred from higher to lower 
temperatures). Insight into recent research efforts on this sub
ject can be found in Bejan (1987). 

A heat exchanger is an inherently irreversible device and, 
consequently, the second law aspects of heat exchanger theory 
and design have been considered frequently (Bejan, 1977; 
London, 1982; Zubair et al., 1987; etc.). However, the general 
behavior of entropy generation and, consequently, the quality 
of energy transformation in a heat exchanger as a function of 
its thermal size, have not yet been completely investigated and 
published. 

First Law of Thermodynamics and Quality of Energy 
Transformation. Consider a heat exchanger as an open 
system (Fig. 1). Let it be supposed that nothing is known 
about the inside structure of this system. For such a "black 
box" (Fig. la), it is possible to formulate the balance equa
tions for mass and energy flow. The only information that can 
be drawn from the macrobalance, with respect to the quality 
of the heat exchange process (for such black box representa
tion), is the so-called "thermal efficiency" or, most frequent
ly, "heat exchanger effectiveness" (Kays and London, 1984). 
However, this quantity gives very limited information on the 
quality of energy transformation in the system. At this stage it 
is known that, in a real heat exchanger, one part of the ther-
modynamically limited maximum heat transfer rate is 
transferred and, therefore, another part is "lost." From the 
definition of heat exchanger effectiveness (macro-energy 
balance based on black box representation, i.e., the overall 
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energy balance for a heat exchanger), it is impossible to con
clude anything about the detailed structure of this quantity 
(with respect to the size—physical and thermal—of a heat 
exchanger). 

For such analysis it is necessary to come inside the black 
box. In other words, the so-called micro-energy balance2 is 
relevant (Fig. lb). In general, it is possible to show that the 
heat exchanger effectiveness is explicitly dependent on: (;') the 
thermal size of the heat exchanger, (ii) the fluid flow heat 
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Fig. 1 Heal exchanger: (a) macrobalance, (b) microbalance, (c) fluid 
mixing 

2This heat exchanger analysis uses microbalance in setting forth differential 
equations from which the macroperformance relationships have been derived 
(i.e., energy balance for an arbitrary differential control volume). 

Journal of Heat Transfer MAY 1990, Vol. 112/295 

Copyright © 1990 by ASME
Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



capacity rate ratio, and (Hi) the flow arrangement in a heat 
exchanger (using the standard approximations, Kays and Lon
don, 1984). 

The heat exchanger effectiveness correlation gives little in
sight into the quality of energy transformation. It is possible 
only to establish the "operating point" of the heat exchanger 
under consideration, i.e., it is known what quantity of energy 
(heat or, better, enthalpy) is transferred. Therefore, informa
tion about the quality of energy transformation must be taken 
from the second law of thermodynamics. 

Second Law of Thermodynamics and Quality of Energy 
Transformation. The entropy imbalance equation or en
tropy generation balance (Second Law of Thermodynamics) 
can be applied to a control volume of the open system through 
a procedure similar to that used in writing the energy balances 
(Bejan, 1982b). It is easy to show that entropy generation in a 
heat exchanger for gas-to-gas application can be expressed 
(Bejan, 1977) as 

- l . S = SAT + SAP=(mcp)2{u)lnll + e(T-

R, 
. l „ ( l - - * * - ) - - * 2 - l n ( l - - * £ - ) ] 

l)] + ln[l+we(T-l)] 

Ap2 (1) 
- „ • PT f cPl \ p? • • 

Let only the finite temperature difference be considered as a 
source of irreversibility. For such a situation equation (1) can 
be expressed in a reduced form. 

S = SA7.= ( /nc p ) 2 (co ln[ l+£(T- 1 - l ) ] + ln[l+coe(T-l)]) 

(2) 

The level of entropy generation is the quantitative measure of 
the quality level of energy transformation (subsequently in the 
text: quality of energy transformation). Entropy generation 
equal to 0 corresponds the highest quality, and entropy 
generation greater than 0 represents poorer quality. In this 
way the quality of energy transformation can be expressed in a 
quantitative manner. 

Heat Exchange Reversibility Norm 

There is at least one difficulty in applying such a concept. 
Heat transfer is inherently an irreversible process and it is not 
possible to compare the quality of a real process in a heat ex
changer with an ideal one. However, if it is known which pro
cess is the most disadvantageous, the concept can be easily ap
plied: 

Quality of 
energy transformation 

= 1 -

Entropy generation 
in the real process 

Entropy generation in the 
most disadvantageous case 

Now, the question is: Which process is the most disadvan
tageous in heat exchange between two fluids in a heat 
exchanger? 

In Fig. 1, two completely different physical situations are 
given: In Fig. 1(a), a heat exchanger of arbitrary flow ar
rangement is presented and in Fig. 1 (c), fluid mixing of the 
same two fluids is shown. Let the situation presented in Fig. 
1 (c) be considered in detail. 

For an open system, as in the case of adiabatic mixing of the 
same two fluids, entropy generation is as follows: 

S= D <.mcp),ln 
JTmt 

7ln (3) 

The common outlet temperature (from the first law of ther
modynamics) is 

2 

TOUt _ 

E (™CA 
(4) 

Formally, it can be shown (Sarangy and Chowdhury, 1982; 
Sekulic, 1986) that SAT, equation (2), has an extremum. 

(«?Ar)maxate*= - — - (5) 
1 +01 

The substitution of e* into equation (2) gives the same correla
tion as equation (3) (adiabatic mixing of two fluid streams). 
The two physical processes, although completely different, are 
compared only with regard to the resulting entropy genera
tion. The entropy generation, equation (3), can be interpreted 
as the largest possible generation that can exist in a heat ex
changer considered as an open system with two fluids (Baclic, 
1983). 

As it is much more convenient to talk about variables in 
nondimensional form, the dimensionless measure of entropy 
generation (irreversibility) expressed as 

/ = c o l n [ l - e ( l - T - 1 ) ] + ln[l-co£(l-T)] (6) 

and the maximum possible dimensionless entropy generation 

WT+1 

( C O + 1 ) T 
+ ln 

C0T+ 1 

W + l 
(7) 

are used. 
Finally, from the definition of the quality of an energy 

transformation process in a heat exchanger, as shown above, 
and from equations (6) and (7) it follows that 

Nomenclature 

c„ = 

E = 

m = 
N,„ = 

P = 
Q = 
R = 
S = 

T = 

specific heat at constant 
pressure, J/kg K 
constant = 0.232544, Table 
3 
dimensionless rate of ther
modynamic irreversibility 
mass flow rate, kg/s 
number of heat transfer 
units 
pressure, Pa 
heat transfer rate, W 
ideal gas constant, J/kg K 
rate of entropy generation, 
W/K 
temperature, K 

Ys = 

e = 

T = 

$ = 
Cd = 

Subscripts 

A = 
B = 

max = 
min = 
Ap = 

heat exchange reversibility 
norm 
heat exchanger 
effectiveness 
T,/T2 , inlet temperature 
ratio 
N tu,B/N tu,A 

(mcp),/(mcp)2<'l, heat 
capacity rate ratio 

pass A 
pass B 
maximal value 
minimal value 
refers to Ap 

AT = refers to AT 
1 = low heat capacity rate side 
2 = high heat capacity rate 

side 

Superscripts 

• = per unit time 
in = at exchanger inlet 

out = at exchanger outlet 
* = at maximal irreversibility 

Acronyms 
HERN = heat exchange reversibility 

norm, equations (8) and 
(9) 
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Table 1 Thermal size of the heat exchanger at the maximum entropy 
generation 
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Fig. 2 Ys versus Ntu, a, and T of countercurrent heat exchanger 

y*=i-
ulnfl-eO-r-Ol+lnll-wea-T)] 

co In 
COT + 1 

(CO+1)T 
+ ln 

COT + 1 
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(8) 

The quantity derived from equation (8) can be termed the 
"Heat Exchange Reversibility Norm" (HERN). Note that the 
complementary value (l—Ys) is the "entropy generation 
number" (Bejan, 1977) scaled by the maximum entropy 
generation number, which has the physical meaning of the "ir
reversibility norm" (Sekulic and Baclic, 1984) or entropy 
generation level. 

In cases where pressure drop must be taken into account, 
the definition of HERN must be modified, i.e., the relations 
given by equations (6) and (7) need to be replaced by those in
cluding the irreversibility contribution resulting from the 
pressure drop (see equation (1)). However, this modification is 
not trivial. The definition of the pressure drop contribution 
corresponding to the maximum irreversibility is not 
straightforward. In order to do this the convention regarding 
reference outlet pressures must be established. General recom
mendations concerning reference outlet pressure do not exist 
and must be analyzed separately for different heat exchanger 
applications, along with the definition of the HERN term. 

The pressure drop contribution to the entropy generation 
(i.e., the effect on the quality of energy transformation in a 
heat exchanger) could be analyzed directly from equation (1). 
Details of such an approach, especially valuable for ther
modynamic optimization, have been discussed by Bejan 
(1977), Sekulic and Herman (1986), and recently by Bejan 
(1987). 

Let the measure of the quality of energy transformation 
(HERN) be considered more closely. As can be seen from 
equation (8), the quality of the heat transfer process in a heat 
exchanger depends on three quantities (considering only the 
part of irreversibility caused by finite temperature dif
ferences): (/') the ratio of inlet temperatures, (ii) the ratio of 
heat capacity rates, and {Hi) the effectiveness of the heat ex
changer. However, the effectiveness of a heat exchanger is a 
function of heat capacity rate ratio, number of transfer units, 
and fluid flow arrangement. Then, the quality of energy 
transformation in a heat exchanger given by equation (8) is 

HERN ~/ ( T, u, Nlu, flow arrangement) (9) 
Thus the quality of energy transformation in a heat exchanger 
depends both on the characteristics of the environment in 
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which the transformation occurs (thermal size, flow arrange
ment) and the characteristics of the fluids (inlet temperature 
ratio, heat capacity rate ratio). 

From equation (9), it can be concluded that the most 
convenient presentation of the quality of energy transforma
tion in a heat exchanger should be the presentation of HERN 
as a function of thermal size of a heat exchanger. It is also 
possible to present the corresponding entropy generation 
number as a function of effectiveness (Bejan, 1982a; Sharangy 
and Chowdhury, 1982), but this type of diagram is not very 
convenient for analysis. 

The general behavior of HERN (Ys lines) for the counter-
current flow arrangement is presented in Fig. 2. 

It is easy to derive that 

dN„, <rs) = o 

l4 W>0 
(10) 

for NIU=N?U. 
At first glance, this result is not physically quite under

standable (Sekulic, 1986; Bejan, 1987).3 In addition, in reality 
there is no fluid mixing in a heat exchanger (see Fig. 1 and 
equation (5)) but, at a certain finite thermal size (for all but 
cocurrent flow arrangement and co not equal to 0) the heat 
transfer process has the same results as fluid mixing. This 
means that the exit temperatures of both fluids (at a given 
finite thermal size) are equal. 

The maximum entropy generation (i.e., the minimum 
HERN) separates the (Ys, Ntu) region into two parts. From 
the standpoint of quality of energy transformation, in the 
region to the left of the minimum quality point (dashed lines, 
Fig. 2) the irreversibility of the energy transformation process 
increases with an increase of thermal size of a heat exchanger 
(T, co = const). In the region to the right of the minimum point, 
an increase of thermal size causes a decrease of irreversibility. 
From that point of view, the second region is preferred. Of 
course, both regions are of design interest. 

In Table 1, calculation results of thermal size at maximum 
entropy generation are presented for different fluid flow ar
rangements. In the subsequent table (Table 2), some numerical 
values of N*u for different fluid flow heat capacity rate ratios 
are given. 

What happens when the thermal size of a heat exchanger in
creases to infinity? It is interesting to note that these limits are 

This result can be related to the "entropy generation paradox" in a heat ex
changer, noted for the first time by Tribus, published later by Bejan (1982a), 
and discussed by Sekulic (1986). 
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Table 2 Thermal sizes of the heat exchanger at the maximum entropy 
generation for different u values 
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not the same for different flow arrangements with the excep
tion of w = 0. Calculations of these limits are presented in 
Table 3. 

In case of a condenser or evaporator (co = 0), it can be 
proved that equation (8) is reduced to 

In [1 + € ( T - 1 - 1 ) ] - £ ( 1 - T ) 
^ , = 1 -

( T - l ) - l n T 
(11) 

This limiting case indicates a considerable level of entropy 
generation as indicated in Table 3. In addition to this, from 
Fig. 2 it can be recognized that, in this case, the quality of 
energy transformation decreases monotonically with the in
crease of thermal size (see also Bejan, 1977, 1987; Sarangi and 
Chowdhury, 1982; and Zubair et al., 1987). 

Application of HERN Concept to Various Types of 
Heat Exchanger 

It is important to determine whether a HERN analysis can 
be used to establish which of two competitive heat exchanger 
flow arrangements is better with respect to the quality of 
energy transformation. In Fig. 3, a comparison of the quality 
of energy transformation (expressed through Ys or 1—YS) in 
a set of the six main flow arrangements (one pass heat ex
changers) is presented. It is obvious that HERN values of 
various flow arrangements vary between the two completely 
different situations: countercurrent (the best) and cocurrent 
(the worst), and that this criterion is very selective. As the size 
of a heat exchanger increases (see Fig. 4), the behavior of 
HERN differs dramatically in the two limiting cases (counter-
current and cocurrent). The larger the heat exchanger for the 
cocurrent fluid flow arrangement, the lower is the HERN, and 
vice versa for countercurrent flow: the larger the heat ex
changer (for N,u >Nfu), the greater is the HERN. 

Another interesting result seen from Fig. 4 is that, for the 
arrangement with both fluids mixed, HERN comes to the local 
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Fig. 3 Irreversibility and/or reversibility levels of heat exchangers 
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Fig. 4 Ys for one-pass heat exchangers 

maximum. This means that it is possible to find a thermal size 
for some real heat exchangers (heat exchangers of finite size), 
at which a local minimum in entropy generation exists. 

Even without a study of other details of entropy generation 
in these six characteristic cases of one-pass heat exchangers, it 
can be concluded that the cocurrent flow arrangement is, of 
course, the least favorable, while the others are more or less 
favorable, although not as good as the countercurrent 
arrangement. 

In the Fig. 5, a comparison of entropy generation levels (ex
pressed in terms of 1 - Ys) in three characteristic noncompact 
shell-and-tube heat exchangers is presented. For balanced 
fluid streams (the heat capacity rate ratio of fluid streams 
equal to 1), the flow arrangement "1-2 shell-and-tube ex
changer, shell fluid mixed—TEMA E shell" is obviously the 
least desirable (Case a, Fig. 5). 

Multipass exchangers can be analyzed in a similar way to 
one-pass two-fluid heat exchangers. In Fig. 6, a comparison of 
entropy generation level for selected two-pass arrangements is 
presented. As can be seen from this figure, for a complete im
balance between fluid streams there is no difference between 
flow arrangements under consideration, but some difference 
exists for to greater than zero. It is especially obvious between 
the inverted and identical order flow arrangements for o> 
greater than 0.5. 
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Fig. 5 Entropy generation level versus Ntu of shall and tube heat ex
changers (a—shell fluid mixed, b and c—shell fluid unmixed) 

J L J L 
1 2 3 4 5 6 7 8 9 N | u 10 

Fig. 7 Entropy generation level and e versus N,u of two-pass heat ex
changer with unequally sized passes (pass A neither fluid mixed, pass B 
both fluids mixed) 

Fig. 6 Entropy generation level versus Ntu of two-pass crossflow heat 
exchangers (a and b—countercurrent coupling inverted order, c and 
d—countercurrent coupling identic order; a and c—weaker fluid un
mixed throughout, b and d—stronger fluid unmixed throughout) 

Fig. 8 Entropy generation level versus N,„ of three-pass heat ex
changers (stronger fluid stream unmixed throughout and the weaker 
stream mixed between passes and unmixed in each pass) 

Figure 7 shows entropy generation level (1—YS) and heat 
exchanger effectiveness of a two-pass heat exchanger with 
unequally sized passes as a function of the number of heat 
transfer units. An analysis of entropy generation, as seen in 
the same figure, shows that irreversibility is increased by in
creasing the difference between the passes (for instance, by in
creasing * above 1, i.e., the pass with poorer effectiveness is 
enlarged). Hence, the larger the pass B, the higher the entropy 
generation and the lower the effectiveness of the exchanger. 
On the contrary, positive effects can be achieved by reducing 
$, i.e., enlarging pass A in relation to pass B. It should be 
noted that for different Nlu values at $ < 1 , effects can be 
either positive or negative. The analysis shows that the causes 
of positive or negative effects in combining unequally sized 

passes in two-pass crossflow heat exchangers should be sought 
in the level of entropy generation in a heat exchanger. 

Finally, the comparison of three-pass exchangers is given in 
Fig. 8. It is clear that arrangement / (inverted order, pure 
countercurrent) is the best, and that arrangement a (inverted 
order, pure cocurrent flow arrangement) has the highest en
tropy generation level. 

Operating Point Charts and Irreversibility Limits 

Some further uses of the HERN approach in heat exchanger 
design are possible. From the first law of thermodynamics 
(macro and microbalances), as already shown, the operating 
point (Nlu, w, e) for a given situation can be found. Are there 
solutions that satisfy the set of parameters for a given 
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Fig. 9 Operating point charts and irreversibility limits of countercur-
rent and crossflow heat exchangers (crossflow with both fluids 
unmixed) 

operating point, but that are not recommendable from the 
standpoint of the second law of thermodynamics? In the limit, 
the set of operating points corresponding to the minimum of 
HERN is "prohibited" from the second law standpoint: (Nfu, 
to, e*). This line can be drawn in an (Nlu, o>, e) diagram (for all 
but cocurrent flow arrangement) as a set of the most in
convenient heat exchanger operating points (from the stand
point of energy transformation quality). Such diagrams are 
presented in Fig. 9 for two characteristic cases (countercurrent 
and crossflow flow arrangements). 

One must be careful in the interpretation of this presenta
tion. It does not mean that the designer should avoid a priori 
the region near maximum irreversibilities. In this region the 
heat exchanger operates in such a way that the outlet 
temperature difference between the fluids involved almost or 
totally disappears. Whether the designer should avoid the 
region near maximum irreversibilities depends on the whole 
system, in which the heat exchanger is only a component. 

The line (Nfu, to, e*) separates the (Nlu, w, e) region into two 
parts. The first one (Nlu <Nfu, i.e., to the left of the e* line for 
co = const) is characterized by the increase of entropy genera
tion level with increased thermal size of a heat exchanger. In 
this region, greater thermal size does not mean better quality 
of energy transformation. For the cocurrent flow arrange
ment, in the whole region of finite size heat exchangers 
(complete range of N!u values), an increase of heat exchanger 
thermal size means an increase of entropy generation level and 
a decrease of the quality of energy transformation. 

It should be noted here that there are some flow ar

rangements for which the behavior of the HERN curve is more 
complicated than for countercurrent or cocurrent flow ar
rangements (for an example of the existence of a local max
imum, see Fig. 4 for a crossflow arrangment with both fluids 
mixed). It is clear that the explanation for the behavior of the 
quality of energy transformation is somewhat different from 
the above simpler cases. 

In the pragmatic, engineering sense, the full meaning of the 
concept "quality" includes the thermoeconomic aspect, too. 
It should be emphasized that thermoeconomic optimization 
and the concept of entropy generation might be linked 
together. Depending on the characteristics of a given system 
and the chosen objective function, various approaches are 
possible (London, 1982; Zubair et al., 1987). The interrelation 
between the concept discussed in this paper and the possible 
thermoeconomic optimization was analyzed recently by 
Sekulic and Baclic (1987). The thermoeconomic optimum and 
high quality of energy transformation are related to each other 
for most operating points under consideration, as had been in
dicated by Sekulic and Baclic (1987). 

Concluding Remarks 

The quality of energy transformation in a heat exchanger, 
expressed in terms of HERN, is a selective criterion in the 
analysis of a heat exchange process. Linkage of this measure 
of quality with economic considerations remains to be studied. 
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Thermal Behawior of Aluminum 
Rolling 

Proper roll cooling has been identified as a critical factor in the problems of excessive 
roll spoiling and poor thermal crowning in modern, high-speed rolling mills. In this 
paper, an analytical model has been developed to determine the temperature profiles 
of the roll and the strip. This model uses basic heat transfer theory and provides 
the capability of studying the influence of operating parameters on both the work-
roll and workpiece temperatures. Examples on cold and hot rolling of aluminum 
alloys are given to demonstrate the feasibility and capability of the model developed. 
Previous work on thermal modeling of rolling processes is also briefly reviewed. 

Introduction 
In metal rolling processes, the roll is used as a tool to deform 

the workpiece at very high speeds. Heat transfer phenomena 
of rolling include (1) the heat transferred from the hot strip 
associated with heat generated by the deformation energy; (2) 
the heat generated by the interface friction; (3) the heat re
moved by coolant, ambient air, and the backup roll. The pro
cesses occur at extremely high pressure, high velocity, and high 
temperature. The high temperature, as well as the associated 
high-temperature gradient, has been observed to cause dete
rioration of the roll and the rolled product. 

Adequate cooling of the roll and strip is of considerable 
concern to mill designers and oeprators. Improper or insuf
ficient cooling not only can lead to shortened roll life, due to 
spalling caused by thermal stresses, but can also significantly 
affect the shape or crown of the roll and result in buckled 
strips or belled edges. In order to provide adequate cooling of 
the roll, a good understanding of the roll and strip temperatures 
is essential. Also, knowledge of the thermomechanical aspects 
of the process can contribute to insights of the metallurgical 
structure of the rolled strip and the lubricant behavior, and 
eventually lead to better control of the material properties and 
the surface condition of the product. 

Considerable work has been done on modeling of the thermal 
behavior of rolling processes. Johnson and Kudo (1960) used 
upper bound techniques to predict strip temperatures. Grauer 
(1961) developed a graphic procedure in an attempt to evaluate 
the rise in strip temperature during aluminum foil rolling. 
Based on a Lagrangian formulation, Cermi (1961) provided a 
transient analytical solution for the temperature distribution 
in a roll subjected to whole circumferential convective cooling 
and to a line heat source. Hogshead (1967) simplifed Cerni's 
approach to provide a convenient analytical expression. Des 
Ruisseaux and Zerkle (1970) re-examined Cerni's problem by 
providing an analytical solution for machining applications. 
Patula (1981), with an Eulerian formulation, attained a steady-
state solution for a rotating roll subjected to prescribed surface-
heat input over one portion and convective cooling over an
other portion of the circumference. Yuen (1985) extended Pa-
tula's solution to include the effect of a strip scale layer. 

Using numerical finite difference approaches, Parke and 
Baker (1972) developed a two-dimensional (planar) finite dif-

Contributed by the Heat Transfer Division and presented at the 25th National 
Heat Transfer Conference, Houston, Texas, July 24-27, 1988. Manuscript re
ceived by the Heat Transfer Division March 31, 1988; revision received July 5, 
1989. Keywords: Conduction, Materials Processing and Manufacturing Pro
cesses, Modeling and Scaling. 

ference model to investigate transient roll behavior. By con
trast, Wilmotte and Mignon (1973) considered the roll to be 
axisymmetric. Lahoti et al. (1978) used a similar numerical 
technique to study the temperatures of the strip and a portion 
of the roll. Tseng (1984a) investigated both the cold and hot 
rolling of steel by considering the strip and the roll together. 
Poplawski and Seccombe (1980) extended a numerical model 
to include a third dimension. 

Mathematically, both the Lagrangian and the Eulerian sys
tems have the capability of describing the rolling process. The 
coordinates of the former system are fixed on the roll and, in 
turn, the boundary conditions rotate with respect to the co
ordinate system. The latter system allows fixed boundary con
ditions, but gives heat transfer in a moving roll. Since the roll 
is rapidly rotated, the Lagrangian formulation needs a tre
mendous number of steps to stimulate the process. According 
to Parke and Baker (1972), their Lagrangian-model needs 240 
steps to simulate one revolution. Hundreds of thousands of 
steps are necessary for the temperature to reach the steady-
state condition. On the other hand, the Eulerian approach may 
use fewer steps but will result in an elliptical-type governing 
equation, which will create numerical difficulties at high ro
tating speed conditions, as indicated by Tseng (1984b). In 
addition, since all temperature variations in the roll are lo
calized in a very thin layer near the surface, a very fine mesh 
is required in that layer. Therefore, the numerical simulation 
can be very costly and time consuming. 

In this paper, analytical solutions have been developed to 
model the thermal behavior of the process. The analytical 
model considered both the roll and strip. The roll was rotated 
at a constant speed and the temperature variations were as
sumed to be cyclically steady state. A Fourier integral technique 
was used to determine the roll temperatures. The strip tem
perature was solved by the method of separation of variables. 
The development of the roll and strip solutions is presented 
separately. The required compatibility condition to link the 
roll and strip solutions is also included. The approaches to 
obtain the convective heat transfer coefficients of cooling and 
the heat generated by plastic deformation and friction are then 
discussed. Finally, the heat transfer behavior under typical 
aluminum rolling conditions is presented to demonstrate the 
feasibility and capability of the model developed. 

Since all the computation can be conducted on a personal 
computer within a reasonable computing time, the present 
model enables extensive parametric studies to be performed at 
a reasonable cost. It also permits on-line simulation, which is 
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especially important for automatic process control. The model 
considers all the major processing parameters and has the 
capability of studying the influences of cooling practices on 
both the roll and the workpiece temperatures. Finally, con
sidering that the equivalent heat transfer coefficient for spray 
cooling and the interface friction behavior remain two of the 
greatest uncertainties, the analytical model reported here may 
be the best compromise at present, despite some simplifying 
assumptions made in the model. 

Roll Temperature 
In general, the determination of roll temperature is a three-

dimensional problem. However, if the effect of axial heat flow 
is small or the axial temperature variations of the rolls are not 
significant, the rolling process can be treated as a planar prob
lem. Based on a three-dimensional thermal analysis by 
Poplawski and Seccombe (1980), the planar condition is indeed 
a good approximation for flat rolling, especially when con
sidering the region covered by the cooling. In the present anal
ysis, only flat rolling is of interest and no axial variations are 
considered. 

Formulation. With respect to a fixed Eulerian reference 
frame, the governing equation of the roll temperature (Tr) is 

lxr~bd 
d%. 137; 
dr2 + rdr 

1 d2Tr 
+ r2 de2 (i) 

where r and 0 are the cylindrical coordinates; co is the angular 
velocity; and ar is the thermal diffusivity. At high rotational 
speeds, conduction in the circumferential direction is much 
smaller than conduction in the radial direction or convection 
in the circumferential direction. Thus, the third term on the 
left side of equation (1) can be neglected and equation (1) can 
be reduced to 

d/2 + r dr 
o) 8Tr 

ar dd 
(2) 

The roll is subjected to a constant normal heat flux qn over 
the bite angle 0O, and a uniform convective cooling h0. The 
corresponding boundary conditions are 

kf 

dTr(R, 0) 
~ I -h, dr 

7X0,0) = finite 

[Tr{R,6)-T0], 
O<0<0O 

0o<0<2ir (3) 

O<0<2ir 

where kr is the thermal conductivity; R is the radius of the 
roll; and T0 is the coolant reference temperature. 

Solution. In dimensionless form, equation (2) becomes 

^1 I^_p H 
dp2 pdp~ e dd 

(4) 

where t = ha(Tr— T0)/qr is the dimensionless temperature; p is 
the normalized radius equal to r/R; and Pe, the Peclet number, 
equals wR2/ar. The corresponding normalized boundary con
ditions become 

9/(1, 0) Bi, 
dp - 1 -Bif(l,0), 

t(0, 0) = finite 

O<0<:0O 

0O<0<2TT 

O<0<2ir 

(5) 

where Bi is the Biot number equal to hoR/kr. 
The roll rotates at a constant speed so that the temperature 

variations become cyclic steady-state. The Fourier integral 
technique can be used to determine the cyclic temperature 
variation. The technique yields a solution to the governing 
equation (4) and the boundary conditions (5), in an infinite 
series form: 

oo 

t(6, p) = 0o/2,r+ lAr^J {M0{A„)MQ(A„p)/[nD(An)] 

X[sin[eo(^„)-eo(^np)-K(0-0o)] + sin[«0-eoO4„) 

+ e0(A„p)]}+A,Mi(A„)M0(Anp)/[nD(An)Bi] 

Xlsm[ei(An)-eo(AnP)-n(d-e0)-Tr/4] 

+ sin[rt0-elO4„)+eoG4„p) + 7r/4])] (6) 

where A„ is defined as y n Pe; and Mm and Q,„ are, respec
tively, the modulus and phase of the Kelvin function, and can 
be defined as 

M2
m(A„) =Ber^,U„) + Be&(A„), m = 0 or 1 

and 
~Bei„,G4„f 

(7) 

Qm(A„) =arctan m = 0 or 1 (8) 
_Berm(A„) 

Here Berm and Beim are, respectively, the real and imaginary 
parts of the Kelvin functions, which relate to Bessel functions 
with a complex argument (Abramowitz and Stegun, 1964). The 
function of D{A„) in equation (6) can be defined as 

D{A„)=Z\ + Z\ 
where 

Z, = Ber004„) + \JnPe/2 [ B e r ^ J + Beix(An)]/B\ 

Z2=Bei0(4„) - V " Pe/2[Ber,(,4„) - B e i ^ J j / B i 

(9) 

The advantage of expressing the normalized temperature as 
a function of the modulus and the phase is that the solution 
can be represented by an infinite series. Results with any desired 
accuracy can be achieved by including the proper number of 

Nomenclature 

A --

Bi = 

c, --
d --
e -
h --
k --
K --
n -

Pe = 
Pr = 

= constant defined in equation 
(12) 

= Biot number = hR/k 
= interface parameter 
= jet diameter 
= heat generation density rate 
= heat transfer coefficient 
= thermal conductivity 
= strength coefficient 
= strain hardening exponent 
= Peclet number = o>R2/a 
- Prandtl number of coolant = 

v/a 

Q = 
r, d = 

R = 
Re = 

t = 

T = 
U = 

v0 = 
x,y = 

a = 

heat flux 
cylindrical coordinates 
radius of roll 
Reynolds number of jet flow 
= Ud/v 
dimensionless temperature = 
h0(Tr-T0)/qr 

temperature 
average jet velocity 
average strip velocity 
Cartesian coordinates 
thermal diffusivity 

v = kinematic viscosity 
p = dimensionless radial coordi

nates = r/R 
o> = angular velocity 

Subscripts 
e = entry 
n = index 
o = average or uniform values 
r = quantity related to roll 
s = quantity related to strip 

oo = ambient value 
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Fig. 1 Normalized roll suriace temperature at various conditions 

terms. If only the first term of the series representation of the 
modulus, equation (7), and the first two terms of the phase, 
equation (8), are taken into account, the present solution re
duces to the one developed by Gecim and Winer (1984). 

The cases considered by Gecim and Winer (1984) are first 
studied and the results are shown in Fig. 1. In this figure, the 
normalized surface temperatures of the roll are plotted against 

the angular location for three values of Bi/V Pe for the heating 
angle, 0O = O.O5 rad (2.86 deg). As shown, the differences be
tween the present results and those of Gecim and Winer (1984) 
are insignificant. Since the Peclet number considered is rela
tively high and the first one or two terms of the infinite series 
solution are dominant, the solution of Gecim and Winer, as 
expected, is accurate enough. Also, as shown in the figure and 
indicated in equation (9), the roll temperature depends strongly 

on the ratio of Bi/V ? e ar*d this ratio plays a significant role 
in the determination of the roll temperature. 

The present solution is also compred with a numerical result 
for a typical rolling condition: 0O = 0.175 rad (10 deg), Pe = 105, 

and Bi = 102 (or Bi/>/pe = 0.316) as shown in Fig. 2. The 
numerical result was reported by Tseng (1984b) based on a 
finite difference technique to solve the governing equation 
including conduction in the circumferential direction, equation 
(1), instead of equation (2) considered in the present analysis. 
As shown in Fig. 2, the current surface result agrees very well 
with the finite difference result with a uniform mesh of 10 x 144; 
the maximum difference is about 3 percent near the bite region. 
The normalized temperatures at other radial locations are also 
depicted in Fig. 2. As indicated, the temperature variations 
are limited within a very thin layer. In fact, this thermal layer 
behavior has been discussed by many investigators [e.g., Patula 
(1981) and Gecim and Winer (1984)] and has a tremendous 
influence on the thermal stress pattern (Tseng et al., 1988). 
Recently, the concept of the thermal layer has also been applied 
to a numerical analysis by Tseng (1984b) for improving com
putational accuracy. 

Similar to the boundary layer theory, the thermal boundary 
layer, 8 can be defined as the normalized distance from the 
roll surface (p = 1 - 8) at which the temperature difference be
tween the local value and the core temperature reaches 1 percent 
of the core temperature. Based on the temperature solution of 
equation (6), the boundary layer thickness can be found as 

Numerical Results forp=1.0Tseng(1984) 

Present Analytical Results 

Bile Angle 80:10 Deg. 
Cooling Angle: 350 Deg. 
BiM>e.= 0.316 
PeslO5 

) 0 50 100 150 200 250 300 350 

Angular Location [deg] 

Fig. 2 Normalized roll temperature at several radial locations 

5 = 
yf: 

In 
2 P e - l 

200Bi(V2Bi/VPe + 2) 

- 0oVPe/2(Bi2/Pe + y/2Bi/\fpc + 1 ) 
(10) 

As indicated in equation (10), the thermal layer thickness 
depends not only on the Peclet number Pe, but also on the 
Biot number Bi, and the bite angle 80. This improves on the 
previous layer thickness predictions by Patula (1981) and Tseng 
(1984b). Their approximations indicate that the thickness is a 
function of Pe only. For the case considered in Fig. 2, the 
thermal layer 8 is 0.015. In other words, more than 97 percent 
of the roll is uniformly at the core temperature. 

Strip Temperature 
In the strip temperature evaluations, as in the roll calcula

tions, the planar simplification was also assumed. The sepa
ration of variables method was used to determine the strip 
temperatures. The technique yields a solution that can accom
modate the nonuniformity of the strip entry temperature. The 
solution is an extension of Cerni's (1961) work in which a 
uniform entry temperature was assumed. 

Formulation. The temperature changes within the strip re
sult from the heat generated by the work of deformation, and 
the friction between roll and strip in the arc of contact. The 
deformation work and the frictional dissipation were assumed 
to be uniformly distributed in the strip and the arc of contact, 
respectively. It should be noted that the thermal behavior of 
the friction along the interface is still not fully understood. In 
addition, when the variation of strip height is compared to the 
arc length of contact, and the variation of velocity to the 
velocity itself, the respective ratios are relatively small. As a 
consequence, a strip problem is postulated whose height 2y0 
equals an average strip thickness in the bite; whose length x„ 
equals the length of the bite; and whose sections move at the 
average strip velocity V0. This strip temperature (Ts) can be 
expressed mathematically as 

dy2 as dx ks 
(11) 

where as is the thermal diffusivity of the strip; ks is the strip 
heat conductivity; and e is the rate of deformation heat gen
eration per unit volume. The implication of equation (11) is 
that conduction of heat in the x direction is negligible compared 
to the transport of heat due to the strip motion. 

Before entering into the roll bite, the strip loses heat to the 
ambient air or coolant by convection and radiation, an im
portant effect, especially in hot rolling. The strip entry tem
perature with a parabolic variation in the thickness direction 
is often observed and can be expressed as 
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Ts(0, y) = Te+A(y/y0)
2=Te + (T„-Te)/[l+(kShj0)] 

(12) 

where Te is the strip entry temperature at the center; Tm is the 
strip ambient temperature; hs is the equivalent heat transfer 
coefficient along the strip including convection and radiation. 
The other boundary conditions to be satisfied are 

dTs(x,0) 

dy 
= 0, 

and 
, JTs(x,y0) 

0<x<xn 

0<x<xn 

(13) 

(14) 

where qs is the uniform surface flux (outward flux is positive). 

Solution. The solution of equation (11) subjected to the 
boundary conditions of equations (12)-(14) can be found from 
the classical approach of separation of variables associated 
with the principle of superposition, i.e., 

Ts{x,y)-Te=-+ V y0)ksv0 2ksU W (15) 

nir\ 2asx 

(f/) 
If the entry temperature is uniform, i.e., A = 0 or hs = 0 in 

equation (12), the solution of equation (15) is reduced to the 
one presented by Cerni (1961), derived by a Fourier transfor
mation technique. The values of the heat generation rate e, 
and uniform heat flux qs, will be discussed later. 

Temperature Compatibility of Roll and Strip. In the rolling 
process, tremendous pressures build up in the roll/strip inter
face, and the roll and strip come into intimate contact. How
ever, some coolant film or scale might be also accumulated in 
the interface and the thermal resistance of this film or scale 
should be considered. If the interface resistance can be con
sidered as a function of the magnitude of the interface heat 
flux and if the average assumption is also applied, the interface 
condition can be expressed as 

f,\y = ̂ fr\r = R = Ct (16) 

where Ts\y=yo is the average strip surface temperature in the 

contact arc; fr\r=R is the average roll bite temperature; and 
C, is the thermal resistance parameter. If the interface heat 
flux is toward the roll or qs is positive, C ;> 1 and vice versa. 
The magnitude of C, should be determined experimentally. In 
the present analysis, the interface thermal resistance is assumed 
to be insignificant. In other words, the surface temperatures 
of the roll and the strip approach to the same value, i.e., C,- = 1. 
In a more rigorous approach, Yuan (1985), as mentioned ear
lier, provided a solution by physically considering the scale 
layer. 

The average temperatures of the roll and the strip can be 
found by the integration of the surface temperatures at the 
bite as presented in equations (6) and (15), respectively: 

Tr\r=R=T0 + 
qfla , 2qr 

2-KK irhndn 

l-cos(«0o) 
n2D(A„) 

{Ml(An)+A,Mo{An)M,{An) 

x cos[90(,4„) - Gj (A„) + 7r/4]/Bi) 

and 

T \ =T + 
<XsX0 _qsy0 A 

'2ksV0 3ks 3 

(17) 

(18) 

where x0 is the length of the bite equal to R0O. In addition, 
the heat flux out of the strip plus the friction energy must be 
equal to the heat flux into the roll, i.e., 

qsx0 + q/x0 = qrRd0 

or 
qs + Qf=Qr (19) 

where qf is the friction flux generated by interface friction and 
will be discussed in the next section. It is to be noted that the 
heat fluxes qr and qs in equations (17) and (18), respectively, 
are unknown and should be determined by the compatibility 
conditions of equations (16) and (19). 

Heat Generation Input 
Information on heat generated by plastic deformation and 

friction used in the strip and temperature compatibility cal
culations is obtained from a previously developed force-torque 
model called ROLLING by Maslen and Tseng (1981). The 
model is a modified version of that given by Alexander (1972) 
and is based on work originally done by von Karman. It in
cludes: (1) analysis of the elastic flattening of rolls by Jortner 
et al. (1960), (2) allowance for variable friction coefficients, 
and (3) construction such that the variation of the flow stress 
due to temperature and strain rate can be added as appropriate. 
It was assumed, based on experimental evidence observed by 
Farren and Taylor (1925), that 90 percent of the deformation 
work calculated from the ROLLING program is converted to 
heat. The friction energy will be entirely converted to heat. 

Cooling Heat Transfer Coefficient 
Knowledge of the heat transfer coefficient of cooling is es

sential in evaluating the process numerically. As indicated by 
Tseng et al. (1987), the heat transfer coefficient is greatly 
affected by the spray nozzle configuration, spray header ar
rangement, flow rate, roll speed, roll surface temperature, and 
other operating factors. Many investigators, including Hill and 
Gray (1981) of U.S. Steel, and Liu et al. (1987) of Alcoa, have 
studied the heat transfer coefficient. However, a few quali
tative results have been reported from these investigations. It 
is to be noted that at very high rolling speeds (say, 15 m/s or 
3000 fpm), the temperature variation is localized within a very 
thin layer near the surface as mentioned earlier. As a result, 
this makes the measurement of heat flux or heat transfer coef
ficient extremely difficult. 

In the present analysis, the heat transfer measurements of 
spray impinging on stationary surfaces reported by Kadinova 
and Krivizhenko (1968) have been used. For a round jet with 
diameter d, the heat transfer coefficient can be approximated 
by 

/* = 0.42^Re°-63Pra3fW</r0-4 

a 
(20) 

where kc is the thermal conductivity of coolant; / is the distance 
from the spray jet to the roll; Re( = v/a) is the Reynolds number 
of jet flow; Pr(= Ud/v) is the Prandtl number of coolant; U 
is the average of the spray; and v is the kinematic viscosity of 
the coolant. Equation (20) is an appropriate relationship as 
long as the value of l/d is in the range of 5 to 60, suitable for 
most of the water-based cooling systems used in the aluminum 
industry. 

Aluminum Cold Rolling 
A cold rolling case studied by Maslen and Tseng (1981) was 

first selected to illustrate the heat transfer model developed. 
The parameters used in the present calculations were the actual 
operating data from an aluminum rolling mill, a Davy-Loewy 
four-high cold strip mill located in Martin Marietta's Lewisport 
Plant. 
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Table 1 Operating data and mechanical properties for cold rolling case 

Material 
Roll Radius (R) 
Annealed Gauge 
Entry Gauge 
Exit Gauge 
Strip Width 
Roll Surface Speed (fflR) 
Entry Tension 
Exit Tension 
Strength Coefficient (K) 
Strain Hardening Exponent (n) 
Yield Strength 
Friction Coef. 

1100 Aluminum Alloy 
25.4 cm (10 in.) 
0.259 cm (0.102 in.) 
0.259 cm (0.102 in.) 
0.159 cm (0.0627 in.) 
91.44 cm (36.0 in.) 
1091 cm/s (2148 fprri) 
1.2065 kN/cm2 (1750 psi) 
1.9677 kN/cm2 (2854 psi) 
160MPa(23.2ksi) 
0.26 
34.5 MPa (5 ksi) 
0.05 
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- Me (3.51°l 

- cooling -

V. ambient temperature 

35 Si 
S 
tn 

30 ? 

25 S 
o 

20 

40. 80 .120 160 200 2 « 280 320 360 

ANGULAR LOCATION, fltdeg. 1 

Fig. 3 Roll temperature for cold rolling case 

Table 2 Input for heat transfer calculation for cold rolling case 

Bite Length (x0)* 
Strip Exit Speed (V0)* 
Deformation Energy* = 
Friction Energy* = 
Strip Entry Temperature = 
Roll Thermal Conductivity (kr) = 
Roll Thermal Diffusivity (Or) = 
Cooling Heat Transfer Coef. (h0) = 
Strip Thermal Conductivity (ks) = 
Strip Thermal Diffusivity (as) = 

1.63 cm (0.64 in.) 
1096 cm/sec (2158 fpm) 
986 kW (1322 hp) 
213kW(286hp) 
21 °C (70 °F) 
0.456W/cm-°C (2.21 Btu/hr-in-°F) 
0.1265 cm2/s (0.0196 in2/s) 
0.93 W/cm2-°C (11.2 Btu/s-in2-°F) 
1.82 W/cm-°C (8.75 Btu/hr-in-°F) 
0.94 cm2/s (0.1457 in2/s) 

* Output from the ROLLING program 

The operating data and the material properties used as the 
input for the ROLLING program are summarized in Table 1. 
The power curve, a = Ke", was used to represent the stress (di
strain (e) relationship for the annealed aluminum alloy. The 
values for the parameters K and n in Table 1 were obtained 
from uniaxial tensile tests and are consistent with the data 
reported by Anderson (1967). At relatively small strains, if the 
power curve is followed, the flow stresses can be less than the 
yield stress. To be consistent with the experimental data, the 
flow stress is assumed to be the yield stress, if it is less than 
the yield stress. The friction coefficient was determined by 
matching the caculated power to the measured value while the 
measured separating force was used for verification of the 
calculated force. 

The output data obtained from the ROLLING code includ
ing the bite length, strip exit speed, deformation energy, and 
friction energy will be used as input for the heat transfer cal
culations. These data as well as the thermal properties are 
summarized in Table 2. The properties used to calculate the 
heat transfer coefficient are those of a coolant consisting of 
94 percent Kensol 50 and 6 percent BT 75 at room temperature, 
provided by Kendal Refining Co. of Bradford, PA. The initial 
and cooling ambient temperatures of the strip are 21 °C (70 °F). 
The angle for heat input 60 is estimated from bite length. 

The temperature results for the roll are shown in Fig. 3 and 
the corresponding temperatures near the bite region are de
picted in Fig. 4. The temperature variations of the roll essen
tially are similar to those numerically estimated by Tseng 
(1984b) or measured by Stevens et al. (1971). Indeed, the tem
perature varies in a very thin layer near the roll surface. For 
the case considered, the penetration of the surface temperature 
variation is less than 1 percent of the radius. Ninety-nine per
cent of the roll remains at a constant uniform temperature. 
For any rolling situation involving lower rotational speeds, 
such as in hot rollng, the penetration would be larger and can 
be predicted by equation (10). 

The strip temperatures shown in Fig. 4 increase almost lin
early with respect to the rolling direction. The figure also shows 
that the surface temperature is higher than that at the center-
line. For the case considered, only 1.9 percent of the defor
mation energy of the strip is transferred to the roll. In other 

Strip center . 

NORMALIZED DISTANCE FROM POINT OF ENTRY (x/x0) 

Fig. 4 Temperature near the bite for cold rolling case 

words, more than 90 percent of the heat flux that heats the 
roll comes from the friction energy. If either the friction coef
ficient or the lubricant is changed, the temperature of the roll 
and strip can be affected significantly. 

Modification. In general, before entering the bite, the strip 
and the roll have different surface temperatures. As soon as 
the strip hits the roll, their surface temperatures will reach 
about the same value, if the roll and strip come in intimate 
contact. As reported by Tseng (1984a), this intimate contact 
generates a steplike temperature change at strip surface. In 
constant, as shown in Fig. 4, the local temperature difference 
between the strip and the roll is significant. One way to generate 
a step temperature change at the strip surface to reduce the 
temperature difference shown in Fig. 4 is to assume a heat 
source located at the bite entry. It should be noted that if the 
initial strip temperature is higher than the roll entering tem
perature (typical hot rolling conditions), a heat sink or negative 
heat source should be assumed at the entry contact point. 

The heat transfer behavior of a moving heat source or sink 
has been well studied. The solution developed by Rosenthal 
(1946), summarized in the Appendix, was adopted in the pres
ent study to create the necessary step-type temperature profile 
by superimposing it on the strip solution developed earlier. In 
fact, the heat source can be considered as a portion of the 
deformation energy. Note that the highest strip deformation 
occurs near the bite entry and diminishes monotonically toward 
the end of the bite. In the strip solution, a uniform deformation 
throughout the bite was assumed. Therefore, the heat source 
might represent the nonuniform part of the deformation en
ergy. 

Results—Cold Rolling. Figure 5 shows the results using 
this modification in the bite region. The difference in the local 
surface temperature between the strip and the roll almost dis-
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Table 3 Operating data and mechanical properties for hot rolling cases 

Material 
Roll Radius (R) 
Anneal Gauge 
Entry Gauge 
Exit Gauge 
Roll Speed (coR) 
Entry Tension 
Exit Tension 
Strip Entry Temperature 
Strength Coefficient (K) 
Strain Hardening Exponent (n) 
Yield Strength 
Friction Coef. 

5052 Aluminum Alloy 
35.56 cm (14 in.) 
3.81 cm (1.5 in.) 
3.81 cm (1.5 in.) 
1.52-3.05 cm (0.6-1.2 in.) 
102-152 cm/s (200-300 fpm) 
0 
0 
371°C(700°F) 
102 MPa (14.8 ksi) 
0.14 
30 MPa (4.4 ksi) 
0.2 

appears. The temperature behavior away from the bite region 
is similar to that in Fig. 3. The computer results indicate that 
8.2 percent of the deformation energy is transferred to the 
roll. At the same time, the heat source contains 59 percent of 
the deformation energy. Comparing Figs. 5 and 4, the strip 
surface temperature at the exit of the bite is reduced from 50°C 
(122°F) to 48°C (119°F) and the hottest roll temperature 
changes from 39°C (103 °F) to 47°C (117°F). It is believed that 
the interface temperature should be the mean of the modified 
strip and the roll bite temperatures. In this case, the mean strip 
exit temperatures is 48°C (118°F). 

A noncontact infrared thermometer, Model HR-1PS, man
ufactured by Capintec Instruments, Inc., Ramsey, NJ, was 
used to measure the strip exit temperature for further verifi
cation of the value predicted by the model. The average exit 
temperature of the strip was 46°C (116°F), which agrees very 
well with the model prediction. It is to be noted that during 
measurement, the strip surface sometimes was flooded with 
coolant, and the measured temperature varied within a range 
of 6°C (10°F). It is suspected that the sensor sometimes meas
ured the coolant instead of the strip surface. 

Aluminum Hot Rolling 
In hot rolling, the strip is normally rolled at elevated tem

peratures at which recrystallization proceeds faster than work 
hardening. In addition, the hot strip is generally rolled at a 
thicker gage and lower speed than that of the cold strip. 

The operating data of a 92-in. three-stand mill at the Lew-
isport Plant were recorded for the study. The 5052 alloy strips 
with 3.81 cm (1.5 in.) entry gage were heated to 371 °C (700°F) 
and rolled at various reductions and velocities. Since the alu
minum alloy is non-hardenable by thermal treatment and the 
entry temperature is much higher than the recrystallization 
temperature ( = 288°C), the strip can be safely assumed to be 
at the annealed condition. The first stand data were used for 
deformation and friction energy calculations and reported in 
Table 3. The average friction coefficient obtained from the 
hot rolling cases is 0.2. 

Since in the hot rolling cases, the objective is parametrically 
to study the effects of changing reduction and rolling velocity, 
the stress-strain relationship assumed to be constant can result 
in better interpretation of the results. The parameters K and 
n were assumed temperature independent in the hot rolling 
analysis too; their values in Table 3 were obtained based on 
the mechanical behavior tested at 300°C. This temperature is 
close to the mean strip temperature for the cases considered 
(the calculation of mean strip temperature will be discussed 
later). As a consequence, the corresponding properties used in 
the calculation should be accurate enough. The K value in 
Table 3 is about one third of the data at the room temperature 
reported by Anderson (1967). This is consistent with the results 
reported by Wolf et al. (1974) that the strengths of the 2000 
and 5000 series alloys are reduced to one third of their room 
temperature strengths when the testing temperature is increased 

NORMALIZED DISTANCE EROM POINT OF ENTRY (x/x0) 

Fig. 5 Modified temperature near the bite for cold rolling case 
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Fig. 6 Power predicted by the ROLLING computer code 

from the room temperature to 300°C. The corresponding 
stress-strain relationship of 5052 at 300°C is about the same 
as that of Alloy 1100 at the room temperature. 

Since the strip width varies, the power consumption esti
mated by the ROLLING program is reported in kW/cm as 
shown in Fig. 6. Again, the results from the ROLLING pro
gram are input into the thermal model to predict the heat 
transfer behavior. The thermal properties adopted in the cold 
rolling case are also used in the hot rolling cases. 

The exit temperatures at the locations of strip center, in
terface, and roll core are shown in Fig. 7 under various hot 
rolling conditions. As shown, increase of reduction from 0.2 
to 0.7 increases the roll core and the interface temperatures 
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7 Roll and strip temperatures for hot rolling cases 

by approximately 50°C (90°F). On the other hand, the strip 
center temperature increases by only 30°C (54°F). The figure 
also indicates that the faster the rolling speed, the higher the 
rolling temperature. While the speed changes from 102 to 152 
cm/s (200 to 300 fpm), the roll core and the interface tem
peratures increase by 13 °C (23 °F) at a 20 percent reduction 
and 26°C (47°F) at the reduction equal to 0.7. In contrast, 
with an increase of reduction from 0.2 to 0.7, the temperature 
change at the strip center is insignificant: about 3°C (5°F). In 
general these results are consistent with those phenomena ob
served in the mill operation. 

Concluding Remarks 
A numerical model has been developed to link two analytical 

solutions. This model satisfies the required compatibility con
ditions between the roll and the strip for both heat flux and 
temperature. Results for typical aluminum cold and hot rolling 
cases are presented to demonstrate that parametric studies can 
be performed at a reasonable cost. Thus, the model can be 
used to explore the effect of changes in geometry and operating 
parameters on the complex thermal behavior observed in alu
minum rolling. 

The results also show that under typical rolling conditions, 
high-temperature gradients occur within a thin surface layer 
near the bite and, in turn, generate high thermal stress. It is 
to be noted that the high rolling pressure is also applied at the 
same location. In the cases considered, this thin surface layer 
can be as small as 1 percent of the radius, which explains the 
fact that the thermal crown responds immediately to the changes 
in cooling conditions. In addition, the results indicate that the 
roll or strip temperature can be greatly affected by the friction 
coefficient and the thermal properties of the coolant. 
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A P P E N D I X 

Moving Heat Source 
Heat transfer in a body resulting from a moving heat source 

or sink is governed by 
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#T+Vo 
dx2 a. 

dT 

dx 
= 0 (A.l) 

where C is the average perimeter of the strip; B is the average 
cross-sectional area; V0, as, ks, and hs have been defined earlier; 
x is the distance from the entry of the bite; and the rolling 
directions is negative. The net heat generation in the strip is 
assumed to be a point source at x = 0 . The other.appropriate 
boundary conditions are 

T(x) = T„ as x~ ±00 (A.2) 

The solution, originally studied by. Rosenthal (1946), takes two 
forms, depending on whether x is greater or less than zero: 
f o r x < 0 , 

r(x)-r„ = rmaxexp 

fo rx>0 , 

nx)-r„=rmaxexp 

where 

7 ,
max=r(0)-r„=- Q 

2ksBy/[( V„/2asf + hC/kfi] 

and Q is the heat-source rate. 

(A.3) 

(A.4) 

(A.5) 
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Axisymmetric Nugget Growth 
During Resistance Spot Welding 
Three-dimensional weld nugget growths for different welding currents, electrode tip 
shapes, and thickness ratios of workpieces are determined. By providing an effective 
model to estimate the heat generation at the faying surface between workpieces and 
taking into account the phase change due to melting, results show that the calculated 
weld nugget growth, nugget thickness, and shape of the nugget agree well with ex
perimental data. Heat generation at the faying surface in the early stage of welding 
and joule heating at long weld times dominate the nugget growth. Consideration of 
radial heat loss is necessary at longer weld times and higher welding currents. 

Introduction 
Resistance spot welding is a complicated process, which in

volves interactions of electrical, thermal, mechanical, and 
metallurgical phenomena. The materials to be joined are 
brought together under pressure by a pair of electrodes. A 
high electric current passes through the workpieces between 
the electrodes. Due to contact resistance and joule heating, a 
molten weld nugget is formed in the workpieces. The 
workpieces are joined as solidification of the weld pool oc
curs. Due to the complexity of the process, a satisfactory 
analysis of spot welding is still not available at the present 
time. 

As a first step the formation of the weld nugget must be 
considered. This requires investigation of the thermal process 
during spot welding. Detailed temperature distributions were 
first determined numerically by Greenwood (1961). The con
tact resistance, which decreases rapidly in the first few half 
cycles of the welding current pulse, was assumed to be negligi
ble at the faying surface. The maximum temperature (due only 
to joule heating) occurred in a ring around the edge of the elec-
trode-workpiece contact area at initial stages of welding. At 
longer weld times the maximum temperature was located near 
the axisymmetric axis and the faying surface. Based on this 
model, cooling rates were found to be of the order of 1000 
K/s, which may lead to a martensitic structure in almost any 
steel. Later, Bentley et al. (1963) used a metallographic tech
nique to estimate temperature distributions. Comparison with 
theoretical results revealed that the temperature distributions 
were strongly affected by contact resistance in the early stage 
of welding. 

Rice and Funk (1967) developed a one-dimensional model 
to investigate the thermal history for spot welding composite 
materials. The contact resistance at the faying surface was 
determined from experimental data. By neglecting the heat of 
fusion, transient temperatures were predicted for different 
shapes of the current pulse and duration. Nied (1984) pro
posed an elaborate axisymmetric finite element model to 
predict deformation of electrodes and workpieces. More 
realistic welding conditions including joule heating, variation 
of the current density and pressure distributions along contact 
surfaces, and temperature-dependent thermal properties were 
considered. The computed results for the weld nugget expan
sion and the nugget diameter as a function of time showed 
good agreement with experimental data. This study was main
ly applied toward understanding the thermal-mechanical in
teraction during the electrode-squeezing and welding cycles.' 

Nied's computer code offered highly flexible capabilities to 
model the spot welding process. However, investigation of 
primary factors affecting the welding process is still lacking 
from a heat transfer point of view. Crucial effects of the elec
trical contact resistance, which varies with temperatures, as 
well as welding current densities on the axial nugget growth 
have not been discussed. 

Recently, Gould (1987) measured the nugget growth by 
using a metallographic technique. A one-dimensional thermal 
model, which accounted for heat of fusion, contact resistance, 
and convection by qualitatively increasing the effective ther
mal conductivity in the liquid, was developed for com
parisons. The difference between predicted and measured nug
get thickness and the nuggest growth was suggested to be due 
to radial heat losses and underestimation of the heat genera
tion at the faying surface. This demonstrates that a quan
titatively consistent model is needed to provide insight into the 
resistance spot welding process. 

In this study, an axisymmetric heat conduction model is 
developed to predict the three-dimensional nugget growth 
purely from the heat transfer point of view. An effective 
estimation of the faying surface heat generation is also 
presented. The enthalpy method described by Crank (1984) is 
utilized to account for the phase change. The computed nug-
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get growth will be compared with the experimental data ob
tained recently by Gould (1987) to investigate primary factors 
affecting the resistance spot welding process. 

Analysis 

The resistance spot welding model considered is shown 
schematically in Fig. 1. A welding current passes through 
workpieces and initiates the formation of a weld nugget at the 
faying surface. In this study, effects of the liquid motion in the 
fused weld nugget are assumed to be negligible due to the short 
welding time and the small size of the weld pool in the 
workpieces. The joule heating, contact resistance, cooling ef
fect of the electrodes, and the phase change of melting are 
taken into account. In view of limited data available at the 
temperature involved, thermal and electrical properties of the 
liquid and the solid are assumed to be constant. 

Governing Equations and Boundary Conditions. With the 
above assumptions, the equations governing the temperature 
distributions in the electrodes become 

dTe r 1 d / dTe\ d2Tel 

+ •{ 

, z>l\ +le and z< -(l2 + le) 

4,a RteJt 

RbeJe 

Il+le>Z>l{ 

-(l1+le)<z<-h 

(1) 

where the last terms on the right-hand side of equation (1) are 
the joule heating terms, Rte and Rbe, which account for the 
convergence angle of the electrodes, defined as 

n _ fro 

Rhp -

lere+(r0-re)(z-li) 
(2) 

(3) 

To determine the shape change of the weld nugget, the en
thalpy method described by Crank (1984) can be used. Instead 
of working entirely in terms of the temperature, an enthalpy 
function that represents the total heat content of the material 
is defined. With a correct enthalpy-temperature relation, the 
full effect of the phase change can be modeled without 
needing to know the exact position of the phase change region. 
This fact makes a numerical solution relatively easy. The heat 
conduction equation in terms of enthalpy for both the molten 
and heat-affected zones of the workpieces is given by 

dh 

~~dF 
( , dT,\ d / , dTA j 2 

(4) 

where z'=l, 2 denote the top and the bottom workpieces, 
respectively. The workpieces are chosen to be of the same 
material. However, different thermal and electrical properties 
are specified in the solid and liquid regions. Different en
thalpy-temperature relationships have been proposed for the 
phase change of a pure metal (e.g., Atthey, 1974; Crank, 
1984; Bennon and Incropera, 1988). In this study, the en-

N o m e n c l a t u r e 

Bi, Bie = 

Bi/ 
c, C 

Biot number; Bi = 
Bi„ = h„r0/ks 

har0/ks 

= hfr0/ks 

F 
H 

h„, h„ = 

h, = 

I = 
J.J = 

Je J, = 

k,K = 

dimensional and dimen-
sionless specific heat; 
C=c/c, 
dependent variable 
dimensional and dimen-
sionless enthalpy; 
H=h/Plc!(Tm-T„) 
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and electrode heat transfer 
coefficient 
faying surface heat 
transfer coefficient 
welding current 
dimensional and dimen-
sionless electric current 
density; j = I/%r% in 
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j = I(aRf/Trrlef+l/ir2ri)U2 

at workpiece faying sur-

J=k/\kMTm-T„)Y/2 
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[keoe(Tme-T„)Y/2 
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le 

r.R = 

Rbe ~ 

R, = 

r0 = 
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latent heat of melting; 
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time 
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electrode melting 
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Subscripts 

e 
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I 
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= 
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= 
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range across mushy zone; 
e* = e/(Tm-Tm) 
separation between mean 
surface planes 
Z 
(Te-T„)/(Tme-T„) 

(r/-r.)/(rm-r.) 
TJ{Tm-Tx) 
dimensionless radial coor
dinate, defined in equation 
(15) 
dimensional and dimen
sionless density; p* =p/pi 
electrical conductivity 
dimensionless 
time = k/t/rlp/Ci 

(rme-r00)/(rm-r00) 
re/r0 
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1 and 2 denoting top and 
bottom workpiece, 
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liquid 
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thalpy-temperature relationship used by Voller and Cross 
(1981) is adopted: 

h = 

'pscsTh 

| (Ps + pl)ls,{Ti-Tm + t) 

4e 

+ plc,(T,-Tm-e), 

T' < T 

Tm-e<T,<Ta+e 

T,>T,„+e . 
(5) 

Equation (5) was originally proposed by Meyer (1973) for the 
purpose of smoothing the enthalpy change, which is a discon
tinuous function across the solid-liquid interface for a pure 
substance undergoing a change of phase. Hence, a small value 
of e (e.g., 10 K) is usually assumed for the numerical model
ing. Melting or solidification of alloys, unlike that of pure 
substances, is characterized by the existence of a multiphase or 
mushy region that separates the pure solid and liquid. The 
temperature range across the mushy zone can be of the order 
of 100 K depending on the composition of an alloy. In view of 
limited data available, properties of the weldments made with 
AISI 1008 steel (Mn 32 percent, Fe 49.6 percent) are assumed 
to be the same as those of pure iron in this study. Errors in
troduced will not be serious. The reason for this is that the 
temperature range investigated, which is usually around 
1500-2000 K, is much larger than that across the mush zone. 
Besides, the atomic structures of the major constituents, 
manganese and iron (with atomic numbers of 25 and 26, 
respectively), are very similar. 

The electrodes provide a significant cooling effect during a 
resistance spot welding process. Heat transfer rates across top 
and bottom electrode-workpiece contact surfaces yield 

-ks—± = he(T,-Te) at z = /,, 0 < r < r e 
dz 

dT2 

dz 
•K{T2 at z=~l2, 0 < r < r e 

(6) 

(7) 

Heat transfer losses to the surroundings from workpieces are 

dz 

dT2 

dz 

= ha(T,-T^) a t z = / „ re<r<cc (8) 

= ha(T2-T„) a t z = - / 2 , r e < r < ° ° (9) 

Also, the resistance spot welding process can be affected by 
the thermal contact resistance at the faying surface. Estima
tion of the interfacial heat transfer is complicated and uncer
tain. Hence a heat transfer coefficient is introduced so that the 
heat transfer rate at the faying surface is determined by 

^ ' ^ - - ^ - ^ 
at z = 0 (10) 

The heat generation due to the electrical contact resistance be
tween workpieces is an important factor affecting the weld 
nugget growth (Bentley et al., 1963; Gould, 1987). In this 
study, the following model is assumed. The interfacial heat 
generation is modeled by including it in the heat conduction 
equation governing the material adjacent to the faying surface 
as additional joule heating. The last term on the right-hand 
side of equation (4) then becomes 

^ ( 4 _ + _ j _ ) oi) 
a \Krl

eef Tr2rea/ 

where the first and second terms on the right-hand side of 
equation (11) represent the heat generation due to electrical 
contact resistance and joule heating, respectively. Determina
tion of the faying surface electrical resistance Rf is uncertain 

since it involves complicated interactions of chemical, 
mechanical, thermal, and metallurgical phenomena. Savage et 
al. (1978) and Kaiser (1981) measured contact resistances for 
different welding currents, electrode forces, and initial surface 
conditions. Results revealed that the faying surface resistance 
decreases at the location where the weld nugget forms. In lieu 
of any systematic data, the faying surface contact resistance is 
assumed to vary as a linear function of temperature (Gould, 
1987). The resistance is determined by specifying the static 
contact resistance, which is the resistance measured at the sur
rounding temperature during the electrode-squeezing periods, 
and zero resistance at the melting temperature; that is, 

Rf-R°°(T
m-T ) 

The axisymmetric boundary condition at r = 0 is 

dT, 

dr 
i = 0 

(12) 

(13) 

The initial temperature and temperatures of workpieces far 
from the weld nugget remain at the surrounding temperature 
T 

Domain Transformation and Dimensionless Equa
tions. Since the electrode shape varies due to the con
vergence angle, a simple transformation is used to provide a 
rectangular mesh convenient for finite difference computa
tions. The following new dimensionless independent variables 
are introduced for this purpose: 

(14) 

5,R 

5e0+(i-0)(z-a,) 
f o r 5 i < Z < 5 i + 5 e 

= R for Z>be + bu Z<-(52 + 5e) and - 5 2 < Z < 5 , 

= K l h . n
 5 g f w 7 ^ ^ f o r - ( 6 2 + 5 e ) < Z < - 5 2 (15) 

5e<£ + ( l - 0 ) ( Z + 6 2 ) 

Equation (1) for the temperature distribution in the electrode 
then transforms to 

30, 
dr H d£ 

de„ Afbl 

1 '(«£) d2ee 

da J ' df 

a n d f < - ( 5 2 + 5e) 

dO, 

+ J2. f o r f > 5 , + 8 e 

(16) 

dr £(l-4>)2 di, v dZ 

d2e„ d2e, 

( < % ) + » • & % ) 

-2£M + ̂ - + R*uJ* for 8, £ £ £ « , + « , (17) 
d&i 9f 

N*5l dde _ 

dT ~ £ ( i - 4 > ) 2 a* 

d2e„ d2e, 

( < % ) + » • & % ) 

-2f /V 

where 

M= 

dM ST2 

1 

+ RIJ2 for - ( 5 2 + 5 e ) < f < - 5 2 (18) 

« . * + ( f - « i ) d - * ) 
N= 

* - l 

«e0-(r+«2)(i-«) 
(19) 

Equation (4) for the workpieces becomes 

8H 4^f)+i (* f )+" <*» dT 

in which the enthalpy-temperature relationship is now given 
by 
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control volume 

Fig. 2 Grid for control volume formulation 

H= 

VC(0,- + <u, 
H _ (\+p*)Lsl(ei + e*-\) 

H , +B,-et-l, 

6, < 1 - e* 

l - e * < 0 , < l + e * 

0,->l + e* 

(21) 

Equations (6)-(9), which represent the heat losses at sur
faces of workpieces, become 

30, 
~ = B i , ( f l , - M a t f = 8 „ 0<£<4> 

of 

— ^ = B i e ( 0 2 - 0 c u ) a t f = - 3 2 , 0<£<< 
of 

- — ^ = B i 0 , a t f = S , , </><£<oo 
of 

302 
— f = B i 0 2 a t f = - 8 2 , 
of 

= £<°o 

(22) 

(23) 

(24) 

(25) 

Equation (10) for the heat transfer rate at the faying surface is 

30, _ 302 

^F""o7 
Equation (13) yields 

30,-

= 6 ^ ( 0 , - 0 , ) a t f = 0 (26) 

a* 
= 0 at 1 = 0 

The temperature far from the weld nugget becomes 

0,=O as ?-oo 

and the initial temperature in workpieces gives 

0, = O as r = 0 

(27) 

(28) 

(29) 

Numerical Procedure. Discrete forms of equations 
(16)—(18) and (20) with boundary and initial conditions 
(22)-(29) were developed by using the control volume for
mulation and the central finite differences developed by 
Patankar (1980). The governing equations (16)-(18) and (20) 
can be represented in the following general form: 

dF Id / . . 8F\ A 3 / dF\ 

(30) 

3£ / * 3? 

±(A J^ 
dt\A* 3f 

where Alt A2, A3, A4, and S are functions of £ and f. The 
source term S represents the terms of joule heating and cross-
derivative on the right-hand side of equations (16)—(18), and 

-A*>-w)+° 

joule heating in equation (20). A portion of a two-dimensional 
grid is shown in Fig. 2. Equation (30) can be expressed by the 
following discrete form: 

where 

apFP = aBFE + a WFW + aNFN + asFs + b 

^AliPA2JeAT A3IP£AT 

!•„& + A? 

_ AlfPA2^wAT AXPHAT 

(31) 

£PA£ 2 A£2 

aN-- A? 

A* AT 

Af2 

aP = aE + aw + aN + as + 1 

b = SPAT+Fp 

where SP denotes the source term S evaluated at grid point P. 
Joule heating is assumed to prevail throughout the control 
volume and the cross-derivative term is discretized by the 
central-difference approximation. The successive over taxa
tion (SOR) method was applied to determine dependent 
variables. Equation (31) can be written as 

Fp=F*p+p(l:anbFnb + b ~F*\ (32) 
V aP / 

where anb and Fnb denote aE, aw, aN, as and FE, Fw, FN, Fs, 
respectively. When the iterative results converge, Fp ap
proaches F*. Equation (32) implies that the converged values 
of Fsatisfy equation (31). In the present study, the relaxation 
factor jS = 1.25 was chosen. After the enthalpy was calculated 
from equation (20), the temperature field could be determined 
by using equation (21). 

The nodal points were uniformly distributed in both the £ 
and f directions. For sufficient numerical accuracy, a grid of 
6 x 30 nodal points in an electrode and 95 x 21 nodal points in 
both the top and the bottom workpieces were used. A grid of 
95 X 42 nodal points in the workpieces was chosen to compare 
with the experimental data obtained by Gould (1987). Con
vergence of the numerical solution was checked by examining 
the temperatures between iterations. The relative error be
tween the two values was always better than 1 percent. 

Results and Discussion 

The electrodes were chosen to be copper and the workpiece 
material was AISI1008 in order to compare with experimental 
data. In view of limited data available, properties of AISI 
1008 steel were assumed to be the same as those of iron. Errors 
thus introduced would not be serious since atomic structures 
of the major constituents, Mn and Fe, are very similar as men
tioned previously. Properties of iron and copper chosen from 
Brandes (1983) are listed in Table 1 and Table 2, respectively. 
The initial effective gap thickness between workpieces was 
taken to be 5 x 10 - 5 m (Bentley et al., 1963). Thermal heat 
transfer, coefficients at both the workpiece-electrode interface 
and the faying surface of workpieces were estimated to be 
4 x 104 W/m2 - K (Rohsenow and Hartnett, 1973). Investiga
tion of the separate effect of the electrode pressure and the 
surface condition of the contact resistance is ignored at the 
present time. The reason for this is that the electrical contact 
resistances are affected more markedly by the surface condi
tion than the electrode force (Savage et al., 1977, 1978; Kaiser, 
1981). The surface condition, however, is very uncertain and 
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Table 1 Properties of iron and welding conditions 

Solid densi ty p s , k g / m 3 

Liquid densi ty p| , k g / m 3 

Sol id speci f ic heat c s , J/kg-K 

Liquid .specific heat C| , J/kg-K 

Sol id thermal conduct iv i ty kg , W/m-K 

Liquid thermal conduct iv i ty k| , W/m-K 

Latent heat of mel t ing, • y , J/kg 

Sol id e lectr ical conduct iv i ty a s , mho/m 

Liquid e lect r ica l conduct iv i ty a | , mho/m 

Static contac t res is tance R M , ohm 

Melt ing tempera tu re T m , K 

Half temperature range across mushy zone 

Separat ion gap at fay ing surface e f , m 

Heat t rans fe r coe f f i c ien ts : 

workp iece-surroundings h a , W / m 2 - K 

workpiece-e lect rode h „ , 

faying sur face h f , W / m 2 - K , 

Surrounding tempera tu re T , K 

T x , ° 
7,870 

6,340 

456 

791 

78.2 

29.7 

2.71 x105 

8.16 x106 

9.5 x105 

2.5 x10"4 

1,809 

K 10 
- 5 

W / m 2 - K 

5 x 1 0 

50 

40,000 

40,000 

303 

Table 2 Properties of copper 

Density p e , kg/m*3 

Specific heat cQ , J/kg-K 

Thermal conductivity k e , W/m-K 

Electrical conduct ivi ty o e 

Melting temperature T, 
me 

, mho/m 

K 

9,000 

390 

400 

5.9 x 1 0 7 

1,357 

involves complicated interactions of mechanical, chemical, 
thermal, and metallurgical phenomena. 

Variations in the heat generation at the faying surface be
tween workpieces and the joule heating with weld times are 
shown in Fig. 3. A weld nugget is initiated due to interfacial 
heat generation, which decreases to zero after the weld nugget 
develops for weld times larger than 1.6 cycles (1.6/60 s). Joule 
heating, however, dominates the nugget growth for longer 
weld times. 

The development of a weld nugget at a welding current of 
8000 A for welding AISI 1008 sheets of thickness 0.51 mm is 
shown in Fig. 4. The nugget growth predicted agrees well with 
experimental data obtained by Gould (1987). Solutions of the 
one-dimensional model developed by Gould (1987) are also 
presented for comparison. At early stages of weld times the 
predicted nugget thickness from the one-dimensional model 
lies far below the experimental data. Gould (1987) suggested 
that the heat generation at the faying surface was 
underestimated. After a weld time of eight cycles the nugget 
thickness becomes larger than experimental data since the 
radial heat loss is neglected. The weld nugget is initiated at the 
welding time of 1.6 cycles and increases abruptly with a 
growth rate of 3 cm/s to an asymptotic value around 0.58 mm 
after the welding time of six cycles. The rate of increase of 
weld nugget thickness is reduced when the weld time becomes 

360 

240 

120 

Interiacial Heat 

Joule Heat 

WELDING TIME-CYCLES 

Fig. 3 Variations in interfacial heat generation (J/m3-s) and joule 
heating with weld time at center of weld nugget (/ = 8000 A, r0 = 2.4 mm, 
rg = 2.04 mm, /1 = f2 = 0.51 mm, a = 45 deg) 
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Fig. 9 Dimensionless nugget growths for top-to-bottom workpiece 
ratio of ^ l&2 = 1 (J = 5.1, <t> = 0.85, 6-, = 1.06, a = 45 deg) 

large. The importance of joule heating indicates that not only 
does the welding current have a strong effect on the weld nug
get growth, but so also does the bulk electrical resistance with 
temperature for both the liquid and solid phases for large weld 
times. Hence detailed investigations of bulk electrical re
sistance and contact resistance are definitely needed. 

The variation of the nugget thickness with the welding cur
rent for welding workpieces of thickness 0.51 mm at a welding 
time of six cycles is shown in Fig. 5. The calculated results 
agree well with measured data obtained by Gould (1987). The 
weld nugget forms for a welding current higher than 6 kA. In
vestigating the difference between one and three dimensional 
models, where the latter leads to satisfactory results, reveals 
the importance of an appropriate estimation of the heat 
generation at the faying surface. A comparison between the 
calculated and measured shapes of the weld nugget at a 
welding current of 8100 A and a welding time of nine cycles is 
shown in Fig. 6. It indicates that good agreement with an ac
curacy of 7 percent can be obtained. 

Transient shape changes of a weld nugget at dimensionless 
welding current densities 7=5.9925 and 4.335 are shown in 
Fig. 7. In view of interfacial heat generation and joule heating, 
a high welding current produces rapid nugget growth. The 
growth rate decreases as the weld time increases. Temperature 
distributions for different weld times are presented in Fig. 8. 

The temperature pattern is similar to that obtained by Bentley 
et al. (1963). With longer welding times, temperature distribu
tions broaden. The axial temperature gradient is greater than 
that in the radial direction. 

Nugget development of welding workpieces of equal 
thickness is shown in Fig. 9. The dimensionless thickness and 
the width of a weld nugget are 0.88 and 1.48, respectively, at a 
welding time of 0.1038. The nugget growth for the top-to-
bottom workpiece thickness ratio of 0.2 is presented in Fig. 10 
for comparison. It can be seen that the nugget thickness and 
the width of the top workpiece decrease to 0.18 and 1.46, 
respectively, whereas the nugget thickness of the bottom 
workpiece reduces to 0.43. The explanation is that the top 
workpiece of lower thickness conducts a larger amount of heat 
away. Hence energies for raising temperatures and changing 
phases in both the top and the bottom workpieces are com
paratively reduced. 

Referring to Fig. 11, the nugget grows at a higher rate for a 
smaller contact area of the electrode due to a higher current 
density. The width of the nugget is primarily controlled by the 
diameter of the contact area. The maximum half-width is 0.6, 
which is slightly larger than the radius ratio of the electrode 
0 = 0.55. In contrast, the half-width becomes 0.92, which is 
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Fig. 11 Dimensionless nugget growth for different electrode radius 
ratios (J = 5.1, «i = a2 = 0.213, « = 45 deg) 

less than the radius of the contact area for <j> = 0.95. This is at
tributed to an increase of the current density, which increases 
the heat generation rate and produces a wider weld nugget. 

The investigation of transient temperatures is of practical 
importance since the microstructure of the workpiece is 
related to the temperature variation. Temperature distribu
tions versus the welding time at different radial distances 
along the faying surface are plotted in Fig. 12. Three typical 
points in the weld are considered, namely, one near the center 
of the weld nugget, one near the edge of the weld spot, and 
one outside the weld nugget. The temperature increases very 
rapidly in the weld spot at an initial stage of the weld time. It 
reaches a value of 1.0, which corresponds to 1809 K at the 
center of the faying surface. It remains approximately con
stant due to the energy required for melting. Neglecting the 
phase change of melting, the temperature will increase and 
decrease smoothly as illustrated for the curve R= 1.144. 
Similar results were found by Greenwood (1961). The max
imum cooling rate is estimated to be around 20,000°C/s, 
which is of the same order as the estimation made by Gould 
(1987). 

a. i 0.2 

DIMENSIONLESS TIME 

0.3 

Fig. 12 Transient temperatures at different locations along faying sur
face of workpieces (J = 5.1, <t> = 0.85, i 1 = «2 = 0.213, a = 45 deg) 

Conclusions 
The conclusions drawn are as follows: 
1 An unsteady, axisymmetric heat conduction model is pro

posed to investigate three-dimensional nugget growth for dif
ferent welding currents, shapes of electrode tip, and workpiece 
thickness ratios. Results show that the nugget thickness, the 
nugget growth, and the shape of the weld nugget predicted 
agree well with experimental data. 

2 An appropriate estimation of the heat generation at the 
faying surface between workpieces is provided. Satisfactory 
results indicate that this model is useful for very wide ranges 
of welding currents and weld times. The separate effects of the 
electrode pressure and the surface condition on the electrical 
contact resistance are ignored at the present time. The reason 
for this is that the interfacial resistance is affected more 
markedly by the surface condition than the electrode pressure. 
The surface condition, however, involves interactions of ther
mal, chemical, mechanical, and metallurgical phenomena and 
is very uncertain. 

3 Nugget growth rate is dominated by the interfacial heat 
generation at initial stages of weld time. Joule heating, 

however, is responsible for nugget growth at longer weld 
times. The importance of joule heating indicates that not only 
does the welding current have a significant effect on the weld 
nugget growth, but so also does the bulk electrical resistance 
for both the liquid and solid phases. Hence investigations of 
factors affecting the contact resistance and the electrical bulk 
resistance in detail are needed. 

4 Consideration of radial heat loss is necessary for longer 
weld times and higher welding currents. 

5 Nugget growth rate and the size of the weld nugget in
crease with welding current and the thickness of the 
workpieces. Decreasing the contact area of the electrode in
creases the rate of nugget growth. The width of the weld nug
get is primarily controlled by the electrode contact area. 
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E R R A T A 

Errata for the paper "Scaling of Plain and Externally Finned Heat Exchanger Tubes," by R. Sheikholeslami 
and A. P. Watkinson, JOURNAL OF HEAT TRANSFER, Vol. 108, pp. 147-152, February 1986. 

It has come to our attention that the exponent shown on x on the right-hand side of equation (4) is in 
error. The correct equation is given below: 

Ki(w/KR + Ksp){w/KD+y)=4K2 x (1 - w/KD x) (z/2-w/KD)2 (4) 
The error did not enter the model predictions shown in the paper, which used equations (5) and (6). 
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A Single-Blow Test Procedure for 
Compact Heat and Mass -
Exchangers 
This paper discusses a single-blow test procedure for estimating the overall heat and 
mass transfer coefficients of compact dehumidifier matrices. The procedure consists 
of three sequential experimental procedures for obtaining, respectively, the core 
geometry of the test matrix, the active mass of sorbent within the matrix, and the 
distributions of the temperature and humidity ratio responses with time and distance 
in the flow direction. The analysis technique paired to the experimental procedure 
is based upon the transformation of the model partial differential equations into a 
set of ordinary differential equations. The temperature and mass-fraction distri
butions are then modeled by a system of nonstiff ordinary differential equations, 
which can be easily integrated numerically. The Lewis number, defined as the ratio 
of the overall heat to mass transfer coefficients, determines the shape of the dis
tributions with a dimensionless flow coordinate x+. With a curve fit method, the 
experimental Lewis number can be determined with acceptable accuracy. The pro
cedure is illustrated with selected experimental results for humid air and a silica get 
matrix. 

1 Introduction 
In single-blow experiments, an exchanger test matrix is con

ditioned at specified initial conditions and a step change is 
applied to the inlet conditions of the fluid stream passing 
through the matrix. The distributions in time of the fluid stream 
outlet conditions form the experimental data that characterize 
the heat and/or mass transfer performance of the test matrix. 
Retrieving quantitative information, i.e., the heat and/or mass 
transfer coefficients, is the objective of the analysis. Whereas 
the methods for heat transfer alone have evolved into de facto 
standards, the methods for isothermal or adiabatic mass trans
fer are less developed. 

Single-Blow Methods for Heat Transfer. The single-blow 
method is widely used for evaluating the performance of com
pact heat exchanger geometries (Heggs, 1983). Almost all anal
ysis techniques are based upon the porous-matrix or insulated-
duct equations established by Anzelius (1926) and later by 
Schumann (1929). These equations express an overall energy 
conservation equation for the adiabatic system [ fluid-stream 
+ matrix) and a linear transfer rate equation based upon an 
overall transfer coefficient. 

There exist two classes of solution method for single-blow 
experiments. In the point matching solutions the principle is 
to match one parameter derived directly from the experimental 
data with a theoretical curve showing that parameter as a 
function of the exchanger Number of Transfer Units (e.g., 
Baclic et al., 1986). These parameters can be (Heggs, 1983): 
the effectiveness at the point of breakthrough, the maximum 
slope of the breakthrough curve, the initial temperature rise, 
the second moment of the distribution curve, and the 20-80 
percent distribution width. The curve matching technique gen
erally employs finite difference solutions of the insulated-duct 
equations (e.g., Elliot et al., 1986). Curve matching is typically 
an iterative procedure in which the NTU parameter is deter
mined by minimizing the rms error of the experimental dis-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division December 
12, 1988; revision received July 17, 1989. Keywords: Forced Convection, Heat 
Exchangers, Transient and Unsteady Heat Transfer. 

tribution data with a theoretical curve. For heat transfer alone, 
there is usually only one curve-fit parameter. 

Single-Blow Methods Involving Mass Transfer. The gen
eral classification of the various techniques for heat transfer 
alone can be used for isothermal mass transfer in adsorbers. 
However, the mass conservation equation involves a property 
equlibrium relationship that is generally nonlinear. Eagleton 
and Bliss (1953) successfully used a maximum-slope point 
matching technique to obtain the mass transfer coefficient 
from experimental breakthrough curves with a nonlinear 
isotherm. Jefferson (1972) discusses the method of moments 
for dilute (i.e., linear), binary systems. Schneider and Smith 
(1968) experimentally studied the isothermal mass transfer of 
hydrocarbons on silica gel in a packed-bed geometry. Their 
analysis incorporates three dimensionless parameters: the inter-
and intraparticle diffusivity and the sorption rate constant. 
They state that the curve matching procedure is unsatisfactory 
because good agreement between the experimental data and a 
theoretical response curve can be obtained with more than one 
set of these three constants. 

Standard techniques for analyzing single-blow, adiabatic 
sorption experiments are even less developed. Single-blow 
methods for mass exchangers usually rely on global curve-
matching procedures, however; the description of the transient 
process invariably includes a fair number of adjustable pa
rameters for the transfer rate and equilibrium constants, and 
the effects of these parameters on the position and shape of 
the response curves are intermixed. Chi and Wasan (1970) use 
empirical correlations for the transfer coefficients, developed 
by Hougen and Marshall (1947), in their numerical model for 
the adiabatic adsorption of water vapor on silica gel in a packed-

• bed geometry. They conclude a fair agreement between their 
theoretical curves and experimental breakthrough curves pub
lished by Bullock and Threlkeld (1966). 

Clark et al. (1981) report experiments on the adiabatic sorp
tion of water vapor on silica gel-packed beds using a model 
similar to Chi and Wasan and the Hougen-Marshall corre
lations. However, the agreement between their theoretical and 
experimental breakthrough curves is poor and the authors con
clude that the discrepancy cannot be explained by experimental 
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errors. Biswas et al. (1984) and Kim et al. (1985) present a 
theoretical and experimental investigation of the adiabatic 
sorption of water vapor on regular density silica gel in a parallel 
plate geometry. Their model also follows the Anzelius ap
proach. The agreement between experimental and predicted 
breakthrough curves is only fair, and a sensitivity study shows 
that several factors can explain the discrepancy. 

Pesaran et al. (1986) performed a theoretical and experi
mental analysis of adiabatic single blow experiments of laminar 
flow of humid air through a parallel passage silica-gel matrix. 
The model is based upon the method of moments applied to 
the two Riemann invariants of the mass and energy conser
vation equations for infinite transfer coefficients. However, 
the analysis of the experimental data yields erroneous heat and 
mass transfer coefficients due to experimental inaccuracies and 
the inappropriate assumption of linear equations. 

Clearly, the conventional single-blow methods developed for 
exchange processes involving heat transfer alone are limited if 
mass transfer is occurring. Adsorbers often have nonlinear 
thermodynamic equilibrium properties. The curve-matching 
techniques applied to mass transfer involve many parameters, 
and agreement with experimental data can often be obtained 
with more than one set of these parameters. Thus it seems that 
the single-blow technique may not be a useful experimental 
tool for obtaining the performance characteristics of heat and 
mass exchangers. This paper introduces a single-blow analysis 
technique that makes use of the nonlinear character of the 
conservation equations. Although the technique can be applied 
to any binary sorption system, it is explained next for the case 
of humid air flowing through a silica gel matrix because ex
perimental data for this system are available. 

2 Model Formulation and Assumptions 
The model follows the classical Anzelius model. The situ

ation is that of laminar parallel flow of humid air through a 
matrix containing a uniform distribution of desiccant material. 
The equations of change are based upon overall conservation 
equations for the air stream and test matrix. The transfer-rate 
equations are linear and expressed in terms of overall heat and 
mass transfer coefficients. Diffusion equations are not in
cluded in the model. 

is negligible compared to the transport by forced convection. 
Axial diffusion in the desiccant layer is neglected because the 
layer consists of isolated particles with small dimensions. 

3 The pressure drop through the bed is small with respect 
to absolute pressure and is neglected for evaluating the sorption 
equilibrium conditions. 

4 The rate of heat and mass transfer can be modeled with 
constant overall heat and mass transfer coefficients. 

5 The temperature distributions in the desiccant mass and 
structural parts of the test matrix are assumed to be uniform, 
and the average temperatures of both systems are equal at all 
times. 

Assumption 4 converts the model equations from Rosen-
type diffusion equations (Rosen, 1954) into Anzelius-type over
all rate equations and it simplifies the resulting equations sub
stantially. Van den Bulck (1987) has experimentally investigated 
the effect of nonuniform, transient distributions of mass and 
energy fluxes on the air-side and desiccant-side Nusselt and 
Sherwood numbers. His analysis shows that the effect can be 
neglected for the distributions that are generally encountered 
with mass transfer. 

With assumptions 1-5, the overall equations of change for 
the air stream and test matrix can be written as follows. 

1 Water vapor conservation 

™f to + mfid 

2 Energy conservation 

dWf 

86 + Mn 

dWj 

be = 0 

dif . dif dlm 

dx J a dd ' '"" 30 

3 Rate of water vapor mass transfer 

4 Rate of thermal energy transfer 

Md~dB = hA{-tS-im)+hmA{v/}~wd)iv, 

(1) 

Assumptions 
1 The matrix-flow area, the transfer area per unit length, 

and the distribution of desiccant mass within the test matrix 
are constant or uniform with respect to position in the flow 
direction. 

2 The axial diffusion of heat and mass in the air stream 

x measures the distance in the flow direction and 6 measures 
the real time. wd is the humidity ratio of the air stream in 
equilibrium with the silica gel at the temperature tm and water 
content Wd. 

Equations (1) form a system of nonlinear, coupled evolution 
equations, and the behavior of such systems is well known. 

Nomenclature 

A = transfer area of exchange 
matrix 

Ac = free flow area of exchange 
matrix 

cp = fluid thermal capacitance 
Dh = hydraulic diameter of flow 

passage 
h = heat transfer coefficient 

hm = mass transfer coefficient 
if = specific enthalpy of fluid 

stream (per unit mass of dry 
air) 

iw = specific enthalpy of water 
vapor 

Im = specific enthalpy of matrix 
(per unit mass of dry desic
cant) 

L --
Le = 

mf --
Md = 

Mf -

Nu = 
Re = 

S --

<f -
tm '-

= length of flow passage 
= Lewis number as defined by 

equation (6) 
= dry-air mass flow rate 
= mass of dry desiccant con

tained within exchanger 
= fluid mass entrained in flow 

passages 
= Nusselt number 
= passage flow Reynolds num

ber 
= dimensionless wave speed of 

the breakthrough curves 
= fluid stream temperature 
= matrix temperature 

Wf 

wd 

X 

x+ 

z 
af 

e 
ed 

T 

wd = humidity ratio of air in equi
librium with desiccant 
humidity ratio of air stream 
water content of dry desic
cant 
coordinate measuring posi
tion in the flow direction 
dimensionless position coor
dinate 
flow coordinate 
thermal diffusivity of fluid 
stream 
real-time variable 
dwell time of fluid within 
matrix 
dimensionless time 
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Whereas the Anzelius equations model the propagation of the 
distribution of the air stream temperature, equations (1) model 
the propagation of two confined property distributions: tem
perature and humidity. Ruthven (1984) discusses in detail the 
propagation and dispersion of the distributions, also called 
waves. There exists a thermal wave, during which most of the 
sensible energy is exchanged between the air stream and the 
matrix, and a mass transfer wave, which incorporates the ma
jority of the mass exchange. The thermal wave is narrow and 
propagates at high speed through the matrix, whereas the mass 
transfer wave is wider and slower. The respective wave speeds 
are proportional to the ratio of thermal and mass capacitances 
of the fluid stream and matrix. The two distributions are usu
ally completely separated, with a well-defined intermediate 
state between the two transfer zones. 

For heat exchangers, the energy conservation equation is 
linear and as a result the thermal wave is an expansion wave, 
continuously spreading as it progresses through the exchanger 
passages. The shape of this wave never becomes fully devel
oped, and therefore depends at all times on its initial shape, 
that is, the change of the inlet conditions with time. For mass 
transfer, however, the nonlinearity of the sorption isotherm 
introduces favorable wave patterns, which are not encountered 
in heat transfer. For selected matrix-initial and fluid-inlet states, 
the property distributions are constant-pattern waves, i.e., the 
shape of the distributions is preserved as the waves progress 
through the matrix. 

For the system regular-density silica gel and humid air, the
oretical analyses by Van den Bulck et al. (1985) experimentally 
verified by Van den Bulck (1987), show that constant pattern 
waves occur during regeneration of a wet desiccant with a hot 
air stream. Constant pattern waves become rapidly fully es
tablished after they originate at the inlet face of the matrix. 
The shape and width of the mass transfer wave in desorption 
processes are constant, and, for reasonable-quality inlet steps 
and sufficiently long bed lengths, are independent of the sharp
ness of the step change in inlet conditions. Furthermore, the 
wave dispersion is well defined and independent of the air 
stream mass flow rate. 

Michaels (1952) and Garg and Ruthven (1975) successfully 
used a specific transformation technique introduced by 
Glueckauf (1947) for analysis of experimental breakthrough 
curves with constant patterns. This transformation technique 
is based upon the argument that an observer translating at the 
speed of the wave will not measure a change of shape of the 
wave. For the system of equations (1), the physical speed of 
the second wave is given by 

dx 

dd 
M7 

I + m 
(2) 

Md 

where S is a constant dimensionless wave speed dependent only 
upon the thermodynamic properties of the fluid and matrix 
system, and the inlet and initial conditions. Based upon equa
tion (2) a new position coordinate z can be defined as 

M7' 
z=x-

Md 

(3) 

The partial differential equations expressed in the stationary 
coordinate system (x, 6) can be written in terms of the moving 
coordinates (z, 6). The condition for a constant pattern wave 

translates into — )z = 0. Hence, the system of partial differ-

ential equations (1) reduces to a system of ordinary differential 

equations in the z coordinate, moving with the wave. This 
system can be further simplified by using the time variable T 
introduced by Anzelius (1926) for modeling fluid flow through 
porous matrices 

\ Md ) cpmfL 

In terms of the dimensionless time T, the model equations (1) 
become: 

1 Water vapor conservation 

£ ^ _ 5 ^ = 0 
dr dr 

Energy conservation 

dr dr 

Rate of water vapor mass transfer 

dwf 1 

(5) 

dr Le 
(wf- wd) 

4 Rate of energy transfer 

dtf , 

o 
where Le is the effective, overall Lewis number, which is de
fined for this situation as: 

Le = 
hmcp 

(6) 

and indicates the magnitude of the resistance for mass transfer 
relative to that for heat transfer. A compact heat and mass 
exchanger is characterized by the Nusselt number and Lewis 
number, i.e., the heat and mass transfer coefficients. The Nus
selt number is mainly determined by the geometry of the flow 
passages, whereas Le is determined by the geometry of the 
desiccant layer relative to the dimensions of the flow passage. 
The model equations (5) indicate that the temperature and 
humidity distributions can be expressed in terms of the new 
time variable T, with Le as parameter. Let AT measure the 
width of the wave in dimensionless form. Numerical integra
tion of equations (5) indicates that the breakthrough curves 
become more asymmetric with increasing Le, and AT increases 
almost linearly with Le. Thus, the Lewis number is a measure 
of the skewness of the curves. 

3 Experimental Results 
A full description of a single-blow experimental apparatus 

and test procedures is given by Van den Bulck (1987). The test 
loop configuration is that of a conventional single-blow test 
facility. A humid air stream with controlled properties and 
mass flow rate is passed through a test matrix arranged as a 
vertical stack of 74 parallel rectangular passages with hydraulic 
diameter Dh = 2.0 ± 6 percent mm, a width of 126 ± 0.9 
percent mm, and a flow length L = 0.203 ± 0.2 percent m. 
The walls of the flow passages are coated with regular-density 
silica gel particles with diameter Dp - 0.177-297 mm, yielding 
a total mass of dry desiccant Md = 0.49 ± 3 percent kg. The 
total transfer area A = 3.65 ± 4 . 5 percent m2 and the free 
flow area^4c = 0.00927 ± 3 percent m2. The ± values in these 
and the following statements denote uncertainties. 

A series of 14 dynamic desorption experiments is reported 
by Van den Bulck (1987). The temperature and water content 
of the desiccant matrix are initialized at selected conditions, 
and a step change in the inlet temperature of the air stream is 
introduced. The air stream mass flow rate is varied in a sys-
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Fig. 1(a) Experimental temperature distributions t, with dimensionless 
flow length x+ and measuring time as parameter; each sequence with 
time corresponds to one single-blow experiment 
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Fig. 2(a) Shifted experimental temperature distributions with dimen
sionless flow length x* showing the constant-pattern behavior of the 
breakthrough curve 
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Fig. 1(b) Experimental humidity ratio distributions w, with dimension
less flow length x* and measuring time as parameter; the interpolating 
curves are identical in width and shape 

tematic sequence from mf = 0.013 to 0.028 ± 2.5 percent kg/ 
s. Each experiment has the same pair of matrix-initial and air-
inlet conditions, (tffi = 29.6 ± 0.8°C, w/fi = 0.0141 ± 0.0006 
kg/kg, Wd0 = 0.228 ± 0.005 kg/kg) and\tfa = 67.1 ± 0.2°C, 
wA2 = 0.0157 ± 0.0004 kg/kg, Wd>1 = 0.047 ± 0.001 kg/ 
kg), respectively. For these conditions, the thermal and mass 
transfer waves are fully separated, and the experimental in
termediate state properties are (jy, = 37.1 ± 0.3°C, wAl = 
0.0227 ± 0.0004 kg/kg, WdA = 0.233 ± 0.005 kg/kg). The 
Reynolds number Re based upon the fluid inlet state properties 
ranges from 140 to 425 for these experiments, providing a 
passage flow well in the laminar regime. 

The experimental results are presented as graphs showing 
the air stream outlet conditions, i.e., temperature and humidity 
ratio, versus the dimensionless flow length x+ defined for each 
of the experiments as 

(7) 
ZXRe 

This dimensionless flow length or Graetz variable x* ranges 
from 0.23 to 0.70 with steps of 0.05 for the alternate experi
ments. Equations (4) and (7) indicate that T and x+ are inversely 
proportional to mf, and thus x+ is proportional to r. The 
constant pattern condition allows the measured fluid outlet 
property responses with time to be interpreted as the temporal 
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Fig. 2(b) Shifted experimental humidity ratio distributions 

distributions with position in the flow direction. The analysis 
presented here focuses on the mass transfer wave of the de-
sorption experiments because the property distributions as
sociated with this wave are constant-pattern waves and 
experimentally well defined. 

Figures \{a, b) show the experimental air-stream outlet con
ditions for each of the 14 x+ values with the real measuring 
time 6 as parameter. The conditions on the left of Figs. l(a, 
b) are those of the inlet state (tfi2, wyi2), and the conditions on 
the right are the intermediate state properties (tftl, wA\). Using 
least-square curve fitting techniques with cubic splines and 
variable knots, the experimental distributions for the six values 
of the sampling time 6 in Figs. l(a, b) can be shifted to the 
left over a distance x0 proportional to 6 to overlap with a single 
distribution curve. This shift is linear with the wave speed S, 
and can be determined from the experimental distributions in 
Fig. 1 with high accuracy. The shifted experimental distribu
tions are shown in Figs. 2(«, b) and are centered about the 
point of maximum slope of the curves. The rms scatter of the 
experimental data about this "best fit" is 0.34°C for temper
ature and 0.00012 kg/kg for humidity. These values are of the 
order of the accuracy of the measurements, and therefore show 
that the distributions satisfy the constant-pattern condition. 

The time variable r in equations (5) is proportional to x+ 

and these equations can thus be integrated with respect to x+, 
with Le as a parameter. The results of this integration with a 
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Fig. 3(a) Shifted experimental temperature distributions of Fig. 2(a) in 
comparison with theoretical breakthrough curves and Le as parameter 
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Fig. 3(b) Shifted experimental water vapor mass fraction distributions 
derived from Fig. 2(b) in comparison with theoretical breakthrough curves 
and Le as parameter 

fourth-order Runga-Kutta scheme are shown in Figs. 3(a, b) 
in comparison with the experimental data of Figs. 2(a, b). 

The alternate curves in Figs. 3(«, b) illustrate that the Lewis 
number acts as a skewness parameter for the distributions, 
whereas the Nusselt number is rather a scale parameter as 
indicated by equation (9). As a result, it is difficult to extract 
Le from the experimental results with high accuracy. For the 
branch connecting the distribution curves with the inlet state, 
the scatter of the data is larger than the variation caused by 
varying Lewis numbers, and no conclusion with respect to the 
magnitude of this parameter can be made. However, for the 
opposite branch, connecting the curves with the intermediate 
state, the scatter of the experimental data is confined within 
a range corresponding to Le = 3. .7 for both temperature and 
humidity. 

The close agreement of the theoretical curves with the ex
perimental breakthrough curves in Figs. 3(a, b) validate the 
model based upon overall heat and mass transfer coefficients. 
A Lewis number greater than unity implies that the mass trans
fer resistance is predominantly determined by the interparticle 
transient diffusion process. However, the time scale of the 
overall transient exchange process is about 600 s, which is much 
larger than the time constant of the interparticle diffusion 
process, which is ± 100 s. For these conditions the latter 
process can be described by a linear transfer rate equation, 

and the overall transfer rates can thus be modeled with overall 
transfer coefficients. 

The large uncertainty level of the Lewis number is mainly 
due to the scatter of the experimental data points about average 
values. This scatter is not as much due to inaccuracies of the 
model or measurement inaccuracies as it is to the limit with 
which the initial conditions of the desorption experiments were 
repeatable with the experimental facility. 

4 Discussion 

Experimental Procedure and Analysis Technique. The 
principle of the analysis technique is based upon the trans
formation of the model partial differential equations into a 
set of ordinary differential equations for the constant-pattern 
condition of the desorption wave. The transformation is de
fined by equation (4). The nature of r can be shown by relating 
T and 6 in terms of dimensionless groups. Inserting equation 
(4) into equation (3) gives 

AT = 
hA 

cppMd 
(SAG) (8) 

where A0 measures the elapsed real measuring time at a spec
ified location within the flow channel, e.g., the exit face of 
the matrix. Using the conventional definition expressions for 
the Nusselt number Nu and the transfer area A in terms of Dh 

and the thermal diffusivity of the fluid stream, af (Kays and 
London, 1984), equation (8) can be written as 

AT = Nu 
Mf 4«y 
M.Dl 

SA6 (9) 

Nu is a parameter depending upon the geometry of the flow 
passage. Due to the high thermal conductivity of the solid 
phase, the heat transfer resistance of the desiccant particles is 
negligible compared to the convective resistance in the fluid 
stream. The overall Nusselt number is thus approximately the 
fluid-side Nusselt number. 

All other parameters appearing in the conversion formula 
(9) can be experimentally determined. The transformation 
technique requires then the following sequence of experiments. 

1 Pressure Drop Experiments. The presence of granular 
desiccant particles with irregular shape and nonuniform di
mensions affects the flow geometry of compact dehumidifiers 
in such a manner that often this geometry cannot be directly 
measured or computed. A series of pressure drop experiments 
should be performed to determine the hydraulic diameter Dh, 
flow area, transfer area, and porosity of the passages. 

2 Sorption Experiments With Varying Matrix-Initial and 
Fluid-Inlet States. The adhesion of the desiccant particles to 
the surface of the wall passages may render part of the desiccant 
mass inactive. A series of dynamic, single-blow adsorption and 
desorption experiments should be performed to determine the 
active mass of desiccant Md within the test matrix. The overall 
mass balance requires an accurate expression for the isotherm 
correlation, which should be established preferably by static 
sorption experiments. 

3 Dynamic Sorption Experiments With Varying Mass Flow 
Rate. A series of repeated desorption experiments should be 
performed with identical matrix-initial and fluid-inlet condi
tions, and varying process air-mass flow rates. The choice of 
the fluid-inlet and matrix-initial conditions is determined by a 
compromise between the operating range of the experimental 
facility, the pattern type of the breakthrough wave, and the 
strength of the outlet response. The accuracy of the analysis 
of the experimental data increases with the magnitude of the 
swing in outlet conditions. The range of inlet and initial con
ditions that produce constant-pattern waves can easily be de
termined by the equilibrium theory for equations (1) (e.g., Van 
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den Bulck et al., 1985). The inverses of the sequential mass 
flow rates should be chosen to form an arithmetic series of 
numbers because the dimensionless flow length x+ or T is 
inversely proportional to the mass flow rate. 

The wave speed S appearing in equation (9) is a semither-
modynamic property of the fluid and matrix system, depend
ent upon the matrix-initial and fluid-inlet conditions. The con
servation equations in equations (5) can be readily integrated 
because S is constant. Along the continuous-property distri
butions of the wave, the condition for constant pattern trans
lates as 

(Wf~Wf.l) _ (W/,2~Wf) = (W / ,2-W/,l) 
(Wd- Wdil) (Wd>2- Wd) (Wdil- Wdtl) 

(fr-'/.i) = (fo-fr) = C/.2-'/.i) = s (10) 
Um~Im,\) (Im,2~Im) Um,l~ Im,\) 

where the subscripts 1 and 2 refer to the conditions at the start 
and finish of the wave, respectively. For the first (thermal) 
wave, 1 is the matrix initial state and 2 is the intermediate 
state. For the second (mass transfer) wave, 1 is the intermediate 
state and 2 is the fluid stream inlet state. Although equation 
(10) could be used to compute S from experimental data, S is 
usually obtained from equation (2). dx/dd is the physical wave 
speed in real-time coordinates. This wave speed can be obtained 
directly with high accuracy from the series of dynamic sorption 
experiments with constant matrix-initial and fluid-inlet states 
and varying fluid mass flow rate. Equation (10) should rather 
be used as a check on the accuracy of the thermodynamic 
property relationships and measurements. 

Design Criteria for Experimental Facilities. The design cri
teria for the experimental facility for isothermal or adiabatic 
mass transfer are different from those for heat transfer alone 
in the following ways: 

1 Of utmost importance is the repeatability of the exper
imental facility for mass transfer. Repeatability creates the 
possibility of repeated experiments with identical inlet and 
initial conditions, and varying process air-mass flow rates. 
Such a series of experiments is necessary for the analysis tech
nique paired with the experimental procedure, because the 
wave speed S and the shifted distributions are determined di
rectly from the experimental data. The sample analysis shows 
that a high-quality experimental apparatus is needed to predict 
third-order parameters, such as the Lewis number. 

2 The squareness of the step change in inlet conditions is 
less important, because the effect of the inlet step disappears 
when the wave becomes fully developed. The change of inlet 
conditions with time is determined by the temperature and 
humidity controllers of the experimental facility. The constant 
pattern behavior allows the specification requirements for the 
controllers to be less stringent, and therefore the controllers 
to be less expensive. 

5 Conclusion 
The conventional single-blow analysis techniques for com

pact heat exchangers are reviewed and their limitations for 
compact heat and mass exchangers are indicated. An alter
native single-blow technique for compact dehumidifiers is pre
sented. The governing partial differential equations are reduced 
to a set of ordinary differential equations by a coordinate 
transformation. This transformation is based upon the con
stant-pattern condition, which occurs for selected test condi
tions with desiccant matrices with nonlinear equilibrium 
isotherms. The core geometry and effective desiccant capacity 
of the test matrix are needed to perform the transformation. 
These specifications can be experimentally determined from 

conventional pressure drop experiments and dynamic or static 
sorption experiments. 

There are two parameters that determine the width and shape 
of the temperature and humidity ratio distributions with a 
dimensionless time coordinate T. These parameters are the 
passage Nusselt number and the overall Lewis number. The 
Nusselt number can be estimated for the core geometry of the 
matrix with conventional heat transfer tools, and the overall 
Lewis number can be determined from a curve matching tech
nique applied to experimental distributions. These distribu
tions need to be obtained from a sequence of dynamic sorption 
experiments with identical initial and inlet conditions, and 
varying mass flow rates. Repeatability is crucial to achieve 
accuracy in estimating the Lewis number. 

This single-blow technique is easy to perform. The step in 
inlet conditions does not need to be "near" square. The com
putations involved are minimal. 
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The Coupling of Conduction With 
Forced Convection in Graetz 
Problems 
This paper presents an analytical solution of the energy equation for a coupled con
duction-forced convection heat transfer problem in ducts. In order to compare the 
thermal field in plane and circular ducts, the solution is obtained in a form describ
ing both flows. The method is based on an asymptotic expansion of the Laplace 
transform of the temperature and on an application of the stationary-phase method; 
it enabled us to write the solution, for any value of the coupling parameter p, in 
terms of confluent hypergeometric functions. Some simple and accurate expressions 
of the interface temperature, temperature at the axis, bulk temperature, and Nusselt 
number are given for small and high values of p. The accuracy of the results is 
proved by a comparison with those obtained through an expansion in terms of 120 
eigenfunctions. 

1 Introduction 
Laminar fluid flow and forced convection heat transfer in 

plane or circular ducts are important in a large variety of 
engineering applications, such as heat exchangers and solar 
collectors. This problem has been solved either with conven
tional boundary conditions, in which the temperature or the 
heat flux is prescribed at the solid-fluid interface, or with con
jugate boundary conditions treating the solid wall and the 
fluid as an integral system and specifying that both the 
temperature and the heat flux be continuous at the interface. 

The analysis of the thermal field, either in conventional 
problems or in conjugated ones, was essentially performed by 
means of the eigenf unction method. 

This method works very well far from the entrance region, 
when a few terms of the expansion are sufficient to give good 
accuracy, but many terms are necessary to describe the inlet 
region. In fact Shah and London (1978) utilized 120 terms to 
obtain an accurate solution at a nondimensional abscissa 
(referred to the hydraulic diameter of the duct) of 10"3 times 
Peclet number. Since in many heat transfer problems the 
Peclet number is greater than 104, we consider useful an 
analytical simple solution that describes the temperature field 
in the entrance of a duct. 

The work up to 1976 was reviewed by Shah and London 
(1978). Among those papers concerning the coupling of con
duction with forced convection in circular ducts are the 
following. Luikov et al. (1971) gave the exact solution reduc
ing the problem, by the generalized Fourier sine transforma
tion, to a singular integral equation for the unknown 
temperature at the fluid-solid interface. The solution is 
presented in terms of complicated functions involving definite 
integrals and series. This solution, without numerical results, 
is too complex to permit a comparison with the conventional 
problem. 

Mori et al. (1974) investigated, by using the eigenfunction 
method, the effects on the Nusselt number of the boundary 
conditions (constant temperature or constant heat flux) at the 
outer wall. 

Many authors employed the eigenfunction method to study 
the finite wall thermal resistance case, neglecting the solid ax
ial conduction. Hsu (1971) tabulated the first ten eigenvalues 
and gave implicit asymptotic formulas to determine higher 
eigenvalues; the next 110 values were calculated by Shah and 
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London. The literature presents some interesting papers after 
the Shah and London review. Wijeysundera (1986) developed 
an analytical method to solve the conjugated problem using 
Duhamel's superposition technique, also giving a simple pro
cedure for the determination of the eigenvalues of the solu
tion. For the conjugated problem, Barozzi and Pagliarini 
(1984) used an iterative technique based on Duhamel's super
position technique. They solved the energy equation in the 
solid by a finite element method, and compared their results 
with experimental values. 

The present solution is obtained by means of an asymptotic 
expansion of the Laplace transform of the temperature. This 
technique has been employed successfully by Pozzi and Lupo 
(1988) for the plane duct. 

2 Equations and Boundary Conditions 
The equations governing the steady conjugate heat transfer 

problem in a duct may be written in a form that is valid either 
for plane or circular ducts. 

Figure 1 gives a schematic description of the problem. In 
this figure h represents the half-height of the duct in the plane 
case and the radius of the duct in the circular case and b is the 
thickness of the wall. The velocity at the inlet is assumed to 
have a fully developed profile with maximum value equal to 
Mmax. Fluid is assumed to enter the duct with a uniform 
temperature Tt and Tb is the constant outer wall temperature. 

The temperature field is governed by the energy equations 
for both the fluid and the wall and the boundary conditions at 

y 
. t 

Tb =cons t 

cu, S /• f < . / / / / J yf; 

T„(x ' ) 

u = u ( y ' ) 

max 
\L ^ 

x ' 
Fig. 1 Schematic diagram of the duct and coordinate system 
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the interface require that both the temperature and the heat 
flux be continuous. 

In order to determine the temperature Tso in the solid we 
neglect the axial conduction. Such an approximation is ac
ceptable when b/hPe< < 1, where Pe is the Peclet number of 
the fluid flow. Similar conditions were given by Davis and Gill 
(1970) and Wijeysundera (1986) for different boundary condi
tions. Then the temperature Ts0 is given by TS0 = T„ + 
[Tb-T„](y'-h)/b in the plate channel, and by TS0 = T„ + 
[Tb — Tw]ln(y'/h)/\n(l + b/h) in the circular duct, where T„ is 
the unknown temperature at the interface. 

For high Peclet numbers the energy equation for fluid phase 
in a nondimensional form may be written as 

(i-y*)&,x=(y0,y),y/y (i) 

where & = ( T - T,•) / (Tb - T,•), and n = 0 for the plate channel 
and n=\ for the circular duct. The reference lengths for x' 
and y' are ftPe and h, respectively, where the Peclet number 
Pe is defined as umaxhpcp/\f, with p, cp, and \y, being, respec
tively, density, specific heat at constant pressure, and thermal 
conductivity of the fluid. 

The heat flux continuity condition may be written as 

0w-l=-p&,y(x,l) (2) 

where &„ = d(x, 1) and the coupling parameter p is given by 

p = \fb/\h; p = (A/A,) ln(l + b/h) (3) 

for the plate channel and for the circular duct, respectively, 
where As is the wall thermal conductivity. Physically the 
coupling parameter represents the ratio of wall to fluid 
resistance to conduction heat transfer. As p—0 the thermal 
boundary condition approaches an isothermal condition, 
while as p—°o, the boundary condition approaches an 
adiabatic condition. 

The remaining boundary conditions for equation (1) are 

d(0,y)=#,y(x,0) = 0 (4) 

Equation (1) may be solved by means of Laplace transform 
technique. Let F(t, y) be the Laplace transform of d. From 
equations (1), (2), and (4) one has 

2->F=n (5) 

(6) 

(ynF,y),y/y"-t(l-y2)F=0 

F,y(t,0) = 0; F(t,l)-l/t=~pF,y(t,l) 

The solution of this problem is 

F(t,y) =exp[(l -y2)is/2]Ml(t,y)F(t, 1)/M, (t, 1) 

FU,\) = Mi(t,l)/tKl-isp)Ml(.t,l) 

+ 2isp(a„/bn)M2(t,l)] 

(7) 

(8) 

where s = tul, and F(t, 1) is the Laplace transform of the 
temperature at the interface with a0 = (1 - is)/'4, b0 = l/2 (plate 
channel) and ax =(2-is)/4, b{ = l (circular duct), and 

Mi(t,y)=M[an,b„,isy2]; 

M2(t,y)=M[a„ + l,b„ + l,isy2] (9) 

M(a, b, x) is the confluent hypergeometric function 
(Abramowitz and Stegun, 1968). 

3 Solution for Small Values of x 

It is not possible to obtain the inverse Laplace transforms of 
equations (7) and (8) in terms of elementary functions. In 
order to determine the solution of the problem holding for 
small values of x we consider the asymptotic behavior of the 
confluent hypergeometric function M. By using an integral 
representation of M (Abramowitz and Stegun, 1968) one has 
Ml(t,y) = (T(bn)/T(an)T(b„~a„))I, where 

/ = j exp[isy2r + («„ - l)logr+ (b„-an - l)log(l -r)}dr (10) 

A similar formula holds for M2. The solution for small 
values of x requires an asymptotic representation of M{ and 
M2: Such a representation may be found by means of the 
stationary-phase method (Bender and Orsag, 1978). This 
technique enables one to evaluate an integral of the form (10). 

3.1 Interface Temperature, Bulk Temperature, and 
Nusselt Number. In order to obtain an asymptotic represen
tation of the Laplace transform of the temperature at the in
terface, given by equation (8), we need to evaluate, for high 
values of s, the integral 

f G(r)eis^dr (11) 

where / ( / • ) = / • - ( l / 4 ) l o g r + ( l / 4 ) l o g ( l - r ) and G(r) = 
[ / • ( l - r ) ] - < 3 - " > / 4 f o r M , a n d G ( r) = 
/.<i+n)/4(i_r)-(3+n)/4 f o r Mii A s / ' ( O = 0 and/2*>(/-) = 
0 (k= 1, 2, . . . ) for r = 1/2 we consider/(/•) given by a Taylor 
expansion of initial point 1/2. 

In these approximations, indefinite integrals of type 

4 = f-ooS*e-'* d% appear. To calculate IK the steepest-descent 
method is used (Bender and Orsag, 1978): It results in 
IK = (2/3)T[(k+l)/3]Lk, where Lk = cos[{k+ 1)TT/6] for k 
even and Lk= -;'sin[(A:+ l)7r/6] for k odd. Then from equa
tion (8) one has for the Laplace transform of the temperature 
at the interface the following expression: 

F(t,l) = Pm(T)/tQm(T) (12) 

where r = t~m and Pm and Qm are two real polynomials given 

Ac 

b 
CP 

Dh 

Dp 
F 

h 

Nu 

P 

= flow cross-sectional area 
= wall thickness 
= specific heat at constant 

fluid pressure 
= hydraulic diameter of the 

duct 
= cylinder parabolic function 
= Laplace transform of 

dimensionless temperature 
= half-height or radius of the 

duct 
= local Nusselt number 

= qwDh/\f(T„-Tm) 
= coupling parameter, equa

tions (3a) and (3b) 

Pe 

T, 
T 
* so 

"max 
X 

x',y' 
X 
X 

y 

z 

r 

= Peclet number 
= Um^hpCp/\f 

= heat flux at interface 
= outer wall temperature 
= fluid temperature at inlet 
= temperature in the solid 
= maximum velocity of fluid 
= x'/hPe = dimensionless ax

ial coordinate 
= dimensional coordinates 
= ("max h1/umD\)X 

= ("max/Mm)* 
= y' /h = dimensionless nor

mal coordinate 
= p3/a\x 
= gamma function 

d = 

A, A = 
'*/» s 

Subscripts 

m — 
n = 

w = 

' = 

dimensionless 
temperature = (T— Tt) / 
(Tb-T,) 
fluid and wall thermal 
conductivities 

mean or bulk 
index denoting plane 
(n = 0) or circular case 
(«=1) 
refers to solid-fluid 
interface 
partial derivative 
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Table 1 Coefficients of Pm and Qm defined in equation (12) Table 2 Comparion of Nu with the results of Shah and Lon-

n a0 «2 a3 TO 7i 72 73 

1.0887 0.0321 0.1446 
1.0887 0.1571 0.0629 

-0.1089 
-0.6532 

0.1140 
-0.1521 

-0.0266 
-0.1907 

by Pm = E akT
k and Qm = E Pkr

k, with /3 t = ak +pyk. The 
k=0 k=0 

coefficients ak and yk are given in Table 1 up to m = 4 for both 
the plane and the circular case. 

The accuracy of this expansion has been extensively in
vestigated, for the plane case, by Pozzi and Lupo (1988), 
where equation (12) has been compared with the exact equa
tion (8) in a wide range of the Laplace variable t for several 
values of p and m. Also in the circular case this expansion 
gives accurate results. 

In order to find the inverse transform of F(t, 1), equation 
(12) must be rearranged. Let -rmk be the m roots of the 
polynomial Qm. Then equation (12) becomes 

F(t,l) = (l/t^)J^Amk/(.T + Tmk) 

As l/(r + Tmk) = ( T 2 - T m k r + T2
mk)/(r

3 +r3
mk) one has 

(13) 

-4/3 /{T+T„ = tn2.t-Ul (r2
mkt — T,„ltt 

,+t-[)/rik(T-l + t) 

(14) 

The inverse transform of this function is 

Hk(x) = 1 +exp( -* /T^) [3x 1 / 3 M(l /3 , 4/3, x/Tlk)/rmkT(\/3) 
-{3/2)x2/iM((2/3,5/3,x/Tik)/T

2
mkT(2/3)-i] (15) 

Then from equation (13) one has 

in 

K=Y,AmkHk(x) (16) 

don 

lx lO" 4 

6 x l 0 " 4 

l x l0~ 3 

6 x l 0 - 3 

lx lO" 2 

4 x l 0 " 2 

p = 0.l 

Present 
research 

Shah 
and 

London 

p = 0.5 

' Present 
research 

25.573 
13.472 
11.231 
6.108 
5.240 
3.976 

25.176 
13.453 
11.227 
6.106 
5.236 
3.913 

26.823 
14.430 
12.099 
6.674 
5.729 
4.265 

Shah 
and 

London 
26.437 
14.415 
12.096 
6.673 
5.727 
4.222 

Fig. 2 Interface temperature for the plane (dashed curves) and for the 
circular case (solid curves) versus x for p = 0.01, 0.1, and 1 

The bulk temperature Tm, defined as Tm ={\/Acum)\A uTdA, 
in dimensionless form is 

dm(x) = (Tm-Ti)/(Tb-Ti) 

= ("max/"m) 2" JQ y"(\ - y2)d (x, y)dy 

where um is the mean velocity of fluid (umax/um =3 /2 for the 
plane case and umm/um = 2 for the circular one), and by using 
equations (1) and (2) it may be written as 

*m («) = <«m«/«m) <2"/p) J ' [1 - K (*)]dX (17) 

Talcing into account equation (16) one obtains for equation 
(17) the following expression: 

[ /it 
x~ T,AmkSk(x) 

k = 0 

(18) 

where 

Sk(x)=x+T3
mk [exp( - X/TI* ) - 1 ] + 

R(l/3, \/r)nk, x) 

*wr( i /3 ) 

J?(2/3, l/TJk,x) 

r2
mkr(2/3) 

(19) 

and 

R(a, b,x) = (xa/ab)[\-txx>(-bx) M(a, a+l, bx)] (20) 

The local Nusselt number Nu(x) = qwDh/\f( T„ - Tm), Dh be
ing the hydraulic diameter of the duct, is given by 

Nu&r) = ( A / A ) n M * . l ) / [ « M * ) - * « ( * ) ! (21) 

where (Dh/h)0 = 4 and (Dh/h)1 = 2, and &,y (x, 1) is given by 
equation (2). 

The accuracy of equations (16) and (18) is shown in Table 2 
where the Nusselt number, calculated from these equations, is 
compared with the values calculated by using 120 terms of an 
expansion in eigenfunctions (Shah and London, 1978), for 
p = 0.\ and p = 0.5. This table shows that in the range 
1 0 _ 3 < ^ < 1 0 " 2 the two methods give nearly the same values 
with a percent difference less than 0.1. For higher values of x 
the convergence of the eigenfunction method improves and a 
few terms of this expanion are sufficient to obtain the Nusselt 
number with high accuracy. On the contrary for x< 10_ 3 the 
values of the Nusselt number calculated through equations 
(16) and (18) are more accurate than those of the eigenfunc
tion method whose convergence becomes very slow. The 
dimensionless axial abscissa x is that defined by Shah and 
London (1978) and it is x= (.uSa3Xh2/umD2

h)nx (i.e., x= (3/32)x 
in the plane case and x=x/2 in the circular one). It has been 
verified that the accuracy of the Nusselt number found by us
ing equations (16) and (18) is always the same for each value of 
p listed by Shah and London (1978). In particular for values of 
p smaller than or equal to 0.1 and higher than or equal to 1 we 
shall give, in the following sections, simplified representations 
of equations (16) and (18). 

In order to compare the thermal field of the plane duct with 
the circular one we consider &w, dm, and Nu, calculated by 
mean of equations (16), (18), and (21): d„ is drawn, for 
several values of p, in Fig. 2, versus x for the plane (dashed 
curves) and the circular case (solid curves). This figure shows 
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rn 

.005 

0 

P = l 

/ 
1 

p=0.01 II 

p=0 .1 / / 

100 

10 

Fig. 3 tim for the plane (dashed curves) and for the circular case (solid 
curves) versus x for p = 0.01, 0.1 and 1 Fig. 4 Nu* for the plane (dashed curves) and for the circular case (solid 

curves) versus x for p = 0, 0.01, and 1 

that the curves of dw for the plane and the circular case are 
coincident up to x = 10~3. Therefore in this range of x the in
terface temperature, for any value of p, is the same if the 
velocity profiles have equal maximum velocities (in fact the 
Peclet number has been defined as ummfipcp/\f). This 
behavior can be deduced from equation (12) which, written up 
to the first term, gives 

F(t, l) = alr
m/\p + alt-

m+pylt-
m] (22) 

Since the coefficient â  is the same for the plane and circular 
case, and the third term is negligible with respect to the first 
two for high values of t (i.e., when x— 0) for any value of p, 
equation (22) shows that in the entrance region the interface 
temperature does not depend on the geometry if «max assumes 
the same value for plane and circular ducts. Since the suc
cessive terms of the asymptotic expansion of F( t, 1) are dif
ferent in the two cases, for x greater than 10"3 the curves of 
#„, for the two geometries separate, as one can see in Fig. 2. 
Conversely the interface temperature for the two geometries is 
no longer the same if the velocity profiles have equal mean 
velocities (in fact the reference length for x is umh2pcp/\f). 
Moreover we have that tfw — 1 as x—oo for the temperature 
boundary condition. 8m and Nu are different in circular and 
plane ducts. However, letting #*, (x) = (um/2"umm)&m (x) 
and Nu*(x) = (h/Dh)„dy(x, \)/{dw(x)-§*m(*)], it is possi
ble to have two functions that do not depend on the geometry 
in the entrance region, as it is shown in Figs. 3 and 4 where &„ 
and Nu* are drawn versus x both for the plane (dashed curves) 
and the circular case (solid curves) for several values of p. 

3.2 dw, &m, and Nu for Small Values of p. In this section 
we shall give some simple and accurate expressions of the in
terface temperature &w, of the bulk temperature dm and of the 
local Nusselt number, which are valid, in the entrance region 
of the duct, for small values of the coupling parameter p. By 
using the asymptotic representation of M, equations (16) and 
(18) may be written, for p<,0.01, as 

t?lv=(a1/)31)[l-Z1/3/r(2/3) + z2/3/r(l/3) 

-z4/3/3r(2/3) + z5/32/3r(l/3)] (23) 

and 

K = («»«/««) W/P)x\l — % - [1 -z1/33/2r(2/3) 
*- M l 

+ z2 / 33/r(l/3)-z + z4/3/r(2/3)-z5/3/r(l/3)]j (24) 

Table 3 Comparison between &„ and &,„ obtained from 
equations (16) and (23) and equations (18) and (24), respec
tively;/? =0.01 

X 

l x l O " 6 

l x l O - 5 

I x l O " 4 

l x l O - 3 

5 x l 0 ~ 3 

(16) 

0.6307 
0.7944 
0.8980 
0.9537 
0.9752 

(23) 

0.6446 
0.7945 
0.8979 
0.9536 
0.9749 

(18) 

3.633E-4 
2.193E-3 
1.163E-2 
5.591E-2 
1.580E-1 

(24) 

3.735E-4 
2.194E-3 
1.164E-2 
5.601E-2 
1.591E-1 

where 

z=p'i/a\x (25) 

The accuracy of these representations of dw and &m appears 
from Table 3 where the values obtained from equations (23) 
and (24) are compared respectively with those obtained from 
equations (16) and (18), for p = 0.01 in the circular case. For 
p = 0.01 equations (23) and (24) gives a percent error less than 
0.1 in the range 10~5 <x< 10~3, for x<10~5 the precision 
provided by these equations decreases because the variable z 
(equation (25)) is not small in spite of small p. However the 
lower limit of the range of validity of equations (23) and (24) 
decreases for p decreasing and for p = 0.001 it is equal to 
^=10"6 at least. 

Equations (23) and (24) enable us to calculate the Nusselt 
number. The previous considerations about the range of 
validity are applicable in the same way. 

The limit of the equations (23) and (24) for vanishing p 
enables us to obtain the representation of the dimensionless 
wall heat flux d,y (x, 1), t?m and Nu holding in the isothermal 
case (p-Q). In fact from equation (23) one has 

r x-m 

lim *,,(*, 1)= \im(l-dw)/p= — — 

and from equation (24) it is 

- + 7i /o (26) 

linn?m = («n 
p-0 

Jum) 2' "x\-
(3/2)*-

r(2/3) 
- + 7i / a , (27) 

so that from equation (21) one obtains 

Nu= [1.2326(*)-1/3 -0.4]/[l -9.8604(x)2/3 +2.1333i] (28) 

in the plane case, and 
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N U = [ 1 . 0 7 6 7 ( J C ) - 1.2]/[l-6.4604(*)2 / 3+4.8x] (29) 

in the circular case. 
In Table 4 the values of Nu obtained from equation (29) are 

compared with the values, accurate at least up to the third 
decimal place, given by Shah and London (1978) calculated 
through the extended Leveque solution for x< 10 - 4 and the 
usual expansion in eigenfunctions with 120 terms for x> 10~4. 
In this table, the values of Nu obtained from the following 
simplified design formula (Shah and London, 1978) are also 
shown: 

Nu =1.077 (x)- -0.7 

Equation (30) is valid for x<0.01 . Table 6 indicates that equa
tion (29) provides values of Nu very close to the exact ones 
given by Shah and London (1978), with a percent error less 
than 0.5 up to x= 10~3. Although equation (29) is just a little 
more complicated than equation (30), it is much more accurate 
than the latter in the whole range of x considered in Table 4. 

3.3 &w, &m, and Nu for High Values of p. If p > l the 
polynomial Qm defined in equation (12), written as p(\ +e), 

m 
where e = ( l /p) E bkr

k, may be expanded in a Taylor series 
k=i 

and equation (12) becomes 
F ( U ) = P m E ( - « ) f / p f 

The inverse Laplace transform of this function gives the 
following expression for dw: 

a =— Yc *"+*)/3 

w P to0" r«4 + *)/3) 
(31) 

where c0 = a , ; c, = •<*\&\/p\ C2 = all3
2
l/p

2 + a3; c3 = 
] y t j i - i - i j l / p - ) / p ~ a 3 l 3 l / p + a 4 ; c 4 = - a , (183 + |8? /p2)/p 

The bulk temperature &,„ is given by 

1 
#m = ("n x/um)(2"/p)[x-

P hoCk W4 + k)V3)(4 + k)/3\ 

(32) 

Table 5 shows the values of d„ given by equation (31), those 
of dm given by equation (32), and those of the Nusselt number 
obtained from equations (31) and (32) (* column) compared 
respectively with the values of dw given by equation (16), those 
of dm given by equation (18), and those of the Nusselt number 
obtained from equations (16) and (18) (0 column), forp= 1, in 
the circular case. This table shows that equations (31) and (32) 
provide values for d„ and dm with a percent error less than 
0.01 up to x = 0.01. For higher values of p the accuracy of 
equations (31) and (32) is even better. Thus equations (16) and 

Table 4 Nusselt numbers calculated by Shah and London, 
from equations (29) and (30) for the isothermal case 

X 

l x l 0 ~ 6 

l x l O " 5 

l x l O " 4 

l x l O " 3 

l x l O - 2 

Shah and London 

106.538 
48.914 
22.275 
10.130 
4.916 

(29) 

106.538 
48.920 
22.297 
10.176 
5.076 

(30) 

107.000 
49.290 
22.503 
10.070 
4.299 

(18) are very accurate up to x = 0.01 (see Table 2), and equa
tions (31) and (32) may be used with a high accuracy in this 
range of x for/?> 1. 

3.4 Temperature at the Axis of the Duct. From equa
tions (7) and (8) the Laplace transform of the temperature at 
the axis of the duct #(x, 0) may be written as 

F(t,0) = exp[is/2]/t[(,l-isp)Ml(t, l) + 2isp(a„/b„)M2(t, 1)] 

The asymptotic expansion of M2(t, 1) gives 

(30) Mi(.t,l) = 

(T(b„ + l)/T(an + l)T{b„-an))e
ls/2 ^ <V ( l + * ) / 3 

Then the asymptotic representation of the Laplace transfer of 
d(x, 0) is 

F(t, 0) = 51/3T («„ )T(1 - an )/[2/a,r (6„ )/4 / 3gm (r)] (33) 

where ai = - 1.8254/ for the plane case and cr, = - 1.2907; for 
the circular case, and Q,„ (T) is the polynomial defined in Sec
tion 3.1. 

The asymptotic representation of the gamma function in the 
leading term gives 

r ( f l n ) r ( l - f l j=27re- r a / 4 (s /4)<"~ 1 ) / 2 

and therefore equation (33), taking m = 1 (i.e., considering on
ly two terms of the polynomial Qm), may be written as 

F(t, 0) = 2"~17T/<3''-17>/12 exp(-7rt1 / 2/4)/ 

[ l<71 ir(6„)(p + /31r)] (34) 

The inverse transform of equation (34) is 

d(x,0) = (2"-^/\ol\plT(b„)fi)[f2I(i>l,x) 

-fl(v2,x)+l(u3,x)] (35) 

where 

Ik(v,x)=2-'Tr-l/2e~!'x[ eixx-'-m 

X exp[ - (w/4)2/Sx]D2r ( TT/4(2X) i/2)dx (36) 

?=(p//3,)> "f = (5-4 / ) /12for» = 0andy ; = ( 2 - / ) / 3 f o r n = l, 
8 = (1/f)3, and Dv (z) is the parabolic cylinder function. Equa
tion (36) may be greatly simplified if p< 0.01, because in this 
case it is 

Ik (P,X) = 

2-'-K-mb-xx-v-ul exp[-(7r/4)2/8x]D2>,(7r/4(2x)1/2) (37) 

and if x is sufficiently small one has 

Ik (v, x) = 2-6'TT2-- U2b~ 'x-2'- 1/2exp[ - (TT/4)2/4JC] 

In Fig. 5 the curves of §(x, 0) are drawn, both for the plane 
(dashed curves) and the circular case (solid lines), versus x, for 
p = 0.01 and p = 2. This figure and equation (35) show that the 
behavior of the temperature at the axis d (x, 0) is dependent on 
the duct geometry also if we consider the velocity profiles with 
the same maximum velocity. 

Table 5 Comparison among equations (16) and (31), (18) and (32), and the 
Nusselt number obtained from these equations (0 and "columns) forp = 1 

x 
lx lO" 4 

lx lO" 3 

lx lO" 2 

(16) (31) (18) (32) 
Nu 

(0) (*) 
0.0696 
0.1460 
0.2992 

0.0696 
0.1460 
0.2992 

7.580E-4 
7.116E-3 
6.172E-2 

7.580E-4 
7.116E-3 
6.172E-2 

27.040 
12.300 
5.901 

27.040 
12.300 
5.901 
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Fig. 5 Temperature at the axis of the duct lor the plane (dashed curves) 
and for the circular case (solid curves) versus x for p = 0.01 and 2 

4 Concluding Remarks 
This work presents an analytical solution of the energy 

equation, for the problem of coupled laminar convection and 
wall conduction in a pipe, which holds up to values of the 
abscissa such that it is possible to represent the thermal field 
by few terms of the asymptotic solution. 

This solution has been obtained, in terms of confluent 
hypergeometric functions, by means of an asymptotic expan
sion of the temperature Laplace transform (i.e., for high 
values of the Laplace variable) and an application of the 
stationary-phase method. The good accuracy of the results has 
been shown by a comparison with those found by using an ex
pansion in terms of 120 eigenfunctions. Some simple and ac

curate formulas for the interface temperature, the bulk 
temperature, and the Nusselt number have also been presented 
for cases where the coupling parameter assumes small and 
high values. 

The comparison between the thermal field in plane and cir
cular ducts has shown that in the entrance region the interface 
temperature does not depend on the duct geometry, for any 
value of the coupling parameter, if the velocity profiles have 
equal maximum velocities. 
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The Influence of a Horseshoe 
Vortex on Local Convective Heat 
Transfer 
The objective of this research program has been to determine experimentally the ex
tent to which horseshoe vortices modify turbulent convective heat transfer along a 
flat plate downstream of an appendage. The importance of appendage shape on the 
heat transfer behavior was evaluated by taking Stanton-number measurements 
downstream of both a cylindrical body and a streamlined body. The results indicate 
that a region of augmented heat transfer occurs near the centerline downstream of 
both obstacles, with Stanton numbers 10 to 50 percent over the undisturbed values. 
The streamlined cylinder produces the strongest modifications in heat transfer. 

Introduction 

Horseshoe vortices, which are formed at the junction be
tween an appendage and a flat surface, occur naturally within 
turbomachinery and can have a detrimental effect on device 
performance. The vortices can have a strong influence on local 
convective heat transfer characteristics, often leading to 
localized hot spots, which eventually damage turbomachinery. 
Designers of turbomachinery devices need to predict this 
overheating both in the vicinity of the appendage and 
downstream. However, the effects of the trailing legs of a 
horseshoe vortex on heat transfer are not well understood. 

The physical mechanism responsible for the formation of 
the vortex is the adverse pressure gradient present at the 
leading edge of an obstacle. The mean shear within the ap
proaching boundary layer is skewed, or deflected, by the 
transverse pressure gradient. The boundary layer separates 
and rolls up to form a span wise vortex at the leading edge. The 
fluid away from the junction is undisturbed and tends to wrap 
the vortex around the obstacle, resulting in two streamwise 
vortex legs, as shown schematically in Fig. 1. If the vortex legs 
are not destroyed by the wake behind the obstacle, they should 
propagate downstream of the obstacle, forming a counter-
rotating vortex pair that remains immersed in the boundary 
layer. The fate of the vortex legs downstream of the obstacle is 
currently not clear due to a lack of sufficient experimental 
data. 

Previous experimental research has illuminated the general 
characteristics of horseshoe-vortex systems. Flow visualiza
tion studies have been performed, primarily focusing on the 
leading edge of an obstacle, in an effort to understand the for
mation process. Schwind (1952), Peake and Galway (1965), 
and Peak et al. (1965) demonstrated that the flow is unsteady 
and cyclic in the leading edge region under laminar boundary 
layer conditions. For high-Reynolds-number turbulent 
boundary layers, Peake and Tobak (1980) state that the 
leading edge is likely to be steady. Belik (1973) found that the 
turbulent flow separation region can be characterized by the 
Reynolds number based on boundary layer thickness. Baker 
studied the separation region of both laminar (Baker, 1979) 
and turbulent boundary layers (Baker, 1980) in detail, and 
postulated that four counterrotating vortices are formed. 
Goldstein and Kami (1984) present a model of the flow 
around a cylinder based on their observations of local mass 
transfer in the separation region. They postulate that a large 
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vortex with a diameter roughly equal to the boundary layer 
thickness is present, as well as smaller, more vigorous vortices. 

Several experimental investigations have shown that the 
mean velocity profiles of the flow downstream of an obstacle 
depend on the characteristics of the obstacle generating the 
horseshoe-vortex system. Sepri (1973) demonstrated that wing 
incidence has an effect on the relative sizes of the trailing 
vortex legs. Transverse velocity profiles were made by Love 
(1963) behind circular cylinders, circular arc profiles, and 
elliptic profiles, demonstrating the dependence of the 
downstream flow on obstacle shape. The influence of wing in
cidence, wing thickness, and boundary layer thickness on the 
downstream velocity field was investigated by Chu and Young 
(1975), Barber (1978), and Dickinsen (1984). 

The convective heat transfer downstream of an obstacle 
should depend on the complex interactions of both the 
horseshoe-vortex trailing legs and the wake with the thermal 
boundary layer. The horseshoe-vortex legs can potentially 
both increase and decrease local convective heat transfer coef
ficients along a flat plate. The gross motion of the vortices 
sweeps cooler fluid from the outer regions of the thermal 
boundary layer toward the wall in some areas, locally increas
ing the heat transfer. By contrast, in regions where the sec
ondary flow is away from the wall, the thermal boundary layer 
is thickened, resulting in lower heat transfer. In addition to 
this mixing mechanism, the horseshoe vortex may alter the 
structure of the turbulence within the boundary layer, which 
may enhance or lessen heat transfer. 

The wake of the obstacle should tend to augment convec
tion as well, except possibly in a stagnant recirculating region. 

Fig. 1 Schematic of a horseshoe vortex 
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The wake will increase levels of turbulence and mixing, and in
troduce periodic unsteady motions in the free-stream fluid due 
to the Karman shedding. 

Based on previous investigations, the parameters that 
should influence convective heat transfer by altering the trail
ing vortex legs and the behavior of the wake would include the 
approach-boundary-layer characteristics, the Reynolds 
number, and the obstacle geometry. 

Objective 

The objective of this study has been to determine ex
perimentally the extent to which a horseshoe-vortex system 
modifies turbulent convective heat transfer downstream of 
two different appendage shapes: a circular cylinder and a 
tapered cylinder. 

Related Work 

There have been two investigations that provide detailed 
flow measurements for the obstacle configurations used in this 
experiment. Eckerle (1986) obtained aerodynamic 
measurements in the region of a cylindrical appendage at a 
Reynolds number based on diameter of 5.5 x 105 and with the 
boundary-layer-thickness-to-diameter ratio (599/Z)) equal to 
0.13. Detailed surface flow visualization and static-pressure 
measurements, as well as extensive mean-velocity and pressure 
measurements, were made by Pierce, et al. (1985) upstream of, 
around, and in a horseshoe vortex generated by a streamlined 
cylinder normal to a flat plate. The test conditions for this case 
were Re£,= 1.8 x 105 and 599/D = 0.64. Both of these studies 
are restricted to the region of the obstacle and do not il
luminate the fluid-dynamics features downstream of the 
obstacles. 

Previous studies have investigated the role that horseshoe 
vortices play in the heat transfer within turbomachinery. 
Langston (1980) and Sieverding (1985) present fairly detailed 
descriptions of the flow within turbine cascades. The flow is 
complex because the horseshoe vortex that is formed at the 
junction of the turbine blade and the endwall interacts with 
the vortices formed by neighboring blades and with the ex
isting pressure gradient between blades. A number of studies 
have been able to link the heat transfer within a turbine 
cascade to the flow patterns through flow visualization. Blair 
(1974) found that Stanton number increased by a factor of 
three in the leading edge of the turbine blade, and by a factor 
of four under the vortex farther downstream. Graziani et al. 
(1980) found that Stanton number increased by only 50 per
cent under the vortex near the leading edge of the turbine 
blade. Gaugler and Russell (1984) compared their flow 
visualization to the heat transfer results of Hylton et al. (1981) 
and found a correlation between the horseshoe-vortex location 
and peak endwall heat transfer near the vanes' leading edge. 

Local heat and mass-transfer effects of horseshoe vortices 
produced at a cylinder/wall junction have been studied by 
Ireland and Jones (1986) for channel flow and by Goldstein et 
al. (1985) in an external boundary layer. Ireland and Jones 
studied the heat transfer effects of a circular cylinder spanning 
a two-dimensional channel in fully developed duct flow. They 
found that the maximum heat transfer coefficient along the 
channel wall occurs at the stagnation point upstream of the 

cylinder, and a double peak in Nusselt number occurs 
downstream of the cylinder. 

Goldstein et al. (1985) present contours of the ratio of local 
Stanton number to undisturbed Stanton number for circular 
cylinders in a turbulent boundary layer at a Reynolds number 
based on cylinder diameter of 4000. Data are reported for two 
cylinders: a short one, with height on the order of the 
boundary layer thickness and height-to-diameter ratio of one, 
and a tall one, with a height-to-diameter ratio of 12. By means 
of a naphthalene sublimation technique, strongly enhanced 
mass transfer was observed immediately upstream and to the 
sides of both cylinders. Locally, the Stanton number was up to 
4.5 times the undisturbed value at the leading edge. The ex
periments indicated that cylinder height influences the local 
mass transfer distribution in the region downstream of the 
cylinder. A recirculation zone of relatively low mass transfer 
was followed by a reattachment region with higher transfer 
rates. The Stanton number in the reattachment zone was 
higher for the short cylinder. In the downstream area, the 
strong central maximum due to reattachment obscures the 
maxima associated with the two longitudinal vortices of the 
horseshoe vortex system. The overall enhancement of mass 
transfer, averaged over the measurement region, is 1.85 for 
the short cylinder and 1.68 for the tall one. 

A related investigation concerning the influence of vortices 
on heat transfer was made by Eibeck and Eaton (1987). In this 
study, heat transfer and fluid-dynamics measurements were 
made within a turbulent boundary layer containing a single 
longitudinal vortex generated by a half-delta wing. Five dif
ferent vortex cases were studied. Spanwise profiles of Stanton 
number showed local increases as large as 24 percent in addi
tion to local decreases of approximately 14 percent. Vortex 
parameters, such as circulation and location, were measured, 
and the heat transfer effects tended to increase asymptotically 
with increasing circulation. 

Experimental Procedure 

In this experimental study, the influence of horseshoe vor
tices on local convective heat transfer was determined by map
ping the Stanton-number distribution present on a flat plate 
downstream of two different obstacles. A liquid-crystal 
technique was used to measure iso-Stanton-number lines at 
different Reynolds numbers. 

The experiments were conducted in an open-circuit, sub
sonic wind tunnel located in the Fluid Mechanics Research 
Laboratories at UC Berkeley. The wind tunnel consists of a 
centrifugal blower and diffuser, a stagnation chamber 
followed by multiple screens, a contraction section, a test sec
tion, and a discharge duct. The test section is 347 cm long, 
with an 81.3 cm x 81.3 cm square cross section. The boundary 
layer, which develops along the polished wooden floor of the 
test section, is tripped by a 0.1-cm-high, 1-cm-wide phenolic 
strip. Free-stream velocity can be varied between 9 and 25 
m/s. 

Two different flow obstacles were used for the experiments: 
a circular cylinder and a tapered cylinder. The tapered cylinder 
consists of a circular leading edge with two tangential flat sides 
that terminate in a sharp trailing edge. The tapered cylinder is 
19.4 cm long, with the diameter of the circular section iden
tical to that of the cylindrical obstacle, which is 8.3 cm. Both 

CP -
D --

h --

- heat capacity 
= obstacle diameter or max

imum thickness 
= heat transfer coefficient 

Re0 = Reynolds number = UD/v 
St = Stanton number = h/pCp Ux 
U = velocity 

[/„ = free-stream velocity 
X = streamwise distance 

Y = normal distance 
Z = spanwise distance 

599 = boundary-layer thickness 
v = kinematic viscosity 
p = density 
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Fig, 2 Experimental test section 

obstacles span the height of the tunnel and are positioned on 
the centerline, with their leading edge 231 cm downstream of 
the boundary-layer trip. The tapered model was mounted with 
a zero angle of attack. 

Figure 2 is a schematic of the test section, showing the 
reference coordinate system and the location of the obstacles 
and the heat transfer test surface. The origin of the streamwise 
coordinate, i.e., x=0, occurs at the leading edge of the 
obstacle. 

Experiments were conducted for Reynolds numbers based 
on cylinder diameter between 7.7 xlO4 and 1.3 xlO5. Two-
dimensional boundary-layer characteristics were determined 
by making velocity-profile measurements with a pitot probe at 
x = 25 cm with no obstacle in place. Boundary-layer thickness 
at the centerline varied between 5.7 and 6.4 cm over the 
Reynolds-number range. The boundary layer was fully tur
bulent, since the Reynolds number based on momentum 
thickness ranged from 3000 to 9000, the shape factor varied 
between 1.32 to 1.35, and the flat-plate velocity profiles 
matched the familiar law of the wall and law of the wake. 
Assuming the standard growth rate of a turbulent boundary 
layer, 5/x~Re~ln, the thickness at x = 0 was estimated, giv
ing a variation of 5/D from 0.62 to 0.69 at the leading edge of 
the obstacle. 

A slight nonuniformity in the spanwise profile of the 
boundary layer was observed. In the vicinity of Z/D = 0.5, a 
localized momentum deficit was present, with the boundary-
layer thickness roughly 25 percent greater than the rest of the 
boundary layer. This nonuniformity influenced the flat-plate 
heat transfer less than the measurement uncertainty, although 
it seems to have led to a slight asymmetry in the two legs of the 
horseshoe vortex system for the tapered cylinder. 

Local convective heat transfer coefficients were measured 
using liquid crystals and a constant-heat-flux plate. Liquid 
crystals indicate temperature by undergoing a color change at 
a specific event temperature. During this color transition, the 
liquid crystals go through the entire visible spectrum. The 
isotherm displayed by liquid crystals on a constant-heat-flux 
surface corresponds to a line of constant heat transfer coeffi
cient. The heat transfer coefficient can be calculated from the 
wall (i.e., liquid crystal) temperature, the free-stream 
temperature, and the heat flux. 

The constant-heat-flux surface consists of a 0.0051-cm-
thick sheet of type 302, annealed stainless steel attached with 
high-temperature silicone adhesive to a 3.8-cm-thick slab of 
polystyrene. The surface is 51.4 cm wide and 100.3 cm long, 
resulting in a width of 6.2 D and a streamwise development 
length of 12.1 D. A constant heat flux is produced by passing a 

uniform alternating current across the stainless steel via cop
per busbars at the two ends. The resistive heating can be deter
mined by measuring the current passing through the foil and 
the voltage drop across the length of the heated surface. Two-
dimensional calculations indicate that less than 1 percent of 
the heat should escape through the back of the insulating slab. 
Since the foil is very thin, conduction of heat along the surface 
is extremely small except at the edges of the surface, where 
heat is conducted to the unheated surrounding surface. The 
spanwise uniformity of Stanton number for the flat plate 
varied within ± 1 percent. 

The liquid-crystal mixture was airbrushed onto the stainless-
steel foil. Two coats of black paint were first applied to the 
steel to prevent reflections, and then 20 layers of the liquid 
crystals were applied. The liquid crystals produce a single 
color band, or isotherm, along the heated surface at a given 
heat-flux level. To obtain a high resolution of heat transfer 
coefficients, the magnitude of wall heat flux was changed to 
alter the spatial positions of the isotherms. The complete 
spatial distribution of heat transfer coefficients was obtained 
by taking 35-mm photographs of the heat transfer surface at 
multiple wall-heat-flux levels. The Stanton numbers cor
responding to the isotherms were calculated at each heat-flux 
level, and then the images were superimposed to produce a 
final map of Stanton-number distributions. Since physical 
constraints of the wind tunnel made it impossible to take 
photographs directly overhead, the camera was angled at the 
side of the test section. The camera angle and lighting condi
tions remained constant throughout the data-taking process 
for each case. 

The complete color change of liquid crystals occurs over a 
relatively large temperature range, and so the liquid crystals 
were calibrated to match two of the colors in the color band to 
specific temperatures. The calibrator, described by Chao 
(1986), consists of an insulated aluminum plate with a hot 
source and cold sink at the two ends. Embedded ther
mocouples indicate the temperature distribution along the 
plate. The liquid-crystal mixture was applied directly to the 
aluminum plate using the same technique as was used on the 
heated surface. Photographs were taken of the color bands, 
replicating the camera angle and lighting conditions of the ex
periment as closely as possible. Two lines within each color 
band were selected for quantitative measurements: the 
dividing line between orange and green, which was calibrated 
at 31.1 "C, and the dividing line between green and blue, which 
was calibrated at 32.6°C. The calibration procedure indicated 
the liquid crystals' event temperature within an uncertainty of 
±0.2°C. 

The tendency of the event temperature to drift with time 
reduced the reliability of the temperature measurements. Ex
posure to ultraviolet light caused the event temperature to 
drift downward by approximately 1.5°C over a period of 6 
months following the calibration. New event temperatures 
were estimated by matching Stanton-number data obtained in 
a verification test to the original heat transfer data obtained 
under the same conditions. The different sets of data collapsed 
on the verification test case with a maximum discrepancy of 
only 5 percent. 

The uncertainty in the Stanton-number measurements is a 
combination of random experimental errors and the 
systematic errors introduced when correcting for the drift in 
event temperature. The uncertainty in the magnitude of the 
Stanton number accounting for both of these effects was 
estimated to be 8 percent. However, the uncertainty in com
paring relative enhancement levels is slightly lower, at 5 
percent. 

Experimental Results 
The Stanton-number distribution with no obstacle present 
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Fig. 3(a) Stanton number contours downstream of the tapered cylinder 
at ReD =7.7x10" 

Fig. 3(b) Stanton number contours downstream of the tapered cylinder 
at ReD = 1.3x105 

was measured to determine the two dimensionality of the flat 
plate boundary layer, and to verify the accuracy of the heat 
transfer measurements. The spanwise uniformity of the Stan
ton number measured 20 cm downstream of the flat plate's 
leading edge remained within the experimental uncertainty, 
ranging between ±1 percent at ReD = 5.1 x 104 and ±3 per
cent at ReD = 1.3xl05. The variation of spanwise averaged 
Stanton number in the streamwise direction was compared to 
predictions based on the unheated-starting-length correlation 
presented by Kays and Crawford (1980). The data and the 
predictions match within the measurement uncertainty except 
at the leading edge, where conduction is important. The two 
cases that match theory within ±1 percent, ReD = 7.7xl04 

and 1.3 xlO5, were chosen for presentation in this paper. 
(Data at the other Reynolds numbers are available from 
Fisher, 1987.) 

Maps of Stanton number distribution along the flat-plate 
surface downstream of the two different obstacles are 
presented in Figs. 3(a), 3(b) and 6(a), 6(b) for two nominal 
Reynolds numbers, Refl = 7.7xl04 and 1.3x10s. Two 
features of the figures should be mentioned before discussing 
the results. Firstly, the shape of the surface is distorted 
because of the camera angle. Also, the effect of conduction 
from the edge of the surface to the wind-tunnel floor can be 
seen in the rapid rise in Stanton number along the edges of the 
heated plate. 

Plots of spanwise Stanton-number distribution were pro
duced by linearly interpolating between neighboring contours 
on high-resolution Stanton-number maps. These plots, shown 
in Figs. 4, 5, and 7-9, are presented with Stanton number nor
malized by the spanwise-averaged Stanton number associated 
with the two-dimensional boundary layer at the appropriate 
Reynolds number. 

(a) Tapered Cylinder. The Stanton-number contours 
downstream of the tapered cylinder, shown in Figs. 3(a) and 
3(b), indicate that a considerable variation in Stanton number 
occurs downstream of the obstacle. An increase in Stanton 
number is evident along the centerline, and this effect persists 
in the streamwise direction. A small Stanton-number 
minimum can be seen at the leading edge of the heat transfer 
surface. This low-heat-transfer region is associated with the 
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for Re0 =7.7 x 104 and 1.3 x 105 behind the tapered cylinder 

wake of the obstacle, the trailing edge of which is located at 
the beginning of the heated plate. The spanwise variation in 
the contours indicates that the Stanton number decreases 
along the edge of the enhanced region and then approaches a 
constant value away from the centerline. The spanwise extent 
of the enhanced-heat-transfer regions seems to be limited, with 
only a gradual increase with streamwise development. Com
paring Figs. 3(a) and 3(b) shows that Reynolds number has 
very little qualitative effect on the perturbations induced by a 
horseshoe-vortex system. 

A plot of normalized Stanton number as a function of span-
wise distance (Fig. 4) shows the streamwise persistence of the 
local modifications in heat transfer for the tapered-cylinder 
case at ReD= 1.3 x 105. The augmentation observed at 
X/D = 3.5 may be a result of both the horseshoe vortex system 
and the flowpath blockage, since the object diameter is 
roughly 10 percent of the tunnel width. At X/D greater than 
3.5, the blockage effects are not prevalent, and a region of 
augmentation occurs near the centerline where they drop 
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Fig. 6(a) Stanton number contours downstream of the circular cylinder 
at ReD= 7.7x104 
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Fig. 6(6) Stanton number contours downstream of the circular cylinder 
at ReD = 1.3x105 

down to the flat plate values close to Z/D= - 1.0. At positive 
Z/D> 1.0, the heat transfer is 10 percent less than the flat 
plate values. We suspect the asymmetry in the heat transfer is 
due to asymmetric horseshoe vortex legs caused by the 
nonuniformity in the upstream boundary layer. 

The peak rise in heat transfer along the centerline occurs 
closest to the leading edge, but the effects do not decrease 
rapidly with streamwise distance; peak augmentation only 
varies from 36 to 18 percent between X/D-3.5 and 
X/D = 9.6. In addition, as distances greater than six diameters 
downstream, the augmentation near the centerline becomes 
constant, implying a persistent streamwise influence of the 
vortices. 

At all streamwise locations, the region of peak heat transfer 
occurs over a spanwise extent of roughly 2Vi diameters. Out
side of the peak augmentation region, the Stanton number ap
proaches the flat-plate value for all cases except X/D = 3.5, 
and in some cases the Stanton number is slightly lower than its 
undisturbed value. 

The sensitivity of the local heat transfer modifications to 
Reynolds number is demonstrated in Fig. 5, which shows nor
malized Stanton numbers at X/D = 4.7 for two Reynolds 
numbers, ReD = 7.7xl04 and 1.3 xlO5. The shape of the 
spanwise Stanton-number curves remains similar, but the level 
of augmentation is lower at the higher Reynolds number. For 
example, there is a 50 percent peak augmentation at the 
centerline behind the tapered cylinder at Re ,̂ = 7.7 x 104, con
trasted with 28 percent at Re^ = 1.3 x 105. 

(b) Cylinder. The Stanton-number contours downstream 
of the circular cylinder are shown in Figs. 6(a) and 6(b). 
(Note: The lack of details toward the trailing edge of the heat 
transfer surface is the result of a lighting problem during data 
taking.) The modifications imposed by this horseshoe-vortex 
system are qualitatively different from those imposed by the 
vortex associated with the tapered cylindrical body. In this 
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case, there are two symmetric peaks in Stanton number, with a 
lower augmentation of Stanton number at the centerline. As 
Reynolds number increases, the centerline dip in the Stanton-
number curves becomes less pronounced. The Stanton number 
seems to be approaching a constant value with distance away 
from the centerline, although at the higher Reynolds numbers 
this trend is not as apparent. 

Figure 7 provides a more quantitative representation of the 
spanwise Stanton-number distribution at different streamwise 
locations behind the circular cylinder for Refl= 1.3 X 105. As 
was the case with the tapered obstacle, the circular cylinder 
shows a monotonic decrease in the augmentation of heat 
transfer from a maximum enhancement of 31 percent at 
X/D = 3.5 to 21 percent at X/D = 1.2. Unlike the tapered 
obstacle, the shape of the Stanton-number profiles changes 
with streamwise distance behind the cylinder. At X/D = 3.5, 
there is a well-defined region of peak enhancement with a 
spanwise extent of roughly two diameters, and with the max
imum level of augmentation occurring at the centerline. 
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However, with streamwise distance the region of peak 
enhancement spreads, and the maximum level of augmenta
tion occurs at two symmetric positions about the centerline. A 
more surprising difference between the two cases is that the 
Stanton numbers remain at least 7 percent above the flat-plate 
value away from the centerline at all streamwise locations. 
This implies that the cylinder enhances the heat transfer over a 
much greater region than the streamlined obstacle, even 
though the level of maximum augmentation remains nearly 
the same. This is demonstrated in Fig. 8, which presents the 
spanwise distribution of normalized Stanton number for the 
circular and tapered cylinder at X/D = 1.2 and ReD = 
1.3x10s. 

The influence of Reynolds number on the heat transfer 
modifications behind the cylinder is shown in Fig. 9. As was 
the case for the tapered cylinder, there are stronger effects at 
the lower Reynolds number with a maximum augmentation of 
31 percent at ReD = 7.7 x 104 and a maximum of 23 percent at 
Refl = 1.3 x 105. In addition, the distinction of the two sym
metric peaks is clearer and the enhancement far away from the 
centerline is greater at the lower Reynolds number. 

Discussion 

The results of this experiment show that the convective heat 
transfer on a flat plate downstream of an obstacle is enhanced, 
with local heat transfer as much as 50 percent greater than the 
undisturbed value. The magnitude and the spatial distribution 
of this enhancement vary with obstacle shape, streamwise 
location, and Reynolds number. 

The characteristic shape of the enhanced region behind both 
obstacles implies that the trailing legs of the horseshoe vortex 
are influencing the local convection process. The regions of in
creased heat transfer could be associated with the downwash 
region of vortices as they sweep cooler fluid toward the wall. 
The concentration of high heat transfer coefficients along the 
centerline downstream of the tapered cylinder suggests the 
vortex legs are close to one another and have a common region 
of strong downwash flow. The two separate peaks of Stanton 
number associated with the cylindrical obstacle could be due 
to trailing legs that are positioned farther apart and have 
separate downwash regions. 

These arguments regarding the high heat transfer assume a 
strong horseshoe vortex system. While this may be the case for 

the tapered cylinder (Barber, 1978), the work by Eckerle and 
Langston (1987) shows that the vortex system associated with 
a cylinder has greatly diffused as it enters the wake region. 
This implies that the heat transfer augmentation downstream 
of the circular cylinder may be due to the vigorous wake 
behind the cylinder rather than the vortex legs. 

The streamwise persistence of the modifications in convec
tion induced by the horseshoe-vortex system is evidenced by 
the experimental results. The perturbations in Stanton-
number extend over 15 obstacle diameters (the length of the 
heated surface) implying that these effects continue far 
downstream. In addition, the spanwise enhancement profile 
doesn't change with streamwise distance after six obstacle 
diameters. The decrease in enhancement levels over the first 
six diameters downstream may be caused by a combination of 
changes in the flow structure, such as decreased mixing in the 
wake, and the development of the thermal boundary layer. 

The sensitivity of the enhancement levels to Reynolds 
number is a result of changes in flow features, such as the ap
proach boundary-layer thickness, Karman shedding frequen
cy, or wake size, that are affected by Reynolds number. For 
example, the horseshoe-vortex-formation process is dependent 
on the approach boundary-layer thickness. As Reynolds 
number increases, boundary-layer thickness decreases, 
resulting in a smaller horseshoe vortex. Since augmentation 
levels downstream are dependent on the interaction of the 
trailing vortices with the thermal boundary layer, the smaller 
vortices are likely to cause less modification to the thermal 
boundary layer. This could lead to lower enhancement levels 
at higher Reynolds numbers. 

From this discussion, it can be seen that the fluid-dynamics 
features of the horseshoe-vortex system are so complex that, 
without substantially more detailed fluid-dynamics meas
urements, we can only postulate about the physical proc
esses that lead to the observed heat transfer perturbations. 

Concluding Remarks 

In summary, some very interesting qualitative and quan
titative features of the Stanton number distribution 
downstream of a tapered and a cylindrical obstacle were 
observed. The major conclusions from the experimental 
results are as follows: 

1. The horseshoe-vortex system generated by a tapered 
cylindrical obstacle induces a region of Stanton number 
augmented by as much as 50 percent along the centerline 
downstream of the obstacle. 

2. The horseshoe vortex generated by a cylindrical obstacle 
also leads to a region of higher Stanton numbers downstream 
of the appendage, with two peaks in heat transfer occurring 
symmetrically about the centerline. The maximum augmenta
tion level measured was 35 percent. 

3. In general, the vortex pair trailing the tapered cylinder 
results in greater modifications to the Stanton number than 
the vortex pair trailing the cylindrical body. 

4. The modification of local Stanton numbers is persistent 
with streamwise distance. After six obstacle diameters, the 
spanwise enhancement profile doesn't change shape with axial 
distance. 

5. Increasing Reynolds number from Re£, = 7.7xl04 to 
1.3 X 105 decreases the peak augmentation level from 50 to 29 
percent for the tapered obstacle and from 32 to 23 percent for 
the cylindrical obstacle. 
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Heat Transfer Augmentation 
Through Wall-Shape-lnduced-Flow 
Destabilization 
Experiments on heat transfer augmentation in a rectangular cross-section water 
channel are reported. The channel geometry is designed to excite normally damped 
Tollmien-Schlichting modes in order to enhance mixing. In this experiment, a hy-
drodynamically fully developed flow encounters a test section where one channel 
boundary is a series of periodic, saw-tooth, transverse grooves. Free shear layers 
span the groove openings, separating the main channel flow from the recirculating 
vortices contained within each cavity. The periodicity length of the grooves is equal 
to one-half of the expected wavelength of the most unstable mode. The remaining 
channel walls are flat, and the channel has an aspect ratio of 10:1. Experiments are 
performed over the Reynolds number range of 300 to 15,000. Streakline flow vis
ualization shows that the flow is steady at the entrance, but becomes oscillatory 
downstream of an onset location. This location moves upstream with increasing 
Reynolds numbers. Initially formed traveling waves are two dimensional with a 
wavelength equal to the predicted most unstable Tollmien-Schlichting mode. Waves 
become three dimensional with increasing Reynolds number and distance from onset. 
Some evidence of wave motion persists into the turbulent flow regime. Heat transfer 
measurements along the smooth channel boundary opposite the grooved wall show 
augmentation {65 percent) over the equivalent flat channel in the Reynolds number 
range 1200 to 4800. The degree of enhancement obtained is shown to depend on 
the channel Reynolds number, and increases with the distance from the onset lo
cation. 

Introduction and Problem Definition 
Practical needs to improve the performance of exchange 

devices, such as compact heat exchangers (Kays and London, 
1984) and blood oxygenators (Bellhouse et al., 1973), and 
scientific interest in the relation between channel heat transfer 
and pumping power (Karniadakis et al., 1988) have motivated 
intense interest in convective transport enhancement (Bergles 
and Webb, 1985). Much recent attention has been given to 
passive enhancement techniques in laminar and transitional 
channel flows by shear destabilization. In these systems, hy-
drodynamic instability modes, which normally decay in an 
"unenhanced" flow, are destabilized by careful modification 
of the system solid boundaries, such as cutting grooves in the 
channel wall (Greiner et al., 1988; Ghaddar et al., 1986a; 
Stephanoff, 1986) or adding eddy promoters to the core region 
of the flow (Kozlu et al., 1988). These modifications lead to 
the formation of free shear layers, which, at sufficiently large 
Reynolds numbers, feed energy to the least stable modes. The 
destabilized systems generally exhibit traveling waves, which 
augment convective transport normal to the walls. While con
ventional passive enhancement schemes rely on thermal bound
ary layer interruption or surface extension, the current 
technique is based on subtle but important modifications in 
the flow behavior. 

Initial interest in destabilized flows grew from experimental 
and numerical studies of resonant heat transfer enhancement 
in grooved channels (Greiner et al., 1986; Ghaddar et al., 
1986b; Stephanoff et al., 1980; Sobey, 1980). These studies 
consider spatially fully developed flows at laminar and tran
sitional Reynolds numbers in transversely grooved channels. 

Contributed by the Heat Transfer Division and presented at the National Heat 
Transfer Conference, Philadelphia, Pennsylvania, August 6-9,1989. Manuscript 
received by the Heat Transfer Division January 23, 1989; revision received 
August 5, 1989. Keywords: Augmentation and Enhancement, Flow Instability, 
Forced Convection. 

By actively modulating the flow rate at frequencies close to 
the natural frequency of the least stable Tollmien-Schlichting 
modes, resonant excitation of these modes is observed, even 
at moderately low Reynolds numbers. The excited flow exhibits 
greatly enhanced mixing and heat transfer, and a properly 
tuned 20-percent flow rate modulation has been shown to 
enhance heat transfer by a factor of two and a half (Greiner 
et al., 1986; Ghaddar et al., 1986b). 

While hydrodynamic resonance is an interesting transport 
enhancement scheme, its augmentation requires active flow 
modulation, which is inherently less reliable than passive 
schemes in practical systems. The current study considers pas
sive shear destabilized transport enhancement using the 
grooved channel geometry shown in Fig. 1. A fully developed 
flow is discharged from a parallel-wall flow development sec
tion of height H and width W (normal to the plane of Fig. 1). 
The upper wall is thermally insulated while the bottom surface 
is maintained at a uniform temperature T0. At the position x 
= 0, this flow enters a test section of minimum height H, 
whose upper surface dissipates a uniform heat flux q", and 
whose lower surface is maintained at a constant temperature 
T0. Heat transfer is measured at the upper wall under two sets 
of geometric conditions of the bottom surface: a flat surface, 
and a saw-toothed profile. The first condition provides a base
line against which enhancement caused by the grooved lower 
surface can be compared. It also serves to validate the meas
urement techniques. 

Flow visualizations and convective heat transfer measure
ments are performed for the Reynolds number range, 300 < 
Re < 15,000, where Re = VDh/v, and where V = Q/HW is 
the average velocity, Q is the fluid volume flow rate, Dh = 
2HW/(H + W) is the minimum channel hydraulic diameter, 
and v is the fluid kinematic viscosity. The local Nusselt number 
is defined as Nu = hDh/k, where h is the local heat transfer 
coefficient (based on the local bulk fluid temperature) and k 
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Fig. 1 Geometric and thermal boundary conditions 

is the fluid thermal conductivity. Values are reported at six 
.̂ -locations along the upper flat surface. The Nusselt number 
dependence on Reynolds number, channel location, and chan
nel geometry is determined experimentally. Several compari
sons are made between the flow behavior in the grooved channel 
shown in Fig. 1 and a flat channel with the same minimum 
wall-to-wall spacing H, at the same Reynolds number. 

The grooved surface is specifically designed to excite the 
most unstable modes in the unenhanced (flat wall) system. In 
plane Poiseuille flow, the most unstable modes are two-di
mensional Tollmien-Schlichting waves. While these traveling 
disturbance modes naturally decay with time for Reynolds 
numbers less than a critical value of Rec = 15,400 (Drazin and 
Reid, 1981), this value may be drastically reduced by modifying 
the wall shape. When "open" (deep) grooves are cut into the 
channel wall, slow-moving recirculating regions fill the cavity, 
and the groove openings are spanned by free shear layers. A 
groove aspect ratio of a/b = 2 is used so that grooves act as 
open cavities for the Reynolds number range considered (Yee, 
1986). These layers cause inflection points to form in the ve
locity profile. At sufficiently large Reynolds number, Kelvin-
Helmholtz instabilities of these layers have been shown nu
merically (Ghaddar et al., 1986a) and experimentally (Greiner 
et al., 1988) to destabilize the normally damped Tollmien-
Schlichting waves, effectively reducing the critical Reynolds 
number. At supercritical conditions, traveling waves, whose 

amplitude are proportional to VRe-Re c , promote transport 
perpendicular to the channel walls. 

In other continuously grooved channels (i.e., no space be
tween grooves) the critical Reynolds number in fully developed 
flow has been observed to be Rec = 330 (Greiner et al., 1988), 
almost 50 times smaller than the flat channel value. To further 
encourage the onset of instability, the groove periodicity length 
a of the current design is chosen to be compatible with the 
wavelength of the most unstable Tollmien-Schlichting mode. 
Since this wavelength X is Reynolds number dependent, and 
the present investigation considers the range 300 < Re < 
15,000, a representative value at Re = 1400 is selected. At this 
Reynolds number X = 2.4//(Ghaddar et al., 1986a), and the 
channel periodicity length is chosen so that a = X/2. 

The current work extends previous numerical and experi
mental results in several important ways. In past studies, trans
port is measured from the grooved surface. While this type of 
measurement is realistic from the practical point of view, it is 
difficult from a scientific point of view to distinguish the trans
port enhancement/degradation due to at least three different 

phenomena: (a) the destabilized flow, (b) the increase in surface 
area, and (c) the increased thermal resistance between the chan
nel surface and the external flow caused by the slow-moving 
vortices contained in the cavities. Measurement of heat transfer 
along the opposite flat surface presumably is a much better 
measure of the enhancement gained from flow destabilization 
alone. This type of wall shape induced enhancement evaluation 
is used by Ichimiya (1987) in the fully turbulent regime. 

While previous studies consider only fully developed flows, 
in the current work heat transfer measurements and flow vis
ualizations are made at several positions along the channel, 
starting at its inlet and continuing to the fully developed state. 
These results allow knowledge to be gained about the devel
opment length of these flows, which is a matter of great prac
tical interest to common exchange devices. The current wall 
design, with its continuously grooved sawtooth shape that is 
compatible with the most unstable Tollmien-Schlichting wave
length, is also a new addition to the base of knowledge in this 
field. 

It can be expected that the enhanced mixing in supercritical 
grooved channel flows will augment heat transfer relative to 
that in a flat channel with the same minimum wall-to-wall 
spacing for the same Reynolds number. It is also to be expected, 
however, that this favorable augmentation will come at the 
expense of an increased pumping power requirement relative 
to a flat channel flow. While other investigators (Karniadakis 
etal., 1988;Kozluetal., 1988) and our own recent data indicate 
that destabilized-flow heat transfer is favorable on an equal 
pumping power basis when compared to unenhanced systems, 
this is not the focus of the current study. In the present work, 
we wish to concentrate on the hydrodynamic conditions for 
the onset of supercritical flow (Reynolds number, dimension-
less development lengths) and the magnitude of the heat trans
fer enhancement it causes relative to an equivalent flat channel 
flow. In essence, this paper documents the development, ex
istence and potential usefulness of destabilized flows. 

Experimental Apparatus 
Measurements are made using the temperature-controlled 

recirculating water channel shown in Fig. 2. A centrifugal 
pump delivers distilled water through a bank of rotameters 
and control valves to the left side of a partitioned reservoir, 
which contains a cooling coil for temperature control. The 
right side of the tank is fed via a weir at the top of the partition 
and can supply up to a 1.2-m head to the test channel. The 
flow passes two honeycomb sections and enters the channel 
flow development section through a' ' soda straw'' flow straight-
ener. The flow development section has height H = 20 mm 
and width W = 203 mm, giving a hydraulic diameter Dh = 
36.4 mm. Velocimetry measurements show that the flow de
velopment length of 67 hydraulic diameters is sufficient to 
assure fully developed conditions at the test section inlet (x = 
0 in Fig. 1). The bottom and side walls of the flow development 
section are aluminum, and the top surface is Plexiglas. The 
temperature at x = - 50 mm is monitored by a digital ther-

a 
b 

Dh 

E 

Gz"1 

h 
H 

= groove depth 
= groove length 
= minimum hydraulic diameter 

= 2HW/(H + W) 
= enhancement ratio = Nu 

(grooved)/Nu (flat) 
= inverse Graetz number = 

(x/Dh)/Re Pr 
= heat transfer coefficient 
= channel height 

k 
Nu 
Pr 
q" 
Q 

Re 
Rec 

T 
T 

fluid thermal conductivity 
Nusselt number = hDh/k 
fluid Prandtl number 
heat flux 
fluid volume flow rate 
Reynolds number = VDh/v 
critical Reynolds number 
temperature 
mixed mean temperature 

T = 
1 0 T -
1 s 

V = 

w = 
x = 
X = 

v = 

lower wall temperature 
heated wall surface tempera 
ture 
average velocity = Q/HW 
channel width 
axial coordinate 
least stable Tollmien-
Schlichting wavelength 
kinematic viscosity 

Journal of Heat Transfer MAY 1990, Vol. 112/337 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ROTAMETERS PUYP Fig.3(s)

Fig. 2 Closed·loop test apparatus

mometer and maintained at To = 29.4 ± 0.6°e, which is
within 3°C of the laboratory room temperature.

The test section is 30.3 hydraulic diameters long, and in
cludes 46 V-shaped grooves, which span the lower surface.
These are constructed by mounting right-triangular aluminum
ribs, 12 mm high and 24 mm at their base, to a 12-mm-thick
aluminum base plate, which is in turn backed by a water jacket
for temperature control. The bottom wall is maintained iso
thermal to within ± 0.2 DC while the overall driving temper
ature difference for experiments ranges from 2 to lODe. A 12
mm-thick aluminum plate is substituted in place of the tri
angular elements for the baseline flat channel experiments.

Two different upper surfaces are employed in the test sec
tion, one for flow visualization experiments, the other for heat
transfer measurements. Both are fabricated from 25-mm-thick
Plexiglas. Flow visualizations are performed by injecting
colored tracer into the flow field and recording the resulting
patterns on video tape. A variable volume flow rate syringe
pump is used to inject the pigment at channel center height
and midspan through an L-shaped tube (1.0 mm o.d.) inserted
through the channel ceiling and bent downstream. For each
Reynolds number, the tracer flow rate is adjusted so that its
velocity at the injector tip is the same as the average fluid
velocity V, thus minimizing disturbances to the channel flow.
For the applicable channel Reynolds number range, the injector
Reynolds number is less than 40, thus causing negligible flow
disturbance. The pigment is a solution of red food coloring,
diluted with roughly 17 parts water. While the dye density is
slightly greater than that of the working fluid, its settling ve
locity is much less than that of the center channel speed, even
at the lowest Reynolds numbers considered.

The heat transfer surface has six custom heater/thermo
couple/heat flux gage assemblies bonded to its surface. The
heat flux passing to the fluid from each assembly is monitored
by a 102 mm by 102 mm thermopile-type heat flux gage (ac
curacy ± I percent) located at its center. The assemblies con
tain copper-constantan thermocouple junctions located 0.28
mm beneath the wetted surface at 18 equally spaced points
along the channel centerline. These thermocouples are refer
enced to a junction located at the center of the flow devel
opment section, at x = - 50 mm. After corrections are made
for the conduction temperature drop between the wall ther
mocouples and the wetted wall surface, and the local fluid
mixed mean temperature is computed using an approximate
energy balance, the local temperature difference between the
wall and the mixed mean fluid temperature, tJ.T = Ts - T""
is used with the local heat flux to determine the local heat
transfer coefficient h.

Each of the six gage assembly heaters is wired in series with
a trimming rheostat, and these subsystems are wired in parallel
to a regulated doc power supply. During an experimental run,
the trimming rheostats are adjusted so that the indicated heat
flux through each combination gage is the same, resulting in
a heat flux uniformity of ± I percent of the average heat flux
input.

338/VoI.112, MAY 1990

Fig.3(b)

Fig.3 Streakline flow visualizations at x/Dh = 24.4: (8) Re = 600, steady
flow; (b) Re = 700, traveling wave structure

Downstream from the test section the flow passes another
"soda straw" flow straightener and enters a small plenum
chamber with a return line to the pump. Edge walls of the test
section are 6-mm-thick Plexiglas, and all metallic surfaces are
coated with baked epoxy paint. The apparatus is covered with
50-mm-thick expanded foam insulation during data collection.

Results

Flow Visualizations. Figures 3 and 4 show a series of streak
line patterns, which document the onset of natural flow os
cillations and their subsequent breakdown to turbulence. These
visualizations are produced by injecting colored tracer at the
leading edge of the 38th groove (x/Dh == 24.4). The streakline
pattern shown for Re == 600 in Fig. 3(a) is typical of subcritical
flows. The flow is steady and the grooves contain slowly turn
ing vortices. The outer channel streaklines move parallel to
the flat wall, much like the flow in ungrooved (flat) channels.
At Re == 600 small-amplitude laminar waves are intermittently
observed between long periods of steady flow. At a Reynolds
number of 700 (Fig. 3b) the flow is almost continuously os
cillatory, with occasional steady periods. A traveling wave
structure develops a regular wavelength, which Fig. 3(b) shows
to be roughly equal to two groove lengths. The channel ge
ometry is designed so that the wavelength of the most unstable
Tollmien-Schlichting mode is equal to two groove lengths, and
it is not surprising that this mode is the first to be excited.
These streaklines are "smooth" and views from the top of the
tank indicate that they are mostly two dimensional. As the
Reynolds number increases, however, the patterns become more
irregular and three dimensional. Small-scale structures are su
perimposed on the long-wavelength Tollmien-Schlichting
waves in Fig. 4(a) for Re = 1000. As the Reynolds number
increases, the length scales of the smaller structures decrease
and the three dimensionality of the flow increases, as seen in
Fig.4(b).

The dye injection visualization technique is not effective at
demonstrating the smallest scale motion at higher Reynolds
numbers, as the tracer rapidly dissipates. The dye fan envelope
does appear to experience periodic large-scale oscillatory mo-
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Fig. 6 Measured flat channel Nusselt number versus inverse Graetz
number for 300 < Re < 15,000; error bars are used to indicate 99.7
percent confidence band due to random errors when this band is larger
than the symbol size

In the following heat transfer plots, error bars representing
the 99.7 percent confidence level due to random errors are
indicated where the bar size exceeds data point symbol size.
In many cases the error bar size is smaller than the symbol
size, and is not shown.

Figure 6 shows the local Nusselt number as a function of
inverse Graetz number for a flat channel flow. Data for Re
< 3500 collapse to a single line, while those for Re 2: 4000
show the onset of significant turbulent transport. These data
are used as the baseline for comparison with grooved channel
measurements.

Figure 7 shows the grooved channel Nusselt number as a
function of inverse Graetz number for 300 ::5 Re ::5 15,000.
The data are now seen to depart from a single curve at Re 2:

1200. At Re = 1200, the heat transfer coefficient is seen to
increase at Gz- 1 "" 0.003, and the departure point has moved
upstream to Gz- 1

"" 0.0008 at Re = 2000, with the trend
continuing with increasing Reynolds number. The heat transfer
coefficient is greater than corresponding flat channel values
for Re 2: 1200, and it is actually less than the flat channel
values for Re ::5 1000, as explained below.

The degree of heat transfer enhancement obtained is more
easily interpreted in Fig. 8, which is for a supercritical Reynolds
number of 3000. Part (a) of the figure compares local Nusselt
numbers for the grooved channel flow with that obtained with
the flat configuration, and part (b) shows the enhancement
factor, E = Nu (grooved)/Nu (flat), both plotted against di
mensionless axial location. As expected, flat channel values

tion when viewed in real time, suggesting that the groove span
ning free shear layers may be capable of effecting turbulent
flows in channels. This visualization technique, however, is
severely limited at this turbulence level.

A graph showing the fraction of time the flow exhibits an
oscillatory behavior, as a function of Reynolds number, is
presented in Fig. 5. These data are determined by viewing a
flow pattern for a given time period and measuring the fraction
of this time the flow is "oscillatory." These measurements are
somewhat qualitative because the oscillatory amplitude varies
continuously, and does not exhibit an "on/off" behavior.
Multiple data points are reported for Reynolds numbers at
which more than one observation is made, indicating the im
precision of this technique. Figure 5 shows that the oscillatory
flow time-fraction increases sharply in the Reynolds number
range 600 to 660. As the Reynolds number increases beyond
700, the flow is observed to become continuously oscillatory.

If the observed critical Reynolds number Rec is defined (ar
bitrarily) as the value at which the flow is oscillatory 50 percent
of the time, then for this channel location Rec = 630 ± 20.
The dependence of the observed value of Rec on location is
discussed in the following section in connection with the onset
of heat transfer enhancement. Reference to Fig. 10 (triangular
symbols) shows that Rec decreases with distance downstream.
However, for the present apparatus an asymptotic value is not
achieved. Work in progress with a longer test section shows
Rec approaches a value of 350 after about 35 hydraulic di
ameters, in good agreement with previous predictions (Greiner
et aI., 1988).

Heat Transfer. For each Reynolds number and axialloca
tion, local temperature measurements are made for a range of
wall heat fluxes to detect any effect of natural convection and
to eliminate the effects of systematic temperature offset errors.
A straight line is fit to each q" versus I1T data set, and the
slope of this line is used to determine the local heat transfer
coefficient, h = dq" /dI1T. The relation is found to be highly
linear, indicating the absence of significant buoyancy effects.
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Fig. 9 Local grooved channel heat transfer enhancement for Re = 300 
(subcritical flow, heat transfer degradation), Re = 3000 (maximum en
hancement), and Re = 5000 (typical of high Reynolds numbers) 
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Fig. 8 Local heat transfer measurements at Re = 3000: (a) Nusselt 
number for flat and grooved channels; (•) enhancement ratio 

show a steady decrease in the streamwise direction consistent 
with a thermally developing flow. On the other hand, the 
grooved channel values show enhancement at x/Dh ~ 6, with 
an augmentation of approximately 65 percent further down
stream. 

Figure 9 shows typical plots of E as a function of x/Dh for 
subcritical (Re = 300), supercritical (3000), and turbulent (5000) 
flows. For a subcritical Reynolds number of 300, the groove 
geometry is seen to actually decrease the heat transfer coef
ficient along the upper wall by about 10 percent relative to the 

4000 EJ 

3000 
Re 

2000 

1000--

0 

E=1.1 

Transport Enhancement Region 

Subcritical Flow 

Observed Oscillatory Flow 

-+- - t -
25 30 0 5 10 15 20 

x / D h 

Fig. 10 Location of 10 percent heat transfer enhancement (squares) as 
a function of Reynolds number; the onset location of oscillatory flow 
(triangles) is closely correlated with enhancement 

ungrooved geometry. The groove-spanning free shear layers 
relax the no-slip condition along the lower wall, causing the 
velocity maximum to shift downward, resulting in reduced 
transport along the upper wall. As a consequence the en
hancement ratio is less than unity over the entire length of the 
channel. For Re = 1200 (not shown in Fig. 9), unsteady struc
tures are visually observed for x/Dh > 10. The grooved channel 
heat transfer exceeds the ungrooved values for x/Dh > 16, 
resulting in enhancement ratios of approximately 1.1 

As the Reynolds number is further increased, the break-even 
point (i.e., the point where E = 1.0) rapidly moves upstream, 
and the magnitude of the local enhancement ratio increases. 
For Re = 3000, visual observations of the flow show remnants 
of a traveling wave structure blurred by turbulent mixing. The 
break-even point shifts to x/Dh = 7, and E > 1.5 for x/Dh 
> 16 (Figs. 8b and 9). 

As the Reynolds number is increased beyond 3000, the 
grooved channel heat transfer coefficient continues to increase. 
However, the ungrooved heat transfer coefficient increases at 
a faster rate due to the rapid onset of turbulent mixing. As a 
consequence, the local enhancement ratio is reduced as shown 
in the figure for Re = 5000. This result is effectively the same 
for the upper Reynolds number range, 5000 < Re < 15,000. 

Figure 10 includes a Re versus x/Dh map of groove-induced 
heat transfer enhancement. The figure shows the locus of points 
(indicated by squares) where the enhancement is 10 percent (E 
= 1.1). Also shown are wave onset locations (triangles) de
termined from analysis of video records of flow visualization 
experiments. The figure indicates that the occurrence of groove-
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Local grooved channel enhancement versus Reynolds number 
s x/Dh £ 27.7; enhancement factor is fully developed for x/D„ 

induced oscillations is closely correlated with effective heat 
transfer augmentation. Points to the right of the data band of 
the figure experience heat transfer augmentation via this mech
anism. Points to the left of the band experience no enhance
ment, or a degradation in performance. Enhancement is seen 
to move upstream with increasing Reynolds number until Re 
= 4000, and move downstream for higher Reynolds numbers. 
It is currently thought that for Re > 4000, turbulent mixing 
mechanisms become sufficiently strong that they dominate the 
large-scale wave structures, reducing the difference between 
grooved and ungrooved channel flows. 

Enhancement data as a function of Reynolds number for 
three measurement stations of the current apparatus are con
densed in Fig. 11. For the current channel configuration, the 
figure shows that significant and spatially constant (i.e., fully 
developed) enhancement is obtained forx/Dh > 16. Maximum 
heat transfer enhancement of approximately 65 percent is ob
tained over the range 2000 < Re < 4000. At higher Reynolds 
numbers turbulence appears to overwhelm the natural oscil
lations, leading to a reduction in E. Numerical and experi
mental data presented by Kozlu et al. (1988) for shear 
destabilized flow using eddy promoters in fully developed air 
flows show similar enhancement factors in a comparable Rey
nolds number range. 

Conclusions 
Groove-induced flow oscillations occur at supercritical Rey

nolds numbers. The onset location for such oscillations is Rey
nolds number dependent. With increase in Reynolds number, 
the oscillation intensity increases and the onset location rapidly 
move upstream. For the current channel configuration, os
cillatory flows are observed for Re > 630, and persist to 
approximately Re = 4800. 

The oscillatory flow mechanism is responsible for augmen
tation of heat transfer. For the current channel configuration, 
enhancement in excess of 10 percent extends over the range 
1200 < Re < 4800, and x/Dh > 16. Maximum enhancement 
of 65 percent occurs at Re = 3000 ± 1000. Turbulent mixing 
at higher Reynolds numbers degrades the advantages of the 
mechanism. 
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Numerical Prediction of Fluid Flow 
and Heat Transfer in a Circular 
Tube With Longitudinal Fins 
Interrupted in the Streamwise 
Direction 
Numerical calculations have been made for the performance prediction of laminar 
flow through circular tubes with longitudinal fins interrupted in the streamwise 
direction by arranging them either in a staggered or an in-line manner. Calculations 
are made for three-dimensional parabolic flow. Due to the repetitive nature of the 
geometry in the axial direction, the flow exhibits periodically repeating behavior 
after some initial development length. Calculations have been made for various 
values of the axial length parameter and two Prandtl numbers for two different fin 
geometries. Results Indicate that in the periodic fully developed regime, for a Prandtl 
number ofO. 7, a tube with staggered arrangement of fins produces less heat transfer 
enhancement than a tube with continuous fins. A tube with in-line arrangement of 
fins gives about as much heat transfer augmentation as the tubes with either con
tinuous or staggered fins but with a much less pressure drop penalty. Local quantities 
such as the axial velocity profiles and the variation of centerline axial velocity give 
a good physical understanding of the governing phenomena. 

Introduction 
The demand for high-performance heat exchange devices 

having small spatial dimensions is increasing due to their need 
in applications such as aerospace and automobile vehicles, 
cooling of electronic equipment, and so on. This had led to 
various designs of compact heat exchangers. Offset-fin plate-
fin heat exchangers are among the most widely used designs. 
In an offset-fin heat exchanger, the interruptions of the fin 
surface prevent the flow from becoming fully developed; the 
restarting of the boundary layer at each new leading edge gives 
a higher heat transfer. Also, when longitudinal external fins 
are used on circular tubes, they are sometimes interrupted in 
the streamwise direction to improve their performance. It is 
then conceivable that interrupted fins on the inner surface of 
a circular tube may lead to good heat transfer performance. 
It is, therefore, of interest to investigate the performance of 
an internal longitudinally finned circular tube with fin surface 
interrupted in the axial direction. 

Numerical predictions of developing fluid flow and heat 
transfer in a circular tube with internal longitudinal continuous 
fins have been reported by Choudhury and Patankar (1985) 
and Prakash and Liu (1981). A numerical investigation of fluid 
flow and heat transfer in two-dimensional staggered fin arrays 
has been presented by Sparrow et al. (1977), while performance 
comparisons for two-dimensional in-line and staggered fin ar
rays have been made by Sparrow and Liu (1979). Experimental 
investigations of offset-fin arrays have been presented in Lon
don and Shah (1968) and Joshi and Webb (1982). The effect 
of plate thickness on heat transfer for two-dimensional stag
gered fin arrays has been studied numerically by Patankar and 
Prakash (1981). Three-dimensional flow and heat transfer in 
offset-fin arrays has been analyzed numerically by Kelkar and 
Patankar (1985). 

Contributed by the Heat Transfer Division and presented at the National Heat 
Transfer Conference, Pittsburgh, Pennsylvania, August 9-12,1987. Manuscript 
received by the Heat Transfer Division June 15, 1988; revision received July 26, 
1989. Keywords: Finned Surfaces, Forced Convection. 

The aim of the present study is numerically to predict laminar 
flow and heat transfer through circular tubes with internal 
longitudinal fins that are arranged in a staggered or an in-line 
manner. 

Mathematical Formulation 
Details of the geometry under consideration are shown in 

Fig. 1. The thickness of the fins is assumed to be very small. 
Also, if the axial flow is sufficiently strong, the diffusion in 
the axial direction can be neglected so that the flow can be 
assumed to be parabolic in the streamwise direction. Then, to 
predict the performance numerically, computations for a three-
dimensional parabolic flow are sufficient. 

Circular tube viewed 
In the oxiBl direction 

Internally finned circular tube with staggered 
arrangement of the fins 

Circulor tube viewed 
Module without (ins ,„ ,he , „ , , , a i rection 

Internally finned circular tube with in-line 
arrangement of the fins 

Fig. 1 The geometries considered 
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The equations governing the velocity field for a constant 
property laminar flow are the Navier-Stokes equations devoid 
of the axial diffusion terms. These equations in dimensionless 
form are 

Circumferential momentum 

V-™. V^R WdU ~ldP' 
R 36 + dR + 4 dZ ~ Rdd + RdR 

1 d2U U 

R2 de2 

Radial momentum 

U3V dV WdV 

R dd + dR+ 4 dZ 

J_c?V 

R2 de2 

Axial momentum 

UdW dW WdW 

R dd + dR + 4 dZ 

+ 
2 dV UV 

m 
R2 R2 36 R (1) 

1 I A (R^I\ 
R+RdR\ dR/ 

+ 

dP 

-dR 

V_ 2_dU_ 

R2 ~~ R2 36 

1 dP 
-4dZ 

I A (ndW\ _L 
R 3R \ dR/ + R2 

V2-
R 

d2W 

(2) 

Continuity 

3d2 

13U ld(RV) 1 3W „ 
+ —*—- + = 0 

R36 RdR 4 dZ 

(3) 

(4) 

The dimensionless quantities used in the above equations 
are defined as 

"-k Z = 
(Z/D) 

Re 

U •• 

P" = 

u 
(v/RoY 

p 

P(v/R0r 

V = 

P 

WRoY 
p 

w = w,-„ 

PWi,, 
with/? = p +p' 

(5a) 

(5b) 

(5c) 

(a) Staggered arrangement 

(b) In-line arrangement 

Symmetry boundary No-slip boundaries 

Fig. 2 Computational domains with the corresponding boundary con
ditions in two successive modules for the staggered and in-line arrange
ments 

Re = ^ , D = 2R0 (5d) 

By symmetry arguments, the computations at each axial 
location can be confined to the domain shown in Fig. 2. For 
a given arrangement of fins in the axial direction, either stag
gered or in-line, the left and the right boundary conditions 
depend upon the axial location being considered and are shown 
in Fig. 2. The no-slip boundary condition is imposed on all 
the solid surfaces. On the symmetry boundaries, the circum
ferential velocity vanishes while the gradients of the axial and 
radial velocities in the circumferential direction are zero. At 
the inlet, the radial and circumferential velocities are assumed 
to be zero while the axial velocity is assumed to have a uniform 
magnitude of w,„. 

, Nomenclature 

D = diameter of the tube 
/ = module-averaged friction 

factor, equation (8) 
/ R e = product of module aver

aged friction factor and 
Reynolds number 

/R e 0 = value o f /Re for fully de
veloped flow in a circular 
tube 

h = module-averaged heat 
transfer coefficient, equa
tion (10) 

H = height of the fins, Fig. 1 
L = length of a module, Fig. 1 

LMTD = log mean temperature dif
ference for a module, equa
tion (11) 

M = number of modules from 
the entrance 

TV = number of fins 
Nu = module-averaged Nusselt 

number, equation (9) 
Nu0 = Nusselt number for fully 

developed flow through a 
circular tube 

P 
Ap 
P' 

P 

P 

r 
R 

Ro 
Re 

T 
Tb 

Tbi 

Tbo 

T 
1 w 

U 
U 

static pressure v 
pressure drop in a module V 
dimensionless static pres
sure, equation (5c) w 
average static pressure over w,„ 
the cross section W 
dimensionless average static 
pressure over the cross sec- wc 

tion 
radial coordinate z 
dimensionless radial coordi- z 
nate, equation (5a) 
radius of the tube, Fig. 1 a 

Reynolds number, equation 
(5d) 0 
temperature 
bulk temperature of the 6 
fluid, equation (12) ^ 
bulk temperature at the in
let of a module v 
bulk temperature at the exit 
of a module p 
constant wall temperature 0 
circumferential velocity 
dimensionless circumferen- (f>b 

tial velocity, equation (5b) 

radial velocity 
dimensionless radial veloc
ity, equation (5b) 
axial velocity 
uniform inlet axial velocity 
dimensionless axial veloc
ity, equation (5b) 
dimensionless axial velocity 
at the centerline 
axial coordinate 
dimensionless axial coordi
nate, equation (5«) 
fin height parameter = 
H/R0 

axial length parameter = 
(L/D)/Re 
circumferential coordinate 
dynamic viscosity of the 
fluid 
kinematic viscosity of the 
fluid 
density of the fluid 
dimensionless temperature, 
equation (7) 
dimensionless bulk temper
ature 
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The governing equation for the temperature field is the en
ergy equation in which the viscous dissipation and axial dif
fusion terms have been neglected. The dimensionless form of 
the governing equation is 

Temperature field 

Ud<t> d<t> W d<f> 
— - + K — + -
Rdd dR 4 dZ Pr \R dR V dR ) + R2d62 ) 

(6) 

with 

4> = (T-Tw)/(Tin-Tw) (7) 

where Tin is the uniform temperature of the fluid at the inlet 
and T„ is the constant temperature of the tube wall. Further, 
if the fins are assumed to be highly conducting, the fin surface 
will also be at T„. As a consequence of this assumption, the 
heat transfer results obtained in this study represent the best 
possible performance of the geometries considered; for fins of 
moderate conductivity, the performance will be correspond
ingly lower. 

From the dimensionless equations and the boundary con
ditions, it follows that the governing parameters for the velocity 
field are the axial length parameter ft = (L/D)/Re, the fin 
height parameter a = H/R0, and the number of fins N. The 
temperature field is governed by an additional parameter, the 
Prandtl number Pr of the fluid. 

Computational Details 
As stated earlier, the numerical solution to the problem 

involves solving the three-dimensional parabolic equations. A 
general procedure for calculation of three-dimensional para
bolic flows is given by Patankar and Spalding (1972). In the 
present study, the procedure used is basically the same except 
that the velocity-pressure coupling in the cross section is 
handled by the SIMPLER algorithm of Patankar (1980) and 
the axial pressure gradient is calculated by the method given 
by Raithby and Schneider (1979). Since the fluid properties 
are assumed to be constant, at each axial location the velocity 
field is calculated first and the temperature field is then com
puted using this velocity field. Due to the repetitive nature of 
the geometry in the axial direction, the flow characteristics 
exhibit a periodically repeating behavior after some initial de
velopment region. Therefore, starting with a uniform velocity 
and temperature field, the computations are continued until 
the flow becomes periodically fully developed. 

The computations are performed for two different geometric 
distributions of the fins in the cross section. These are N = 
6, H/R0 = 0.5 and N = 12, H/R0 = 0.3. For convenience, 
these will be denoted as geometry 1 and geometry 2, respec
tively, in the discussion that follows. For the staggered ar
rangement, the axial length parameter /3 was varied from 1 x 
10~' to 1 x 10"3 for both geometries. The effect of Prandtl 
number was studied by calculating the temperature field for 
Pr = 0.7 and 5 for geometry 1. In order to compare the relative 
performances of the staggered and the in-line arrangements, 
computations for the in-line arrangement were done for 0 = 
1 x 10~2 for both the geometries with Pr = 0.7. 

All the computations have been done using a grid of size 20 
x 24 in the computational domain. There were 30 axial steps 
in each module of length L. The size of the axial step was small 
at the start of each module, where there is an interruption in 
the fin surface, and was gradually increased towards the end 
of the module. Exploratory runs with twice the number of 
points in each direction indicated a change of 1 percent in the 
overall results with (3 = 1 x 10~3 and Pr = 0.7. Therefore, 
the accuracy of the computed results was deemed satisfactory. 

All the computations were made on the Cray -
puter. The most expensive case of j3 = 1 X 10 
5 for geometry 1 required about 5 min of CPU time. 

1 supercom-
3 and Pr = 

Results and Discussion 
To judge the performance of a tube with interrupted fin 

surfaces, it is useful to average the friction factor and Nusselt 
number over each module of length L, measured from the start 
of a discontinuity in the fin surface. The module-averaged 
friction factor and Nusselt number can be defined as 

/ 
(Ap/L)D 

(pw-J/2) 

and 

Nu = 
hD 

(8) 

(9) 

where h is the heat transfer coefficient based on the nominal 
tube surface area as defined below: 

h Q (10) 
(2xRoL)(LMTD) 

Here Q is the total heat transferred in the module and LMTD 
is the log-mean temperature difference defined as 

(Tw—Tbl) — (Tw—Tb0) 
LMTD = (11) 

ln((Tw-Tb,)/(Tw-Tbo)) 

where Tbi and Tbo are the bulk temperatures at the inlet and 
the exit of the module, respectively. The bulk temperature is 
defined as 

Th = 
\wTdA 

\wdA 

(12) 

the integral being taken over the cross section. 
Since the natural reference with which the performance of 

a finned tube can be compared is the circular tube without 
fins, all the module-averaged/Re and Nu have been normal
ized with respect to /Re 0 = 64andNu0 = 3.658, corresponding 
to the fully developed flow through a circular tube with con
stant wall temperature. The results for the staggered arrange
ments are presented first and are followed by a discussion of 
the results for the in-line arrangement and a comparison of 
their performances. For each arrangement of the fins, the 
results for the periodically fully developed region are discussed 
followed by a discussion of the results for the developing flow. 

Staggered Arrangement 

Periodic Fully Developed Flow. In the staggered arrange
ment, each successive module is exactly identical except for 
the circumferential positions of the fin surfaces, so that the 
module-averaged/Re and Nu are identical for successive mod
ules. Figure 3 shows the variation o f / R e / / R e 0 and Nu/Nu0 

with 13 for Pr = 0.7 and 5 for geometry 1. The values o f / R e / 
/Re 0 are always greater than 1 because of the increase in area 
available for friction. Note that the / R e for the staggered 
arrangement of fins is more than the corresponding value for 
a tube with continuous fins because the staggering of the fins 
causes extra friction on the fin surfaces at the start of each 
module. Since at lower values of /?, which signify either more 
frequent interruptions or higher Reynolds number, this extra 
friction is higher, the/Re product is higher. At very high values 
of /?, the flow within a module becomes fully developed as if 
in a tube with continuous fins and the /Re approaches asymp
totically its fully developed value for a tube with continuous 
fins. 
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number for the staggered arrangement is always lower than 
that for the tube with continuous fins, which is rather unex
pected. This can be understood by examining Fig. 4(a), which 
gives the plots for normalized axial velocity at the exit of the 
module at 6 = ir/N for geometry 1,0 = 0 being the location 
of the fin surface. The profile of W for 0 = 1 X 10"' is 
almost coincident with the corresponding profile for a flow in 
a tube with continuous fins. Therefore the asymptotic value 
of Nu at high values of P is the fully developed value for flow 
in a tube with continuous fins. As P decreases further, the flow 
escapes through the central core region to circumvent the in
creased resistance at the leading edges of the fin surfaces. This 
is indicated by the increase in the magnitude of the centerline 
velocity with decreasing P in Fig. 4(a). This reduces the washing 
on the tube and the fin surfaces over most of the module. The 
result is a decrease in the overall Nusselt number with decrease 
in P for Pr = 0.7. With a high Prandtl number fluid, the 
thermal boundary layer grows slowly so that the advantage 
gained by restarting the boundary layer on the fin surfaces at 
the start of each module persists for a longer length within a 
module. Thus, with decreasing P, even though more flow es
capes through the central core region, the increase in the heat 
transfer near the leading edges of the fin surfaces causes the 
Nusselt number to increase for Pr = 5. 

Figure 4(b) shows the normalized axial velocity profile at 
the exit of the module at 6 = TT/N, 0 = 0 being the location 
of the fin surface, for geometry 2. Comparing the correspond
ing profiles in Figs. 4(a) and 4(b), it can be seen that addition 
of large number of short fins makes the interfin spaces rela
tively inaccessible to the throughflow irrespective of whether 
the fins are continuous or interrupted in the axial direction. 
Therefore the augmentation of heat transfer with respect to a 
tube without fins is less in geometry 2 than in geometry 1. For 
P = 1 X 10~', the exit velocity profile is almost coincident 
with the corresponding profile for the fully developed flow 

• through a circular tube with continuous fins and the change 
in this profile caused by decreasing P to 1 x 10"3 is not 
substantial. This causes the /Re and Nu for geometry 2 with 
staggered arrangement of fins to be close to the /Re and Nu 
for a tube with continuous fins as seen in Fig. 5. Again, the 
slight decrease in Nu for Pr = 0.7 with decreasing P is due to 
the tendency of the flow to escape through the central core 
where there are no solid surfaces to provide resistance to the 
throughflow. 

5 2.0 

Fig. 4 Effect of the axial length parameter on the axial velocity profile 
at the symmetry boundary at the exit of a module for both geometries 
with staggered arrangements of fins 

The augmentation of heat transfer caused by the addition 
of continuous fins on the inside of a circular tube is not very 
significant. This is because the addition of fins causes the axial 
flow to move away from the tube and fin surfaces, reducing 
the washing on these surfaces. A staggered arrangement of 
fins also affects the axial flow in a similar manner so that the 
augmentation in heat transfer obtained over a finless circular 
tube is not very noticeable. Note that for Pr = 0.7, the Nusselt 
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Developing Flow. Figure 6 gives the development o f / R e / 
/Re 0 and Nu/Nu0 with the number of modules traveled by the 
flow for geometry 1. Note that the values o f / R e and Nu 
represent averages over the entire module. Therefore, in Figs. 
6(a) and 6(6) only the values of /Re and Nu at integral values 
of TV are meaningful. Successive points in each of these curves 
are joined by straight lines only to facilitate visualization. For 
any given /3, / R e starts from a high value and gradually tends 

Table 1 Results for the periodically fully developed flow for a circular 
tube with in-line, staggered, and continuous fins for (3 = 1 x 10"2 and 
Pr = 0.7 

Geometry 1 
In-line fins Staggered fins Continuous fins 

fRe/fReo NU/NUQ fRe/fReo NU/NUQ fRe/fRerj NU/NUQ 

Averaged over 
a module with 
no fins in the in- 0.060 0.628 3.273 1.621 3.058 1.630 
line arrangement 

Averaged over a 
module with fins 

Averaged over 
two successive 
modules 

Geometry 2 

3.497 2.315 

1.779 1.472 

3.273 

3.273 

1.621 

1.621 

3.058 

3.058 

1.630 

1.630 

In-line fins Staggered fins Continuous fins 
fRe/fReo NU/NUQ fRe/fReo NU/NUQ fRe/fReo NU/NUQ 

Averaged over a 
module with no -0.024 1.035 2.192 1.115 2.172 1.117 
fins in the in-line 
arrangement 

Averaged over a 
module with fins 3.440 1.463 2.192 1.115 2.172 1.117 

Averaged over 
two successive 1.708 1.249 2.192 1.115 2.172 1.117 
modules 

to its asymptotic limit corresponding to the periodic fully de
veloped values. The development of Nu follows the same gen
eral pattern, the starting value of Nu being higher for higher 
values of /3. For a fixed L/D, a lower /3 implies a higher 
Reynolds number. A flow with a higher Reynolds number 
maintains its initial identity over a larger length because the 
increased convection in the axial direction causes the boundary 
effect to be felt less strongly. Therefore the number of modules 
required for the flow to become periodically fully developed 
increases with decreasing (3. Figure 6(b) also shows the devel
opment of module-averaged Nusselt numbers on the tube and 
the fin surfaces of the module. These are calculated using 
equations (9) through (11), except that the Q in equation (10) 
is now taken to be the total heat transferred in the module 
from the surface under consideration so that the overall mod
ule-averaged Nu is the sum of the Nu for the tube and the fin 
surfaces. As the flow travels through the tube, both the tube 
and the fin Nusselt numbers decrease, indicating the migration 
of the throughflow away from these surfaces and toward the 
core region. Figure 7 shows the variation of total pressure drop 
and the dimensionless bulk temperature with the dimensionless 
axial distance for geometry 1. Since, with a decrease in /3, the 
average friction increases, the pressure drops more rapidly for 
lower values of |3. Since at low values of (3, the flow in the 
entrance region has a higher heat transfer rate, the dimen
sionless bulk temperature also drops more rapidly for lower 
(3. Characteristics of the developing flow for geometry 1 and 
geometry 2 are qualitatively very similar. Therefore the detailed 
variations of the various quantities are not presented for ge
ometry 2. 

In-Line Arrangement 

Fully Developed Flow. Unlike the staggered arrangement, 
the values o f / R e and Nu for successive modules, each of 
length L, are not identical for the in-line arrangement because 
each finned module of length L is followed by a module in 
which the fins are absent. With this in view, the performance 
for the in-line arrangement is summarized in Table 1. As the 
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fluid moves through the module without fins, the velocity is 
redistributed across the cross section with a decrease in the 
central region and an increase near the tube surface. This causes 
a net decrease in the momentum efflux over the module, which 
almost balances the friction on the wall. Thus there is very 
little pressure drop across such a module. Table 1 shows that 
the/Re for a module without fins for geometry 1 is very small, 
whereas for geometry 2 the pressure actually increases across 
the module, as indicated by a negative value of /Re. (Inci

dentally, the slight adverse pressure gradient encountered does 
not cause any reverse flow. Thus, the parabolic calculation 
procedure is adequate.) In geometry 2, the redistribution is 
quicker due to a smaller defect in the velocity profile with 
respect to a parabolic profile, and the Nusselt number for 
module without fins is closer to Nu„ in geometry 2 than in 
geometry 1. This cross-sectionally uniform flow, after entering 
the module with fins, flows over the fin surfaces, which results 
in higher/Re and Nu than those for a module without fins as 
well as those for the modules in the staggered arrangement. 

It is interesting to compare the performance of a tube with 
an in-line fin arrangement to that of a tube with staggered or 
continuous fins. The values of/Re and Nu for a tube with 
staggered and continuous fins are listed in the table. The ef
fective values of/Re and Nu for the in-line arrangement, which 
can be compared with the corresponding values for the other 
arrangements, are obtained by averaging the respective values 
for modules with and without fins. These values are listed in 
the last row of the table. To understand clearly the relative 
performances, the variation of centerline velocity with axial 
distance for the staggered and the in-line arrangements of fins 
is presented in Fig. 8. Note that the centerline velocity in the 
in-line arrangement is always lower than that in the staggered 
arrangement. This implies a more uniform washing of the heat 
transfer surfaces. Therefore the heat transfer coefficient, based 
on the entire available heat transfer area, is highest for the in
line arrangement. The effective value of the Nusselt number 
is, however, lowest for the in-line arrangement because it is 
based on the nominal tube area and does not take into account 
the extra area of the fins in the other two arrangements. Note 
that, for both geometries, the in-line arrangement, in com
parison with the staggered arrangement or the continuous fin 
case, has significantly less pressure drop penalty with about 
the same augmentation of heat transfer. Similar relative per
formance is expected at other values of the Prandtl number 
or the axial length parameter because there is no fundamental 
change in the flow pattern. 

Developing Flow. Figures 9(a) and 9(b) give the development 
of module-averaged /Re and Nu for the in-line arrangement 
of fins for both the geometries. The values of/Re and Nu are 
now averaged over two successive modules, each of length L, 
so that the values of/Re and Nu at even values of N only are 
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meaningful. The trends are again very similar to those for the 
staggered arrangement of fins and need no further explanation. 
Figure 10 gives the variation of dimensionless pressure drop 
and dimensionless bulk temperature with the normalized axial 
distance. In the modules without fins, the pressure either re
mains almost constant or decreases depending upon the geo
metric distribution of fins. The bulk temperature drops at a 
slower rate in the modules without fins due to the decrease in 
the available heat transfer area. Again the geometry with taller 
and fewer fins has a better heat transfer performance as in
dicated by the more rapidly falling bulk temperature. 

Conclusions 
The fluid flow and heat transfer in a circular tube with 

staggered and in-line arrangement of longitudinal fins on the 
inside surface of the tube is investigated numerically. Com
putations are performed assuming the flow to be parabolic in 
the axial direction. After a certain initial length, the flow char
acteristics show periodically repeating behavior due to the pe
riodicity in the geometry. Results indicate that for low Prandtl 
number fluids, the heat transfer performances for a staggered 
arrangement of fins is actually worse than that for a tube with 
continuous fins. Calculations for the in-line arrangement in
dicate that this arrangement gives almost as much heat transfer 
augmentation as the staggered arrangement or the arrangement 
with continuous fins, but with a much lower pressure drop 
penalty. Results for the developing flow show that the module-
averaged friction factor and Nusselt number start from a high 
value and gradually tend toward the asymptotic value corre
sponding to the periodic fully developed flow with the devel
opment length being larger for smaller values of the axial length 
parameter. 
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The Characteristic Behavior of 
Finite Length Line Sources of Heat 
in a Crossfiow 
A modified simple integral model for plume behavior from finite length line sources 
of heat and momentum is presented that identifies observed trends in plume trajectory 
data. Experiments on several finite length line sources of heat and momentum in 
the form of elevated (rows of stacks) and surface (slot) releases were conducted 
in a water tunnel. Plume behavior was documented through detailed temperature 
measurements of the plume cross section and by photographing the dyed plume. 
Results indicate the nature of any plume trajectory and growth enhancement and 
confirm the empirical relation for the liftoff distance for a buoyant surface plume 
given by Meroney (1979). In addition to the liftoff distance, the shape of the plume 
contact zone was measured and related to various regions of plume trajectory and 
cross-sectional shape. Plume trajectories from elevated line releases are adequately 
predicted by standard single source formulations; however, plume cross-sectional 
area is significantly overpredicted. 

Introduction 
Most of the research conducted to date on the behavior of 

buoyant plumes released to the air environment has focused 
on those originating from a single elevated stack. There are 
of course many situations where the source geometry for buoy
ant plumes can take the form of area or finite length line sources 
of heat and momentum. Such sources can be, for example, a 
cooling pond, a row of similar height closely spaced stacks, 
exhaust vents, or fan shrouds from mechanical draft cooling 
towers. The often saturated plume from a cooling pond can 
move downwind attached to the surface for some distance, 
after which, given enough buoyancy, it can lift off from the 
surface. Similarily, the saturated plume from a mechanical 
draft cooling tower can under suitable downwash conditions 
attach itself to the surface only to lift off again at some distance 
from the source (see, for example, Slawson, 1982). Plumes 
from these sources often result in local fogging of the plant 
site and adjacent roadways creating a hazard for both plant 
personnel and the public. One in fact finds that in both the 
petrochemical and nuclear industries, the behavior of poten
tially hazardous buoyant releases from surface or near-surface 
sources, which can be of point, line, or area source geometry, 
is of interest to safety personnel. 

A simple integral model for plume behavior from finite 
length elevated and surface releases was given by Slawson 
(1976). In order to test some of the trends of plume behavior 
predicted by the model, a series of experiments on elevated 
and surface finite length line sources of heat and momentum 
in a crossfiow were conducted in a water tunnel (Hawker, 
1986). The buoyant plume trajectory, growth, and where ap
plicable, liftoff point were documented through detailed meas
urements of plume cross-sectional temperatures and 
photographs of the dyed plumes. A summary of some of the 
experimental results is given here. 

Experimental Technique 

Water Flume and Instrumentation. The test facility used 
was a recently constructed water flume in the Fluid Mechanics 

Contributed by the Heat Transfer Division and presented at the ASME Winter 
Annual Meeting, Chicago, Illinois, November 28-December 2,1988. Manuscript 
received by the Heat Transfer Division November 3, 1988; revision received July 
7, 1989. 

Laboratory at the University of Waterloo. The test section is 
1.22 m x 1.22 m in cross section with a working depth of 1.02 
m that is of uniform temperature. The flume length is 12.2 m. 
The test section has Plexiglas sidewalls over 2.4 m of its length 
to facilitate visual observation and photography. Various test 
models are accommodated through a removeable floor plate. 
Water is heated up to 90 °C and pumped to the models from 
a separate tank where three 9-kW immersion heaters under 
thermostat control and a recirculation system ensure that the 
supply temperature is constant. The various supply rates to 
the models are monitored with a range of rotameters. The 
source temperature is measured in the model manifold just 
prior to the exit. In the case of elevated sources, the error 
included in a nondimensional temperature difference by meas
uring the exit temperature in the manifold, rather than directly 
at the exit, was less than 1 percent. A Novar Streamflo pro
peller-type anemometer was used to document velocities in the 
flume to within ± 0.2 cm/s with a lower limit of 2.5 cm/s. 
No attempt was made to simulate the neutral planetary surface 
layer velocity profile for these specific studies. Two of the 
velocity profiles used for the present work are illustrated in 
Fig. 1. All temperatures and velocity data are retrieved and 
processed through a data acquisition system consisting of a 

50 

O 
40 

N 

IE 
O 
UJ 

30 

20 

10-

D PROFILE 1 
o PROFILE: 2 

VELOCITY, U (CM/S) 
Fig. 1 Velocity profiles in ihe water flume test section 

15 

Journal of Heat Transfer MAY 1990, Vol. 112/349 

Copyright © 1990 by ASME
Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



datalogger, a microcomputer, plotters, printers, and a main
frame computer. 

Plume trajectory, growth, and liftoff were documented both 
from 35 mm color slide film photographs of the dyed plume 
at 10 s intervals and temperature cross-sectional measurements. 
Ten individual photographs of visible plume outlines, covering 
some 100 s were projected and traced onto paper, then digitized 
to construct a single time-averaged plume trajectory, growth, 
and liftoff distance. Temperatures were measured with a rake 
of L-shaped thermistor probes mounted on a permanently 
installed x-y-z traversing mechanism. Plume cross-sectional 
isotherms were constructed using fime-averages of the non-
dimensional temperatures defined by 

T -
,J T,~ 

1000 

where for each scan / of the rake of probes: Tp is the measured 
plume temperature of probe j , Tr is the ambient reference 
temperature of probe j obtained in the ambient flow just prior 
to the plume measurement, 7} is the jet exit temperature, and 
Ta is the (upstream) flume water temperature obtained simul
taneously with the plume measurements. Between 7 and 11 
cross sections were used to define a single plume. Plume tra
jectory and growth were based on the 25 percent nondimen-
sional isotherm since it is best agreed with the visible boundaries 
extracted from the dyed plume photographs. For surface line 
sources, the distance to plume liftoff XL is measured from the 
source to the point where the 25 percent nondimensional iso
therm detaches from the flume floor. Extra plume cross sec
tions were obtained in this vicinity and the actual liftoff point 
was linearly interpolated between neighboring cross sections. 

The estimated uncertainties for the data extracted from plume 
photographs are as follows: z(x) (trajectory) ±10.0 percent; 
^ , ± 0 . 0 3 m. Temperatures are resolved to 0.01 °C and the 
uncertainty in temperature differences is ±0.02°C. The esti
mated uncertainties in data extracted from the temperature 
measurements are: z(x) (trajectory)±7.5 percent; A^±0.02 
m. 

Models. A series of nylon tube stacks 2.5 cm high with an 
exit diameter of 0.28 cm and separated by 2 cm were used to 
represent an elevated line source of heat and momentum 
emitted normal to the crossflow. The length of the line of 

stacks could easily be changed by fixing more or fewer stacks 
in predrilled plugged holes in the surface plate of the source 
manifold. Elevated line lengths of 4, 8, 16, and 20 cm cor
responding to 3, 5, 7, 9, and 11 stacks were used in this initial 
study. The ratio of stack exit velocity to the ambient mean 
flow velocity at stack height (K) and the exit Froude number 
(Fr) were varied from 1.4 to 10 and 4.7 to 30, respectively, 
where 

Fr = V0 /(gL(AP o /P o))1 / 2 (1) 

L is a source length scale, and gAp0/p0 is the source buoyant 
acceleration. 

Line lengths of 6.15, 12.15, and 20.35 cm with a slot width 
of 0.25 cm were used to model the surface line sources and 
like the elevated sources were oriented normal to the crossflow. 
Exit Froude numbers (Fr) ranging from 1.8 to 8.6 with velocity 
ratios (K) ranging from 0.71 to 3.1 were used in the surface 
line source experiments. Temperature cross sections were typ
ically measured at distances of 2 to 140 cm downstream from 
the source. Detailed temperature measurements were made 
near the observed region of liftoff of the dyed plume for the 
surface releases in order to determine the liftoff point accu
rately. A similar set of experiments on surface line sources 
were conducted in a previous water flume; however, interpre
tation of the liftoff point was made from photographs only. 

Theoretical Considerations 

Elevated Finite Length Line Sources. The simple integral 
model for plume rise and growth given by Slawson and 
Csanady (1967, 1971), Briggs (1969), and many others for a 
single circular source was modified by Slawson (1976) so that 
it might apply to finite length elevated and surface line sources 
of heat and momentum in a crossflow. The essential difference 
between the single circular model and the finite length line 
source model is the assumption of a cigar or sausage-shaped 
plume cross section for the latter. This sausage shape consists 
of a rectangular midsection with semicircles attached at either 
end as illustrated in Fig. 2. The area of the plume element is 
assumed to grow uniformly within the plane of the element, 
allowing a single entrainment coefficient similar to that found 
in single source models. The distance L0 might represent the 
distance between the centers of the outside stacks in a row of 

Nomenclature 

A = 

b = 

C = 

d = 

Fr = 

g = 

K = 
L = 

L„ = 

h = 

plume cross-sectional area = 
irR2 + 2RL0, m2 

buoyant acceleration =gAp0/ 
Po, m/s2 

plume circumference = 
2irR + 2L0, m 
stack diameter or slot width, 
m 
source buoyant flux = 
b„A0V0, m4/s3 

jet densimetric Froude num
ber = V0/(gL(&p0/Po))"

2 

gravitational acceleration, 
m/s2 

velocity ratio = V0/Ur 

exit length scale, m 
plume width in contact with 
surface, m 
line length, m 
buoyant length scale = 
b0Q0/U\ m 

Ihf — 

Ihv ~ 

L = 

M = 

N = 

n = 
Q = 

R = 
Ro = 

T = 
U = 

buoyant length scale for an el
evated line source = b0UQ0/ 
nlflr, m 
buoyant length scale for a 
ground-based line source = 
d0b0Q0/L0U\ m 
momentum length scale = 
(M0/U

2)y2, m 
momentum length scale for an 
elevated line source = (M0 / 
nU2

r)
y2, m 

vertical momentum flux = 
AUw, m4/s2 

nondimensional temperature 
= W00(Tp-Tr)/(Tj-Ta) 
number of stacks 
volumetric flow rate = AV, 
m3/s 
plume radius, m 
stack radius, m 
temperature 
an ambient velocity, m/s 

V = 
Ve = 
Vf = 

XL = 
x — 
y = 
z = 
£ = 

A p 0 = 

P = 

jet velocity, m/s 
entrainment velocity, m/s 
plume velocity in z direction, 
m/s 
plume liftoff distance, m 
downstream distance, m 
cross-stream distance, m 
vertical distance, m 
entrainment coefficient 
density difference between exit 
and ambient fluids, kg/m3 

density, kg/m3 

Subscripts and Superscripts 
a = 
j = 
o = 
P = 
r = 

(") = 

= ambient or upstream 
= jet 
= initial or source value 
= plume 
= reference 
= denotes average value over 

plume rise region 
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Fig. 2 Assumed cross-sectional shape of the elevated finite length line 
source plume 

Table 1 Asymptotic behavior of a bent-over finite length line 
source of heat and momentum 

L0>>>z L0<<<z 
bent-over 
line source 
(momentum) 
bent-over 
line source 
(buoyancy) 

Z \ 
r 

:^/: 

stacks normal to the crossflow. At some point downstream of 
the row of stacks the individual plumes will have merged to
gether to form a shape similar to that of Fig. 2. The model is 
intended to apply from this point of merging. 

The conservation equations of mass, vertical momentum, 
and density deficiency applied to the above element for a well 
bent-over plume in a neutral crossflow take the familiar form 

(AU) = Cve 
dx 

U—(M)^F 
dx 

dx 

(2) 

(3) 

(4) 

where the Boussinesq approximation has been applied, the 
plume velocity V is assumed approximately equal to the am
bient velocity U (low plume angle to the crossflow), and top-
hat distributions of all plume parameters are assumed. In these 
equations ve is an entrainment velocity (t>e = /3w) where w is 
the vertical drift velocity of the element and j8 is an entrainment 
constant, M is the vertical momentum flux of the plume 
(M=AUw), and F is the flux of buoyancy (F=AUb) where 
b is a buoyant acceleration (b = gAp0/p0). The cross sectional 
area and circumference of the plume element are given re
spectively by 

A = irR2 + 2RL0 (5) 

C=2irR + 2Ln (6) 

The parameters w, U, z, and x are related by the kinematic 
relation 

dz 
w=U—-

dx 
(7) 

Equations (2)-(7) can be solved analytically for uniform or 
constant crossflow velocity, or numerically integrated for a 
nonuniform velocity profile, to obtain the plume rise z as a 
function of downstream distance z- The analytical solution is 
discussed here as it more readily allows for a physical inter
pretation of the characteristic behavior of the finite length line 
sources. The solution is found as follows. Integrating equation 
(4) yields 

AUb=F„ = const (8) 
Substituting equation (8) into equation (3) and integrating with 
the initial condition M=M0 at x = 0 yields 

M=-£x + M0 (9) 

Differentiating equation (5) and substituting the result into 
equation (6) yields 

dA 

dR 
-=C (10) 

Substituting equations (7) and (10) into equation (2) and in
tegrating yields 

R=R0 + pz (11) 

Equation (11) describes the change in plume radius with height 
above the source and is identical to that found for the single 
circular source, or by setting R0 = 0, the point source. This is 
not an unexpected result since it is assumed that the plume 
grows uniformly in all directions within the plane of the cross 
section, just as in circular cross-sectional plumes. Finally, sub
stituting equations (5), (7), and (11) into M=AUw of equation 
(9), integrating, and nondimensionalizing with lb produces a 
cubic equation for plume rise z as a function of x as given by 

(12) 

where the coefficients a\ and a2 are constants for a given finite 
length elevated line source and are given by cii = (3C0)/(27r|3/6) 
and a2 = (3A0)/(irP2ll). In equation (12), lb is a buoyant length 
scale defined by lb = F0/U

3 and represents the total flux of 
buoyancy divided by the ambient velocity cubed. 

For a point source of initial momentum and buoyancy (but 
no initial radius), a, and a2 become zero and equation (12) 
reduces to the familiar 1/3, 2/3 law formulation (as given by 
Briggs, 1975a, for example) 

1/3 
z(x) = Z(?lb+2xfo (13) 

where lb and lm are the buoyant and momentum length scales 
for the point source. The limiting cases of equation (13) are 
the 1/3 law for bent-over jets (Jm>>>lb) and the 2/3 law for 
bent-over plumes (lb > > > lm) given by 

1/3 / v \ 1/3 
(14) 

£ / 3 \ m fx\ ' 

(15) 

The corresponding forms of equations (14) and (15) for a finite 
length line source of zero initial radius are found from equation 
(12) and are given by 

\ij +^rm (jj =ri%, (16) 

@'+%®'-&®' <» 
Inspection of equations (16) and (17) for L0> > >z (long line 
source of heat or momentum) and L0< <<z (approaching a 
point source) produces the asymptotic results given in Table 
1. Thus, one would expect to find a parabolic rise region near 
the source of a bent-over line source of momentum, followed 
by the familiar 1/3 law region at greater distances from the 
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Fig. 3 Elevated line source photographic trajectories with nondimen- Fig. 4 Elevated line source photographic trajectories with nondimen-
serialization by /„ based on [}, for varying source lengths at a constant sionalization by /„. based on Ur (or varying source lengths at a constant 
velocity ratio K=6.5 velocity ratio K=6.5 

source. Similarly, a linear region should exist in the near-field 
of long sources of heat ultimately reducing to the 2/3 law 
region far away from the source. A two-dimensional line source 
of heat at ground level where L0=» oo should show, according 
to Table 1, that the depth of the thermal boundary layer (R) 
grows linearly with distance. Rouse (1947) found that a linear 
growth adequately describes his data. 

Surface Finite Length Line Sources. The surface line source 
of heat and momentum is modeled using the same equations 
(2)-(7) as those for the elevated source, except the circum
ference of the plume cross-sectional element is reduced by an 
amount Lc in contact with the surface. While the plume is 
attached to the surface the plume radius is assumed equal to 
the height of the center of the plume above the surface. As 
the plume element grows by entrainment of ambient fluid 
around that part of its circumference not in contact with the 
surface, the length of the contact zone is assumed to diminish 
linearly with distance as 

Lc = L0(\-x/XL) (18) 

The assumed form of equation (18) requires experimental ver
ification. Also, an empirical formulation for the liftoff distance 
XL is required. 

Although the model that is presented here is very simplistic 
in its treatment of the rather complicated physics of the be
havior of finite length line sources of heat and momentum in 
a crossflow, it does serve to indicate some expected trends. 

Results and Discussion 

Elevated Finite Length Line Sources. The elevated line 
source (series of stacks) experiments provide a data set with 
which the present experimental technique could be tested to 
ensure that observed plume behavior is similar to that found 
in both field and other laboratory experiments. Also, as many 
as eleven stacks (20 cm line length) were used to determine to 
what extent, if any, the plume trajectory was altered due to 
this source geometry, and to provide data for comparing with 
the theoretical predictions. Overcamp (1982) suggests, as has 
Briggs (1975b), that there is little trajectory enhancement for 
multiple stacks aligned in a row, perpendicular to the mean 
wind direction. Most industrial stacks are separated by enough 
stack diameters that blockage to the oncoming flow is minimal 
and individual plumes or heated jets merge at a point far 
enough downstream that plume excess temperature has di
minished drastically, resulting in little buoyancy enhancement 
of the merged plumes. The present experiments generally con
firm this observation. However, as source line length was in

creased, reduced rates of rise were observed in the near-field, 
which can be attributed, in part, to the effects of flow blockage, 
followed by slightly enhanced rates of rise in the early buoyancy 
dominated region. Any down wash effects, which might have 
occurred at K values less than about 1.5, were masked by the 
effects of flow blockage. Figure 3 illustrates the observed tra
jectories for the indicated source line lengths of model stacks 
with the data nondimensionalized by lb using Ur taken at the 
model stack height. The source Froude number was essentially 
constant for these experiments at 21 ± 1 and the ambient ref
erence velocity Ur at 2.5 cm was 7.5 cm/s as given in profile 
1 of Fig. 1. From Fig. 3 one can see that the trajectory from 
the shortest line length of 4 cm (3 stacks) clearly exhibits the 
familiar 1/3 power law behavior attributed to momentum-
dominated heated jets in a crossflow, followed by a 2/3 power 
law behavior for the buoyancy-dominated region. However, 
as source line length increased to a maximum of 20 cm (11 
stacks), the rate of rise in the momentum dominated near-field 
diminished to a 1/5 power law, clearly indicating flow blockage 
effects not accounted for by the theory, which predicts a 1/2 
power law as given in Table 1. Careful inspection of the data 
of Fig. 3 does show some evidence of a 1/2 power law beyond 
the initial flow blockage region for line lengths of 16 and 20 
cm. In the buoyancy-dominated region a linear rate of rise is 
observed as predicted by the simple integral model. This, of 
course, is with the data nondimensionalized by the buoyancy 
length scale lb, which includes the entire heat flux from all 
stacks in a given line source. Some increased rate of rise for 
longer source lengths is expected in the buoyancy-dominated 
region as the circumference to cross-sectional area ratio of the 
plume decreases and thus reduces the effective rate of entrain
ment of ambient air. 

The separation of the trajectory data of Fig. 3 can be reduced 
considerably, as shown in Fig. 4, when the data are nondi
mensionalized with the buoyancy length scale for a single stack 
(lbe). Figure 4 more clearly defines the 2/3 power law region 
for this data. Figure 5 illustrates some 22 trajectory experiments 
with velocity ratios between 1.5 and 20, and source Froude 
numbers between 5 and 60. The data illustrate the characteristic 
1/3 and 2/3 power law behavior of a single plume trajectory 
when the observations are nondimensionalized by lbe. The data 
of Fig. 5 suggest that any enhanced rate of rise for individual 
plumes is masked by an rms error band of approximately 15 
percent. A best fit of equation (13) to the observed trajectories 
results in an entrainment coefficient (3 of 0.6, precisely that 
found by Briggs (1975a) for full-scale plumes. It would seem 
that the present physical model results adequately simulate 
observed plume trajectories from full-scale field observations, 
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Fig. 5 Elevated line source trajectories with nondimensionalization by 
It, based on U, from 22 photographic experiments with varying values 
for velocity ratio (K) and source Froude number 

without necessarily simulating the velocity profile of the at
mospheric surface layer. 

In the case of fogging problems at relatively short distances 
from a source one would like to predict the concentration of 
water vapor or specific humidity within the plume. These cal
culations require accurate prediction of plume cross-sectional 
area and sometimes shape, as a function of distance along the 
plume trajectory in addition to the trajectory itself. Figure 6 
illustrates typical plume cross-sectional area and shape at sev
eral nondimensional distances (x/lbe) downstream of a 12 cm 
elevated line source for lbe = 0.142. This figure clearly shows 
the evolution from the sausage shape to the typical kidney-
bean shape at intermediate distances and finally to a nearly 
circular shape at large distances from the source. The presence 
of the familiar counter rotating vortex pair is indicated in the 
last two isotherm plots. 

One would expect the 2/3 law for plume trajectory to hold 
where the plume has approached the assumed circular cross-
sectional shape upon which this formulation has been derived. 
Indeed, upon inspection of some of the elevated plume ob
servations it was found that when the plume cross section 
achieves a roughly elliptical shape of aspect ratio (major to 
minor axis) of 2 or less the plume trajectory has entered a 
2/3 power-law region. 

Preliminary comparisons of observed and predicted plume 
cross-sectional areas, where the plume edge was assumed to 
be predicted by the 25 percent nondimensional isotherm, using 
various forms of the integral model (analytical and numerical 
integration models) indicates that a numerical integration model 
is required for best results. The numerical integration model 
is similar to that given by Slawson (1978) and is required 
primarily in order to incorporate the effects of mean flow 
vertical shear. Although the analytical model (equation (12)) 
adequately predicts plume trajectories, it vastly overpredicts 
plume cross-sectional area. This is attributed to the use of a 
single entrainment coefficient that was extracted only from 
observations of trajectory. Further work on model develop
ment and comparison with the rather large data set is in prog
ress. 

Surface Finite Length Line Sources. Figure 7 is similar to 
Fig. 3 except that the observed trajectories are for surface finite 
length line sources. Here, as in Fig. 3, the individual rates of 
plume rise for various line lengths are clearly indicated by the 
different slopes. Also, this figure shows plumes that appear 
to contain regions with rates of rise that correspond to those 
predicted by the simple integral model of 1/2, 1/1, and 2/3. 
However, similar attempts to collapse the observed surface 
released trajectory data onto a single curve resulted in an un
acceptable rms error of approximately 29 percent, as illustrated 
in Fig. 8. This large error can, in part, be attributed to the 
very strong shear layer near the surface and the different lift-
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Fig. 6 Measured nondimensional cross-sectional isotherms for a 12-
cm elevated line source at a nondimensional distance x/lb, = (a) 141, (b) 
528, and (c) 985 

off points for different sources. Few attempts to describe the 
observed trajectories of individual plumes using the present 
integral models have been made so far as further work is 
warranted. 
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Fig. 8 Ground-based line source trajectories with nondimensionali
zation by lbg based on U 

Plume Liftoff. Meroney (1979) suggested a formulation 
for the liftoff distance given by 

XL/lb = a(L0/lb)
3/1 (19) 

where for his data the constant a equals 0.24. Slawson (1984) 
obtained a similar result but with the constant a equal to 1.3. 
The constant a in equation (19) depends on the valueof the 
ambient reference velocity Un used in defining lb=F0/lfir. The 
reference velocity depends on the ambient velocity profile and 
the height at which it is taken within a given profile. An analysis 
of the present data on liftoff, where three different velocity 
profiles were used, found that the best choice of reference 
velocity was that associated with the free-stream flow or region 
of the flow above which a log-law formulation of the velocity 
profile was valid. Based on a reference velocity chosen in this 
way, a fit of the data to equation (19) resulted in a value for 
the constant a of 0.84. Figure 9 illustrates the resultant for
mulation. Meroney's data on liftoff were based on effluent 
emissions in a coflowing stream, whereas the present data are 
for emissions normal to a crossflow. The ratio L0/ 
lb= (L0Ul)/F0; thus equation (19) indicates that increased line 
length or wind speed delays plume liftoff whereas increased 
source heat flux hastens it, as Meroney (1979) pointed out. He 
also concluded that liftoff will be delayed by increased mean 
flow shear. The present data support these logical conclusions. 

100 

x 

10 

XL/4 = 0.84(UA) 

RMS ERROR = 23.9% 

a 1977 PHOTOGRAPHIC DATA 
o 1985 TEMPERATURE DATA 

10 

LA 
100 1000 

Fig. 9 Ground-based line source liftoff distance with nondimension
alization by lb based on U, at 10 cm 

Y (CM) 
Fig. 10 Typical shape of the plume footprint for a 12-cm ground-based 
line source 

In determining plume liftoff location, the shape of the so-
called plume footprint, which defines the plume surface at
tachment zone, was also documented. Figure 10 illustrates one 
example of a plume footprint. This contact zone is required 
in order to assess that portion of the plume elemental circum
ference available for entrainment of ambient fluid in accord
ance with the simple integral model. On average, over the 
distance to liftoff, the postulated form of this contact zone 
given in equation (18) is not an unreasonable representation. 
The shape of the contact zone can be explained by considering 
three regions whose characteristics were found in the majority 
of the data. The first region is characterized by a contraction 
of the footprint immediately downstream of the source. This 
is caused by the flow of ambient fluid into the low-pressure 
region immediately downstream of the vertically emitted ef
fluent. The second region, which is characterized by a rapid 
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decrease in the width of the footprint, coincided in most cases 
with the transition from the 1/2 law of a momentum-domi
nated plume to the 1/1 trajectory slope region of a buoyancy 
dominated plume. The third region where the contact zone 
width is reducing at a much lower rate than that of the second 
region was most often associated with the transition from a 
1/1 to a 2/3 slope of the buoyancy region. 

Conclusions 
The trends in plume trajectory predicted by the simple closed-

form integral model were found in the observations of both 
elevated and surface line' sources of heat and momentum. A 
plume trajectory formulation, based on a single source, ade
quately described the plume rise with distance from the source 
for the elevated line sources (row of stacks). Individual plume 
rise enhancement subsequently became lost in a 15 percent rms 
scatter about the single source best fit trajectory line. 

A formulation for plume liftoff suggested by Meroney (1979), 
adequately describes the liftoff distances presented here as a 
function of source Froude number. Limited observations on 
the form of the surface contact zone before liftoff of a surface 
line source suggest that the simple linear formulation given by 
Slawson (1976) suitably describes the contact zone. 
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Three-Dimensional Buoyant Wail 
Jets Released Into a Coflowing 
Turbulent Boundary Layer 
Experiments have been conducted in a water flume to simulate finite-length line 
sources of heat that issue horizontally at ground level into a coflowing turbulent 
shear flow. The downstream development of each buoyant jet is documented by 
detailed mean temperature measurements, which are analyzed to determine the jet 
trajectory, spread rates, and distance to the point of liftoff from the surface. In 
addition, a three-dimensional, parabolic, numerical model based on the fundamental 
conservation equations is developed. Model predictions of several buoyant jets 
compare reasonably with the experimental data and suggest that the strength of the 
streamwise vorticity plays an important role in governing liftoff of a buoyant wall 
jet from the surface. 

Introduction 
A problem of interest to industry and regulatory authorities 

entails the prediction of the dispersion of a potentially haz
ardous continuous plume released at or near the ground. These 
plumes are observed in the vicinity of low-elevation industrial 
stacks, cooling towers, ponds, canals, accidental releases from 
nuclear power plants, or forest fires. For these situations, the 
nature of the plume rise depends upon how the plume buoyancy 
interacts with the ambient crossflow. In the case of a surface 
or very near-surface release, the plume may diffuse like a 
passive contaminant and remain attached to the surface. This 
is likely to occur for initially low or moderate plume buoyancy 
that is quickly diluted by the entrainment of high-velocity 
ambient fluid. When the plume buoyancy is somewhat greater, 
the plume rises with enhanced vertical dispersion relative to a 
nonbuoyant release but still remains attached to the surface. 
Finally, under high source buoyancy or low ambient velocities, 
the plume may be expected eventually to lift off from the 
surface leaving only a trace behind (Fig. 1). 

The current study extends the previous work on surface 
releases of Meroney (1979) and Slawson et al. (1986, 1988), 
by acquiring mean temperature measurements of buoyant wall 
jets in a coflowing turbulent boundary layer. Plume liftoff is 
affected by changing the jet temperature, jet velocity, or jet 
orifice geometry. In addition, a three-dimensional, parabolic, 
numerical model based on the fundamental conservation equa
tions is developed and tested against experimental data. The 
model attempts to evaluate the utility of employing a Prandtl 
mixing-length hypothesis in the turbulence closure. Model pre
dictions of buoyant jet liftoff distances, trajectories, and spread 
rates are compared with experimental data. In addition, further 
insight is gained from analyzing the flow details predicted by 
the model. 

Experimental Techniques 
Water Flume. The experiments were conducted in a closed-

loop water flume 13 m long, with test section 1.2 m wide by 
0.9 m deep. The test section is visible through a Plexiglas 
sidewall for a length of 2.4 m. A traversing mechanism with 
three degrees of freedom is used to position probes throughout 
the test section. Jet-orifice models are installed in a removable 

floor plate in the test section to which heated water of constant 
temperature is pumped through a manifold. 

Three models were constructed to provide rectangular wall 
jets with slot length-to-height aspect ratios 7 of 1.0, 40.7, and 
81.4. Slot I is a low-aspect-ratio model with outflow cross-
section dimensions of 0.01 m x 0.01 m. Slot III is a high-
aspect-ratio model with dimensions of 0.114 m x 0.0014 m, 
and slot II was constructed by modifying slot III to a config
uration of dimensions 0.057 m x 0.0014 m. 

Velocity Measurement. Figure 2 illustrates a vertical pro
file of the mean streamwise velocity component of the ambient 
flow measured with a single-component laser-Doppler ane-
mometry system (Sinclair, 1986; Tropea et al., 1986). The 
equipment consists of an Argon-Ion laser and standard TSI 
900 & 9000 optics setup to transmit the two light beams through 
the Plexiglas side walls of the water flume. Forward scattered 
light is reflected back by an angled plane mirror located on 
the opposite side of the water flume. The photomultiplier signal 
is passed to a countersignal processor, which feeds the Doppler 
data via DMA to an IBM PC/AT computer where online 
velocity statistics are computed, data are archived, and plots 
are generated. 

Mean Temperature Measurement. Mean temperature dis
tributions are measured at several stations downstream of the 
buoyant wall jet source with a horizontal rake of 15 temper
ature probes. Each L-shaped probe is constructed using a YSI 
44201 thermistor and 0.0032-m-dia stainless steel tubing. Am
bient flume water temperature is monitored with a probe 
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Fig. 2 Vertical profile of the nondimensionalized mean streamwise ve
locity, U/Um, and turbulent intensity, o7t/„, measured at the center of 
the water flume 0.30 m upstream of the jet-orifice model. The vertical 
distance from the floor of the water flume is nondimensionalized by the 
boundary layer thickness 5. 

mounted upstream of the test section. Jet exit temperature is 
monitored with a probe mounted in the supply manifold. All 
thermistor probes are interfaced through an excitation and 
linearizing circuit to a Fluke 2200B datalogger. Temperatures 
are resolved to within ±0.01°C with this system, and uncer
tainty in calculated temperature differences for a given probe 
is determined to be ±0.02°C. 

A single experiment or plume is made up of 4 to 7 cross 
sections. Each cross section is made up of seven vertical po
sitions of the horizontal probe rake. Time-averaged nondi
mensionalized temperature differences for each probe, (7^),, 
are accumulated on an HP 85 computer and uploaded to a 
VAX 11/750 minicomputer where contour plots are prepared 
of cross-sectional isotherms based on a percentage of the max
imum nondimensionalized temperature in the cross section 
array (e.g., Fig. 3). These plots provide a basis for further 
reduction of the temperature data to a set of effective plume 
variables, which describe the position, size, and shape of the 
plume. This is accomplished by fitting an equivalent area ellipse 
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Fig. 3 Measured temperature cross section 

to the 25 percent isotherm region of each cross section. The 
25 percent isotherm is used here to describe the plume geometry 
because it was found to agree with the mean visible plume 
boundaries as identified through dye releases. 

The following procedure, proposed by Slawson et al. (1986), 
is used to position the ellipse. The vertical position (z) is based 
on the midpoint of the 50 percent isotherm and then the major 
axis {L = 2a) is taken as the width of the 25 percent isotherm. 
Nominally, the semiminor axis (b = H/2) is determined from 
A/ira, where A is the measured area of the plume within the 
25 percent isotherm. If z is less than b a portion of the ellipse 
is positioned below the flume floor and b is adjusted in order 
that the above-floor area of the ellipse matches the cross-
sectional area of the plume. 

Uncertainties in these data are estimated by comparing the 
values of the effective plume variables abstracted from re
peated measurements of the same cross sections taken after a 
complete restart of an experiment. The estimated total uncer
tainty (Sinclair, 1986) in the calculated plume trajectories is 
approximately ± 13 percent and the uncertainties in the spread 
rates are ±10 percent. 

In a manner consistent with the above definitions, the plume 
liftoff distance xL is defined here as the distance from the exit 
plane of the orifice to the location where the 25 percent iso
therm of the nondimensional temperature field separates from 
the floor of the water flume. Liftoff distances are determined 

Nomenclature 

a, b = 

a, = 
A = 

B = 
CP = 

Fr0 = 

g = 

H0 = 
H = 
L = 
L = 

L0 = 
L. = 

M = 

semimajor and semiminor axes of elliptical 
cross section 
buoyancy parameters in turbulence model 
cross-sectional area within 25 percent iso
therm 
source buoyancy flux = (Ap/po)gQ0 

specific heat at constant pressure 
source Froude number = (U3JL»/B)m 

gravitational acceleration acting in the nega
tive z direction 
height of wall jet source orifice 
plume vertical extent in cross section 
Monin-Obukhov length scale 
mixing length for turbulence model 
length of plume source orifice 
characteristic length scale = A0

n 

streamwise mass flux in a given vertical sec
tion of the flow 

P 
Pr 
P, 

(Q'rh 

Qo 
Ri 

RM 

R0 

Re0 

T 
(TN)i 

U„ 

Ur = 

pressure 
Prandtl number 
streamwise pressure in decoupling assump
tion of the parabolic equations 
— pCptij T' = turbulent heat flux in j direc
tion 
source volume flow rate = UgHoL0 

gradient Richardson number 
integral mass flux ratio _ 
source velocity ratio = \J0/Ua 
source Reynolds number = UoHJv 
mean temperature 
= (jplume _ Tambient) / (T0-T„) = nondi-

mensionalized temperature, for / = 1, 15 
probes 
= 0.0468 m/s = integral average ambient 
velocity over depth of jet (0.03 m in these 
experiments) 
friction velocity 
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by linear interpolation between the neighboring vertical cross 
sections of the measured temperature field. These locations 
and the estimated uncertainties are reported in Table 2. 

Mathematical Model 
In previous studies, prediction of the trajectory and growth 

of a buoyant jet or plume near a surface has been approached 
with analytical and integral methods. In this study, a three-
dimensional, parabolic, finite-volume model is developed using 
the time-mean equations for incompressible turbulent flow. 
One aim of the model is to evaluate the applicability of a 
Prandtl mixing-length hypothesis in the turbulence closure. 
The mixing-length function proposed varies continuously 
through jetlike, plumelike, and boundary-layer-like regions of 
turbulent diffusion, and tries to account for the local influence 
of buoyancy in enhancing or suppressing turbulence. 

Governing Equations. The predominantly one-way flow in 
the flume is modeled in a Cartesian coordinate system with 
time-mean equations formulated for the parabolic streamwise 
flow. The standard mass, momentum, and energy conservation 
equations for steady flow are simplified by introducing: the 
Boussinesq approximations; the parabolic approximations: (i) 
Pd (x, y, z) = Ps(x) + p (x, y, z) where dp/dx «dPs/dx, 
(ii) U » V, W, and (Hi) d/dy, d/dz » d/dx; the Boussinesq 
assumption for turbulent stresses oy; = -puj u/; and the gra
dient diffusion hypothesis for turbulent heat flux terms (q'T)j 

= pcpUj T'. The conservation equations lead to five equations 
for thirteen unknowns (U, V, W, T, p, dPs/dx, a'yx, a^, a" , 
o ,̂, a'a, (q'j)y, (q'j)z). One of the unknowns is eliminated by 
specifying dPs/dx = 0. This has been found to be a reasonable 
approximation based on previous measurements in the water 
flume (Sinclair, 1986). Closure of the equation set requires a 
turbulence model parameterization of ô . and (q'j)j and bound
ary conditions. 

Turbulence Model. The unknown correlations in the mean 
flow equations express transport of momentum, heat, and mass 
by the turbulent motion. Following the usual Boussinesq tur
bulent viscosity approach, turbulent stress is modeled by the 
same type of stress-strain relation as in a laminar Newtonian 
flow: 

, , / dU, dU\ 

Nomenclature (cont.) 

U„ = »0.067 m/s = free-stream velocity 
U, V, W = streamwise, lateral, vertical mean velocities 

x, y, z = streamwise, lateral, vertical coordinates 
xL = distance from source to separation of 25 

percent isotherm from the surface (plume 
liftoff) 

Z/ = height of the edge of the shear layer, i.e., 
outer extent of wall jet 

7 = source aspect ratio = L0/H0 
8 = =0.068 m = boundary layer thickness; 

U(z = S) = 0.99t/„ 
K = von Karman's constant 
X = mixing length profile parameter 

ix, v = dynamic and kinematic viscosity of fluid 
p = mass density of fluid 

aJY = -puju! = turbulent shear stress (flux of i 
momentum in j direction) 

<j>H = dimensionless temperature gradient 
4>M = dimensionless wind shear 

where the turbulent viscosity \t! is a turbulent flow parameter 
to be determined. 

The turbulent heat flux is calculated from 

The gradient diffusion hypothesis used here and the mixing-
length closure described below have several limitations in com
plex flows. However, the attractions to this class of model are 
its simplicity, the cost advantage in development and operation 
of the model, compatibility with the generally limited exper
imental data available, and most importantly, the ease in which 
the researcher may draw on his understanding of the physics 
that affect the bulk features of the flow. The performance of 
this model also will guide future modeling efforts. 

Mixing Length. Application of the parabolic approxima
tions reduces the generalized form of the usual mixing-length 
formula (Patankar, 1975) to 

Here, streamwise gradients (d/dx) are ignored in diffusion type 
terms, and normal-stress gradients (dV/dy), (dW/dz) are ig
nored since they are likely to be small relative to shear-stress 
gradients. In addition, the dimensionless wind shear <j>M is 
included to account for enhanced or suppressed turbulent mix
ing due to buoyancy effects. <j>M is traditionally seen in simi
larity analysis of the temperature stratified, constant stress 
layer of the atmosphere, although here it is a local parameter 
that varies throughout the buoyant jet/plume. 

Specification of lm requires careful consideration since it is 
recognized that many scales are present in this buoyant-jet/ 
plume flow. Figure 4 highlights the main features of the flow, 
where it is hypothesized that a two-region, flat-plate boundary 
layer model will provide a basic structure for the mixing length 
profile. This model follows that of Patankar and Spalding 
(1970) 

lm = Kz[l-exp(-z+/A+)] Z<\Z,/K (4) 

lm = \zi \Z/K <z<z/ (5) 
where z+ = zUT/v is a nondimensional vertical distance above 
the wall, UT is the friction velocity, v is the kinematic viscosity 
of the fluid, A+ » 26. is a profile constant, K = 0.4 ± 0.1 
is von Karman's constant, and z, is the location of the edge of 
the shear layer. Far away from the jet, in the lateral O) di-

Subscripts 
d = dynamic quantity 

/', j = Cartesian tensor notation 
o = jet exit condition 

oo = ambient flow condition 

Superscripts 
t = turbulent quantity 

Acronyms 
ADI = Alternating Direction Implicit line solver 

DMA = Direct Memory Access 
SIMPLEC = consistent time-step formulation of the 

Semi-Implicit Method for Pressure-Linked 
Equations 

TSI = Thermal Systems Incorporated, Minneapo
lis, MN 

YSI = Yellow Springs Inst. Co., OH 

358/Vol. 112, MAY 1990 Transactions of the ASME 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
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STREAMWISE FLOW 
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25 % ISOTHERM 
OUTLINE SHOWS 
BOUNDARY OF 
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WALL JET 

Fig. 4 Jet-boundary layer flow regimes: Region (I) Wall-bounded shear 
flow: flow momentum is lost to the wall by means of skin friction and 
fluid viscosity. The presence of the wall damps turbulent fluctuations 
normal to it. Region (II) and (III) Mixing layer flow: the top and side 
boundaries of the jet/plume mix with the coflowing ambient boundary 
layer flow. There is high shear production of turbulence and interaction 
of jet and boundary layer turbulence fields. Region (IV) Flat plate bound
ary layer flow far from the jet: the physics is similar to that in the shear 
layer flow region (I), except that the turbulence is confined to the de
veloping boundary layer of depth 5. 

rection, the flow is strictly a flat-plate boundary layer flow 
where Zi = 8 and \ = \ a = 0.09. 

The near-wall profile of equation (4) is the well-known Van 
Driest profile (White, 1974), which has been used in two-
dimensional wall jet flows issuing in a quiescent or uniform 
moving stream (e.g., Pai and Whitelaw, 1971). In these cases, 
the edge of the shear layer z,is well defined. However, in this 
study, a three-dimensional wall jet issues into a deep boundary 
layer. Here, Z\ is determined using the temperature field as a 
tracer in which the top boundary of the jet is identified as the 
height z25 where the local nondimensionalized temperature 
drops to 25 percent of the maximum nondimensionalized tem
perature in that cross-sectional plane. Since the effective Prandtl 
number of the flow is < 1, the temperature field can be ex
pected to outline the jet momentum field. 

Directly above the jet (z2$ < Z < S), the flow is treated like 
the flat-plate boundary layer where the mixing length is de
termined using Z/=5. 

So far, only vertical segments of the flow have been con
sidered within a crossflow plane (Fig. 4). However, mixing-
length profiles must merge smoothly in the lateral (y) direction 
and also in the streamwise (x) direction as the buoyant wall-
jet develops into a plume. To accomplish this the streamwise 
mass flux in a given vertical section of the flow (M) is compared 
to that of the flat-plate boundary layer flow (M„) observed 
far away from the jet. For a vertical section of the flow of 
finite width Ay at a specified downstream location x, the in
tegral mass flux is given by 

M=\0pU(x,y,z)Aydz (6) 

The mass flux ratio 

RM=~ 
M-M„ 

Ma 
(7) 

is used to determine if the flow within the vertical section is 
jetlike or boundary-layer-like. A linear interpolation based on 
RM merges the mixing-length profiles between these two re
gions. 

Bridged Singularities. In regions of the flow where velocity 
maxima or minima occur, the mixing-length hypothesis (equa
tion (3)) erroneously leads to zero /*}. Within the context of 
the gradient diffusion hypothesis, this makes little difference 
to the shear stress, which is zero anyway. However, in modeling 
scalar transport, say heat, with turbulent Prandtl number Pr' 
approximately constant, /*' = 0 implies that the thermal dif-
fusivity is zero, which is unrealistic. Launder and Spalding 
(1972) and Pai and Whitelaw (1971) suggest that the /*' dis

tribution follows the mixing-length hypothesis everywhere ex
cept in the regions of zero mean shear. There a suitable value 
for ix' is determined by linear interpolation between surround
ing peak values. 

Buoyancy Effects. The near-field flow of a buoyant wall 
jet is characterized by shear turbulence, which scales with the 
velocity ratio R0. Farther downstream, the initial jet momen
tum decays and buoyancy body forces cause the plume to rise. 
However, even in the buoyant-jet transition phase, heated fluid 
parcels at the top edges of the jet rise and their motion is 
observed as enhanced vertical dispersion of the jet. In the plume 
phase the maximum (core) temperature of the plume is located 
above the flume floor, and fluid parcels at the bottom edge 
of the plume have their vertical motion retarded due to the 
stable temperature stratification. The turbulence model de
scribed here increases the turbulent viscosity /x1 in unstable 
temperature stratification and reduces n' in stable stratification 
using empirical relations based on the Monin-Obukhov sim
ilarity theory of the surface layer of the atmosphere. Strictly 
speaking, this theory only applies to the constant stress layer 
of a temperature stratified atmosphere where the buoyant length 
and time scales are large. However, for buoyant jets and plumes, 
the theory will provide the correct tendencies, with values of 
the constants adjusted for the best agreement between pre
dicted trajectory and spreading and experimental data. 

Pasquill and Smith (1983) and Panofsky and Dutton (1984) 
provide summaries of several empirical forms of 4>M. For unsta
ble conditions 

0M = (>-l)" (8) 

where a, « 15 to 28, a2 ~ - 0.25, and - 4 < z/L < 0. For 
stable conditions 

z 
(j)M=\+ay (9) 

where a3 = 4 to 6 and 0 < z/L < 1. 
In the flume model, the gradient Richardson number Ri is 

used in place of z/L and the theory predicts the relationship 
to be Ri = z<l>ff/L<t>lf. Here, approximate relationships between 
these stability parameters are used, as 

f=Ri=S/ 

_z 
L 

dT 

dz 
/ m (unstable conditions) (10) 

Ri 
l - a 4 R i 

(stable conditions) (11) 

where a4 = 5.0 and Ri < l/a4. In the lower portion of a freely 
rising plume, very stable conditions (Ri > l/«4) are not ex
pected to suppress turbulent mixing completely; therefore, 
z/L is arbitrarily limited to a maximum value of 2 rather than 
using equation (11). 

Similar empirical relations describe the effect of buoyancy 
on turbulent heat transfer, as 

/ z\"6 
<j>H= PT'N ( 1 - «5 — 1 (unstable conditions) (12) 

0 / /=Prjv+a3— (stable conditions) (13) 

where Pr^ (<= 0.74 to 0.9) is the turbulent Prandtl number in 

neutral conditions, a5 = 9 to 16, and a6 « - 0 . 5 . 
In limiting cases Pr' = <j>H/<t>M attains values: Pi' = <l>M for 

unstable conditions, Pr' = 1 for stable conditions, and Pr' = 
Prjy for neutral conditions. 

One difficulty in applying the above relations lies in the 
determination of Ri. For local mean velocity minima and max
ima, Ri — ± oo and use of 0 M

m equation (3) leads to incorrect 
results. Therefore, the denominator of equation (10) is replaced 
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Table 1 Grid specifications for operational model runs 

Grid specifications 

N u m b e r of Control Volumes 
(X) Streamwise direction 

(based on predictions to 
0.20 m downstream of slot) 

(Y) Lateral direction 
- in the slot 

(Z) Vertical direction 
- in the slot 

Geometric Expansion Factors 
(X) 
(Y) 
(Z) 

Slot 
I 

40 

20 
2 ' 

22 
4 

1.03 
1.05 
1.07 

Slot 
II 

40 

20 
8 
22 
1 

1.03 
1.10 
1.13 

Table 2 Summary of source conditions and liftoff distances for all 
experiments. Temperature cross section data available for experiments 
#1-11. Visual observations only for experiments #12-16. 

Expt. 

# 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

I . 
|m| 
0.01 
0.01 
0.01 
0.01 
0.01 

0.053 
0.053 
0.053 
0.114 
0.114 
0.114 
0.01 
0.01 
0.01 
0.01 
0.01 

7 
( i . / H „ ) 

1.0 
1.0 
1.0 
1.0 
1.0 

40.7 
40.7 
40.7 
81.4 
81.4 
81.4 
1.0 
1.0 
1.0 
1.0 
1.0 

Qo 

[m>xl0«] 
9.5 

0.128 
0.162 
0.245 
0.328 
0.78 

0.162 
0.328 
0.64 

0.162 
0.328 
0.62 
0.112 
0.162 
0.245 
0.326 

V, 
[m/s] 

9.5 
12.8 
16.2 
24.5 
32.8 
10.6 
21.8 
44.3 
4.0 
10.2 
20.6 
6.2 
11.2 
16.2 
24.5 
32.6 

•Ro 

2.0 
2.7 
3.5 
5.2 
7.0 
2.3 
4.7 
9.5 
0.9 
2.2 
4.4 
1.3 
2.4 
3.5 
5.2 
7.0 

T„ 
1 C | 
34.8 
35.4 
35.7 
85.8 
75.8 
63.2 
74.6 
75.0 
70.0 
75.9 
76.2 
47.3 
48.7 
49.7 
50.5 
51.0 

T. 
1 C | 
18.8 
19.2 
19.0 
18.5 
18.3 
16.6 
16.6 
16.8 
17.1 
17.1 
17.4 
18.0 
18.0 
18.0 
18,0 
18.0 

Fr. 

4.6 
6.1 
7.6 
4.4 
6.7 
2.7 
4.8 
9.7 
0.8 
1.8 
3.7 
2.0 
3.6 
5.1 
7.5 
9.9 

*L 

[m] 
0.08±0.02 
0.18±0.02 
0.32±0.02 
0.12±0.02 
0.23±0.02 

0.125±0.02 
0.175±0.02 
0.33±0.02 

> 1.4 
> 1.4 

0.35±0.05 
0.04±0.03 
0.08±0.03 
0.15±0.04 
0.25±0.04 
0.45±0.04 

with a spatially averaged form of the bracketed shear terms 
in equation (3). This eliminates the singularity mentioned above. 

Boundary and Initial Conditions. The wall boundary is an 
adiabatic no-slip boundary impervious to mass transfer. With 
the assumption that the first interior control volumes normal 
to the wall are situated in the constant stress region of wall 
boundary layer flow, a one-dimensional log-law wall function 
is used to determine the wall shear stresses. 

The free-stream (top) boundary is an adiabatic slip boundary 
and allows vertical mass transfer. The latter is the predicted 
entrainment of ambient fluid into the plume that satisfies global 
mass conservation. 

The plane of symmetry boundary and the free side boundary 
are adiabatic slip boundaries impervious to mass transfer. These 
conditions at the free side boundary are specified as a con
venience in the numerical scheme, since, even though the side 
boundary is necessarily displaced far away from the edge of 
the plume, the cost of solving the equations is considerably 
less than when a open boundary is used. 

On the inflow boundary, the numerical model requires spec
ification of all dependent variables. Experiments conducted in 
the water flume provide mean velocity and temperature data 
that are interpolated to the iy-z) plane grid nodes. The pressure 
field is set to a constant, based on the one-dimensional nature 
of the inflow. 

Outflow boundary conditions are not required for the par
abolic equations. 

Solution of the Equations. The governing equations are 
integrated over the finite control volumes of the discretized 
Cartesian domain (Sinclair, 1986; Raithby et al., 1986; Pa-
tankar, 1980). Piecewise continuous profile approximations of 
the dependent variables are used to evaluate the required in
tegrals and arrive at an algebraic equation set. The parabolic 
form of the equations allows crossflow iy-z) planes to be solved 
elliptically knowing the inflow (streamwise) values and other 
discrete boundary conditions. The SIMPLEC algorithm (Van 

Doormaal and Raithby, 1984) is used with an ADI solver for 
the velocity, pressure, and temperature fields. Predicted out
flow conditions from the current crossflow plane act as inflow 
conditions for the next crossflow plane. In this way, the pro
cedure marches the solution from the inflow boundary of the 
grid domain to the outflow boundary. 

Sinclair (1986) describes numerous code validation experi
ments in which the model successfully predicts both two- and 
three-dimensional, internal and external, flows. In particular, 
predictions of turbulent flat plate boundary layers and two-
dimensional wall jets dfffer from experimental data by only 
4-9 percent. 

Grid Selection and Values of the Empirical Con
stants. Model predictions of buoyant jets from slot I and slot 
II geometries were compared to the experimental data. Grid 
refinement improved solutions to the point that satisfactory 
model predictions were achieved with the grid specifications 
shown in Table 1. 

Adjustment or tuning of the turbulence model parameters 
was carried out on a limited basis using the buoyant jet ex
periments #4, #6, and #7 (Table 2). Cases #2, #3, #5, and #8 
serve as independent test cases. 

The parameters a2, a4, and a6 are kept at their suggested 
values, whereas a{ = 4.0, a5 = 4.0, «3 = 5.0, and PrĴ  = 0.85 
are the adjusted values that improve the agreement of the model 
predictions with the experimental data. In addition, K ~ 0.3 
reduces the wall shear stress from that of the more typical 
value of 0.4. This enhances the near-wall crossflow of the 
ambient fluid that is responsible for the liftoff of the plume 
from the surface. 

The flow within a vertical section of the grid is considered 
jetlike if the mass flux ratio RM > 0.9 and boundary-layer
like if RM < 0.5. In between, a linear interpolation of mixing-
length scales is used. Within the jet region of the flow the use 
of X = 2.0* \„ in equation (5) produces a reasonable level of 
jet spreading. 

Results and Discussion 
Source conditions and liftoff distances for all experiments 

are summarized in Table 2. Of the 16 buoyant jet cases avail
able, experiments #2 through #8 are selected for the comparison 
of the numerical model predictions to the experimental data 
since these buoyant jets exhibit liftoff in the near-field region 
of interest, and the data are more detailed for these cases. For 
each experiment the numerical model predicts the vertical and 
lateral extents of the 25 and 50 percent isotherms at each 
crossflow plane. These data are processed using the ellipse-fit 
procedure described earlier and then compared with the ap
propriate experimental data. 

Figures 5 through 10 illustrate the predicted trajectory, bulk 
spreading, and vertical spreading of elliptically shaped plumes 
of experiments #2 through #8. Table 3 summarizes the pre
dictions of plume liftoff distances for these cases. 

Discussion of Results. The experimental results indicate 
that the distance to liftoff is influenced by jet momentum 
effects. A high jet-to-ambient velocity ratio delays liftoff for 
low-aspect-ratio slot jets. For high-aspect-ratio slot jets (long 
line sources), however, these flows are less jetlike and a high 
efflux velocity increases the buoyancy flux, which enhances 
liftoff. For low-aspect-ratio buoyant wall jets, lateral spreading 
is greater than vertical spreading. For high-aspect-ratio slot 
jets, vertical spreading is generally greater than or equal to 
lateral spreading since the larger surface area of the jet increases 
vertical diffusion of the jet momentum by turbulent shear 
stresses and buoyancy forces. 

Numerical model predictions of plume liftoff distance, tra
jectory, bulk spreading, and vertical spreading are in general 
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Fig. 5 Model predictions of plume trajectory compared with experi- Fig. 8 Model predictions of buoyant jet spreading; cross-sectional area 
ments #2 to #5; L = 0.01 m compared with experiments #6 to #8 
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Fig. 10 Model predictions of buoyant jet spreading; vertical extent in 
cross section compared with experiments #6 to #8 

agreement with the experiments. However, there are varying is overpredicted for high velocity ratios (e.g., R0 > 3.5) in 
degrees of departure from the observations. experiments #4, #5, #7, and #8, and underpredicted for low 

There do not appear to be any systematic deviations in the velocity ratios (e.g., R0 < 3.5) in experiments #2 and #4. 
predicted plume trajectory in comparison to the experimental Analysis of the vertical spreading predictions indicates sat-
data. It seems, however, that the bulk spreading of the plume isfactory predictions for slot I experiments (#2 to #5). However, 
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Table 3 Model predictions of plume liftoff distances from the source, 
in m 

Exp't 
# 
2 
3 
4 
5 
6 
7 
8 

Model 
Prediction 

0.135 
0.210 
0.155 
0.255 
0.140 
0.178 
0.336 

Experimental 
Data 
0.180 
0.320 
0.120 
0.230 
0.125 
0.175 
0.330 

vertical spreading in underpredicted for the low-velocity-ratio 
case (#6) of slot II and overpredicted for the high-velocity-
ratio cases (#7 and #8) of this same slot. 

Plume liftoff distance predictions occur too early for the 
warm slot I jets of experiments #2 and #3 and a little late for 
the hot jets of experiments #4 and #5. The slot II hot jets of 
experiments #6, #7, and #8 are predicted quite well. 

Predicted Flow Details. Flow details predicted by the nu
merical model (Fig. 11) highlight the complex behavior of fluid 
entrained at the edges of the buoyant wall jets and also show 
the formation of the counter-rotating vortex pair at the upper 
sides of the jet. This crossflow pattern is initiated by turbulent 
shear stresses generated in the near-field development of the 
buoyant wall jet, and receives further support during the plume 
rise phase, which starts only after sufficient decay of the jet's 
streamwise momentum. The streamwise vorticity drives the 
near-wall entrainment flow, which severs the plume from the 
surface as it rises. In this region where the plume lifts off from 
the surface, it is likely that a small residual of the plume is 
left behind near the centerline on the surface (Meroney, 1979). 
Physically, one could argue that in this region convective trans
port provided by the entraining crossflow is retarded due to 
the effects of the no-slip surface, the enhanced near-wall tur
bulent diffusion, and the local maxima of pressure at the corner 
of the symmetry plane and surface boundaries. This leaves 
parcels of the plume on the surface that diffuse and possibly 
rise slowly, independent of the main body of the plume. Future 
investigations will attempt to verify this behavior through de
tailed experiments. 

From a square source, the jet immediately takes on a circular 
cross-sectional shape, which is distorted into an elliptical shape 
through the buoyant jet and plume phases. The higher lateral 
spreading predicted by the model is in agreement with exper
imental results. It is interesting to note that the anisotropic 
spreading is correctly predicted even though an isotropic mix
ing process is assumed in the turbulence model. This lends 
support to the predictions of streamwise vorticity transport 
effects in promoting lateral spreading. 

Conclusions 
Numerical model predictions of buoyant jet liftoff distances, 

trajectories, and spread rates compare reasonably with the 
experimental data. 

The mixing-length turbulence closure employed in the nu
merical model provides satisfactory predictions of buoyant 
wall jets. It has the advantages of an easy, cost-effective com
puter implementation and a readily understood physical inter
pretation, which aids the modeler in incorporating empirical 
information. However, the use of mean-velocity shear as a 
turbulent time scale of the flow leads to difficulties with values 
of the turbulent viscosity /i'. The wall jet in a coflow is a 
complex flow with extrema in the velocity profiles. In regions 
near maxima and minima in the velocity field, the model would 
predict unrealistic levels of nl without the use of bridging in-

0.0000 1.3675 2.7352 4.1028 5.4704 6.8360 

Y (CM) LATERAL 

Fig. 11 Model prediction of cross-sectional velocity and temperature 
fields for the buoyant wall jet experiment #5, at x/L = 30. The maximum 
magnitude of crossflow velocity vectors is 0.072 U0. 

terpolation. Additional difficulties result from determining a 
local Richardson number based on the mean shear. The level 
of shear-produced turbulence in not well predicted in complex 
flows with velocity profile extrema. Therefore, prediction of 
flow stability effects is approximate and further investigation 
is required in this area. 
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Thermosolutal Inducement of 
No-Slip Free Surfaces in • 
Combined Marangoni-Buoyancy 
Driven Cavity Flows 
The presence of a diffusing surfactant in combined surf ace tension-buoyancy driven 
convection is studied numerically to examine its influence on the flow structure and 
heat transfer characteristics of a fluid contained within a cavity. By accounting for 
the surface tension dependence on both temperature and surfactant concentration, 
the free surface may become stagnant. As a result, the high local and overall heat 
transfer rates at the cold wall, which are associated with thermal surface tension-
augmented buoyancy driven flows, are decreased. 

Introduction 

Combined surface tension-buoyancy driven convection is 
relevant in a variety of engineering systems and manufacturing 
processes. Oftentimes, this type of convection is present 
within liquid melts in conjunction with melting and solidifica
tion heat transfer during, for example, welding (Kou, 1987), 
glass making (Stanek and Szekely, 1970; McNeil et al., 1985), 
metals processing (Camel et al., 1986) and crystal growth 
(Hurle and Jakeman, 1981). As a result, melting and 
solidification rates as well as the ultimate product quality may 
be affected by convection driven by simultaneous buoyancy 
and surface tension forces. 

For a pure fluid, variations in the liquid surface tension oc
cur due to its dependence on the liquid temperature. If the 
thermally induced surface tension variation occurs along a 
free surface, the net thermocapillary force will either augment 
or oppose the buoyancy driven flow within the bulk of the 
liquid layer. As a result, two distinct thermocapillary flow 
regimes may exist in, for example, a liquid held within a cavity 
with heated and cooled side walls. 

If thermocapillary forces augment buoyancy forces, free 
surface velocities increase relative to the pure buoyancy case, 
advection of thermal energy from the upper hot wall to the up
per cold wall is enhanced, and very high local heat transfer 
rates occur near the top of the cold wall (Schwabe et al., 1978; 
Villers and Platten, 1985; Bergman and Ramadhyani, 1986). 
In contrast, if opposing thermocapillary forces are present, a 
bicellular flow structure may result, leading to decreased heat 
transfer rates relative to the pure buoyancy case (Legros et al., 
1984; Villers and Platten, 1985; Bergman and Ramadhyani, 
1986). Most real fluids are susceptible to flow behavior of the 
first regime while only a few fluids exhibit the second type of 
flow. 

While experimental results and numerical predictions in
dicate that thermocapillary effects exist and can be significant 
under certain conditions, it is typical of many systems to 
possess free surfaces characterized by stagnant conditions 
(Heiple and Roper, 1982; Kirdyashkin, 1984; Platten and 
Villers, 1987). This type of behavior constitutes a third flow 
regime and is superficially identical to the pure buoyancy case 
with an applied no-slip boundary condition at the free surface. 
As is evident from a force balance along the free surface, 

however, surface tension forces must remain in effect, since 
their absence implies applicability of a no-shear hydrodynamic 
boundary condition and, in turn, finite velocities at the free 
surface, which are driven by buoyancy-induced flow in the 
bulk of the fluid. Thermocapillary forces are not negligible in 
the third flow regime; they must be counterbalanced by an op
posing mechanism. 

It is well known that trace concentrations of contaminants 
such as dust, ionic materials, or other liquids can reduce the 
surface tension of a host liquid (Shinoda, 1963). If the con
taminant is a surfactant, concentration gradients may be in
duced at the free surface in response to advective mechanisms 
resulting from other driving forces. In turn, the nonuniform 
concentration distribution produces surface tension gradients 
at the free surface, which affect convective transport in the 
bulk liquid. 

Coupling between the solutocapillary convection and bulk 
fluid motion was initially proposed by Levich in 1948 (1962) to 
describe behavior of air bubbles rising through a stagnant 
fluid layer. However, the model could not accurately predict 
the drag force dependence on particle size and a "stagnant 
cap" model was developed (Savic, 1953). Here, the insoluble 
surfactants are adverted to the rear of the bubble, creating a 
stagnant region. Davis and Acrivos (1966) were able to employ 
the stagnant cap model to predict the rise velocity of air bub
bles in a liquid layer. As will become evident, a three-way 
coupling between buoyancy-induced advection, ther
mocapillary forces, and solutocapillary forces is responsible 
for the flow of the third regime. 

Analysis 

In order to understand the coupling process that induces 
free surface stagnation, the system of Fig. 1 is considered. A 
host liquid is contained in a cavity of length L and a free sur
face is present at y = H. Fluid motion is induced by imposing 
appropriate thermal boundary conditions and is due to the 

' presence of buoyancy and surface tension forces within the 
bulk fluid and at the free surface, respectively. 

By assuming a flat, nondeformable free surface and steady, 
laminar two-dimensional flow with negligible viscous dissipa
tion, the governing equations for the Boussinesq host liquid 
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du 
~dx~ 

dv 
= 0 (1) 
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Buoyancy Induced Flow . 

Fig. 1 Schematic of the system showing buoyancy and surface ten
sion forces and surface species diffusion 
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If a surfactant is present along the free surface, it will be 
subjected to horizontal advection associated with the flow in 
the host liquid. Horizontal diffusion of the surfactant opposes 
its advective transport. 

3 l 3 / 3c 

dx 
I o / dc \ 

(uc)\ =^~{D^-) 
\y=H dx \ dx / 

y = H 
(5) 

The hydrodynamic boundary conditions include no-slip 
conditions at the cavity walls and bottom. The hydrodynamic 
conditions at y = H result from a force balance at the free sur
face (Levich and Krylov, 1969) 

du 

~dy~ y=H 
= o y • 

dT 

~dx~ y = H 
+ fi

de I 

dx \y=H 

and 

v = 0 
y = H 

(6) 

(7) 

The thermal boundary conditions considered in this study are 

T=Th 

and 

x = 0 

dT 

T=Tr 

= 0 
y=o,H 

The surfactant concentration boundary conditions are 

dc 

"ajT 
with the constraint 

dc 

17 = 0 

(8) 

(9) 

(10) 

1 [*=L 

—- c(x)dx = c (11) 

where cavg is specified a priori. 
In writing equations (5) and (11), it is assumed that the con

taminant is limited to a thin film, which rides upon the free 
surface. Inspection of equation (10) reveals that, if a surface 
velocity exists, the surfactant will be trapped against one of 
the enclosure walls and its diffusion will induce a concentra
tion gradient along the free surface. The presence of the sur
factant eventually influences bulk convective flow and heat 
transfer in the host liquid through the Marangoni 
hydrodynamic boundary condition, equation (6). 

The following dimensionless parameters govern the system 
behavior and are identified by appropriate normalization of 
the governing equations and applied boundary conditions. 

Rayleigh number 

Prandtl number 

Schmidt number 

thermal Marangoni number 

solutal Marangoni number 

liquid layer aspect ratio 

Ra = gPATL3/va 

Pr = via 

Sc = v/D 

M a r = a'T ATL/fjL'a. 

Mac 

A=H/L 

c a v s L/ / i - a 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

It should be noted that the average surfactant concentration is 
used to normalize the concentration in equations (5), (6), and 

N o m e n c l a t u r e 

A = 

Bo = 

c = 

D = 
E = 
g = 
h = 

H = 
k = 
L = 

Le = 
Mac = 

Ma r = 

liquid layer aspect 
ratio = H/L 
dynamic Bond 
number = Ra /Ma r 

specific heat, surfactant 
concentration 
species diffusion coefficient 
elasticity number = Ma c /Ma r 

gravitational acceleration 
local heat transfer coefficient 
height of the liquid layer 
thermal conductivity 
width of the liquid layer 
Lewis number = Sc/Pr 
solutal Marangoni 
number = ac'cavgL/^»a 
thermal Marangoni 
number = a'TATL/p,'<x 

Nu = local Nusselt number = hL/k 
Nu = average Nusselt number 

5 y = h 
Nud> 

^ = 0 

p = pressure 
Pr = Prandtl number = via 
Ra = Rayleigh number 

= g/3A7,
JL

3/e«a, 
Sc = Schmidt number = v/D 
T = temperature 
u = horizontal velocity 

u* = dimensionless horizontal 
velocity = uL/a 

v = vertical velocity 
x = horizontal coordinate 
y = vertical coordinate 

a = thermal diffusivity = &/p«c 
(3 = thermal expansion 

coefficient 
H = dynamic viscosity 
v = kinematic viscosity 
p = mass density 

cr' = surface tension variation 
with temperature or 
concentration 

4> = dimensionless streamfunction 

Subscripts 
c = concentration, cold 
h = hot 

max = maximum 
min = minimum 

o = reference 
T = thermal 
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(10) due to the absence of a characteristic concentration dif
ference in the system. 

Three additional dimensionless parameters may be derived 
from equations (12)-(17). Although they are not independent 
they are useful to consider, 

Lewis number Le = Sc/Pr = a/D (18) 
dynamic Bond number Bo = Ra/Mar=g|3pL2/(xf (19) 

elasticity number i? = Mac/Ma7- = cavgacVA7,»af (20) 
The Lewis number is the ratio of thermal to species dif-
fusivities while the dynamic Bond number describes the 
relative strength of buoyancy to thermal surface tension 
forces. The elasticity number is a ratio of solutocapillary to 
thermocapillary forces and has been used previously to 
describe the influence of a nondiffusing surfactant on surface-
tension induced flow (Homsy and Meiburg, 1984; Carpenter 
and Homsy, 1985). 

Solution Technique 

The governing equations for the host liquid were discretized 
using the control volume methodology and the power-law 
scheme was employed to predict the control surface quantities 
of the advection-diffusion equations (Patankar, 1980). The 
SIMPLER algorithm was used to predict the pressure field 
(Patankar, 1980). The governing equation for the surfactant 
concentration distribution (5) was solved at every iteration by 
employing the power law approximation to the exact solution 
of the one-dimensional advection-diffusion equation. 

A grid dependence study has shown that a 40 x 70 (vertical 
by horizontal) grid network with packed grids along the free 
surface and cavity walls is adequate to insure grid independent 
results for the surfactant concentration and surface velocity 
distributions, as well as the flow structure in the bulk of the 
fluid and the local and overall heat transfer rates. The grid 
packing scheme decreases the dimensions of the control 
volumes by 10 percent as one progresses from the cneter of the 
computational domain. The buoyancy portion of the model 
was validated by comparing the predicted heat transfer rates 
across a square air-filled cavity with heated endwalls to a 
benchmark numerical solution (De Vahl Davis, 1983). 
Average Nusselt numbers were within 2 percent of the 
benchmark predictions to Ra= 106. The surface tension por
tion of the model was compared to predictions for pure sur
face tension flow in a square cavity with heated end walls 
(Zehr et al., 1987). Predicted surface velocities, surface 
temperatures, and local wall heat fluxes were within 2 percent 
of the benchmark values for Ma< 103. It should be noted that 
the presence of the surfactant significantly reduces the severe 
grid packing requirements, which are generally necessary to 
model thermocapillary-induced flow in cavities (Zehr et al., 
1987). 

Results 

Numerical simulations were performed for a range of Ra 
(102 < Ra < 106), Ma r (250 and 103), and E (0.0, 0.1, 0.2, 0.3, 
oo). Due to the relative expense of the computations, Pr and A 
were held at unity while Le values were 1, 10, and 100, which 
are typical of most host liquids. The value of cavg is 0.001 for 
all the simulations. The hydrodynamic results are presented in 
terms of the dimensionless streamfunction, which is defined as 

^(x,y = 0) = ^(x = 0,y = 0) +—T vdx (21) 

Ux,y)=Hx,y = Q)-—V «dy (22) 

with i/<(x = 0, y = 0) assigned a value of zero. 

• I 
Fig. 2 Predicted streamlines (left) and isotherms (right) for (a) Ra = 1(r, 
MaT = 0.0, E = 0.0, ^ m a x = 5990; (b) Ra = 104, MaT = 103, £ = 0.0, 
tf-max =7050; and (c) Ra = 104, MaT = 103, E = 0.3, * m a x = 5130 

Predicted Convective Hydrodynamics. Figure 2 shows 
predicted streamlines and isotherms for no-shear free surface 
boundary conditions (Fig. 2a, Ra= 104, Ma r = 0, E=0), ther
mocapillary boundary conditions (Fig. 2b, Ra=104, 
Mar= 103, E=0) and combined thermo-solutocapillary bound
ary conditions (Fig. 2c, Ra = 104, Mar = 103, E = 0.3, 
Le=100). 

Due to the absence of free surface shear in Fig. 2(a), sur
face velocities are nonzero and the center of rotation is slightly 
above y/H =0.5. Advection of thermal energy is enhanced at 
y/H= 1.0 relative to y/H=0.0 and ^max = 5990. 

Inclusion of buoyancy-augmenting thermocapillary forces 
at the free surface leads to the flow of the first regime, as 
shown in Fig. 2(b). An effective shear is established at 
y/H= 1.0 by thermally induced surface tension variations at 
this location, surface velocities are increased substantially, 
and enhanced advection of warm temperature fluid leads to 
isotherm compaction at the top of the cold wall. As a result of 
enhanced free surface velocities, the center of rotation is 
higher relative to Fig. 2(a) and ^max is increased to 7050. 

Figure 2(c) shows the predicted system response as 
solutocapillary forces, resulting from the presence of the sur
factant, counteract thermocapillary forces at the free surface. 
The streamlines and isotherms bear a remarkable similarity to 
pure buoyancy flow with imposed no-slip boundary condi
tions at y/H = 1.0. The center of rotation is aty/H=0.5, î max 
is reduced to 5130 and the isotherm distribution is nearly an
tisymmetric about x/L = 0.5. 

In order to understand better the coupling responsible for 
the results of Fig. 2, dimensionless surface velocity and surfac
tant concentration distributions are presented in Fig. 3. 

For the case where no shear exists (Mar = 0, E = 0, Fig. 2a) 
the dimensionless surface velocity is maximum near x/L = 0.5 
and the surfactant is pushed to a location adjacent to the cold 

• wall. In contrast, if thermocapillary effects are accounted for 
(Mar= 103, E=0, Fig. 2b), the free surface velocities are in
creased everywhere and the isotherm compaction at x/L = 1.0 
leads to substantial thermocapillary-induced velocities near 
the cold wall. As a result, the surfactant is swept into a very 
small region adjacent to the cold wall and its distribution has 
been omitted from Fig. 3 for clarity. 

In reality, surfactant concentration gradients resulting from 
buoyancy and thermocapillarity will induce solutocapillary 
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Fig. 3 Dimensionless surface velocity and concentration distributions 
for the predictions of Fig. 2 

0.4 „ 0.6 
x/L 

Fig. 5 Dimensionless surface velocity and concentration distributions 
for the predictions of Fig. 4 

Fig. 4 Predicted streamlines (left) and isotherms (right) for Ra = 10 , 
MaT = 103, (a) E = 0.1, (b) E = 0.2, and (c) £ = 0.3. Values of ^m a x are 4100, 
2180, and 1300 for E = 0.1, 0.2, and 0.3, respectively. 

forces that oppose their thermal counterparts (for most liq
uids). The result is partial or complete surface stagnation. 
Dimensionless surface velocity and surfactant concentration 
distributions are included for two nonzero values of E in Fig. 
3. 

For Mar=103, £=0.1, the steep concentration gradients 
resulting from free surface advection induced by buoyancy 
and/or thermocapillary forces produce surface tension forces 
at y/H= 1 as described by equation (6). As a result, surface 
velocities are decreased near the cold wall, species diffusion 
extends the surfactants to smaller x/L, and an equilibrium 
condition is reached where the free surface is stagnant in the 
range 0.8<x/L< 1.0. Since its magnitude is so small relative 
to other velocities in the system, the surface velocity distribu
tion in this range is not evident in Fig. 3. 

As £ is increased further (Ma r= 103, £'=0.3, Fig. 2c), sur
factant concentration gradients wield an even greater in
fluence on the system hydrodynamics and the entire surface is 
stagnant except for at small x/L. Further increases in E result 
in an effective free surface no-slip condition at all x/L. The 
case of total free surface stagnation is typical for many com
mon fluids (see Appendix). 

Figure 4 includes predicted streamlines and isotherms that 
illustrate the role of buoyancy driven flow in the coupling pro
cess at the free surface. The dimensionless parameters 
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Fig. 6 Dimensionless surface velocity and concentration distributions 
for various Le; here, Ra = 104, Ma T = 103, and E = 0.1 

associated with Fig. 4 are identical to those of Figs. 2 and 3, 
except Ra is reduced to 103 and E values are 0.1, 0.2, and 0.3 
for Figs. 4(a), 4(b), and 4(c), respectively. The results show 
that solutocapillary effects again partially stagnate the free 
surface. Surprisingly, thermocapillary effects are more pro
nounced at small x/L than was evident in the results of Fig. 2. 

With a reduction in buoyancy forces, circulation rates and, 
in turn, advection from the hot wall to the cold wall are 
decreased. As a result, steeper temperature gradients exist 
along the free surface at small x/L for Ra = 103, relative to the 
results associated with Ra= 104. The locally steep free surface 
temperature gradients induce strengthened local ther
mocapillary effects and the host liquid is pulled to the surface 
near the upper hot wall. It is subsequently returned to smaller 
y/H as the vicinity of the stagnant free surface is approached. 
Hence, local thermocapillary forces become more influential 
in their role of pushing the surfactant to the cold wall. 

Figure 5 includes the dimensionless free surface velocity and 
surfactant distributions associated with Fig. 4. A comparison 
with Fig. 3 shows that, due to enhanced local thermocapillary 
forces, a decrease in Ra leads to a reduction in the amount of 
the free surface stagnated by solutocapillary effects. 
Specifically, 20 percent reductions in the stagnant free surface 
length are noted. Again, this reduction is attributed to the 
enhanced pushing action of the buoyancy-enhanced ther
mocapillary forces at small x/L. 

As evident in the results so far, the diffusing surfactant ad
justs its distribution in response to advection induced by 
buoyancy and thermocapillary forces and stagnates a portion 
of the liquid's free surface. Hence a variation in Le may lead 
to a change in the system hydrodynamics (Bergman, 1986). 

Figure 6 includes predicted dimensionless velocity and sur
factant distributions at the free surface for Ra=104, 
Ma r= 103, £=0.1, and Le= 1, 10, and 100. Variations in the 
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species diffusion rate wield little influence on the system 
response. The surfactant distribution is similar for all Le 
(distributions for Le=10 and 100 coincide in the range 
0.8<x/L<1.0) and the surface velocity distribution is 
thermocapillary-dominated in the range 0.0<x/L<0.8. Sur
face velocities in the range 0.8<x/L< 1.0 are very small and 
adjust in accordance with the predicted surfactant distribution 
and equation (5). 

The insensitivity of the system response to Le is due to the 
tendency of the surfactant distribution to adjust in order to 
promote relative stagnation of the liquid surface adjacent to 
the cold wall. As long as' surface velocities near the cold wall 
are small relative to the thermocapillary and buoyancy driven 
velocities throughout the remainder of the system, the 
temperature distribution remains nearly unchanged. Since the 
surfactant concentration distribution must continue to satisfy 
equation (6), it is relatively insensitive to variations in Le. As a 
result, the hydrodynamic and heat transfer phenomena 
associated with the host liquid are, for all practical purposes, 
unaffected by Le. It should be noted that, in the limit of Le = 0 
(D = oo), the influence of solutocapiUary forces will be negligi
ble. This range of Le was not examined, due to the limited 
number of real liquids (if any) characterized by D = oo. 

Heat Transfer Results. As evident from the previous 
discussions, inclusion of solutocapiUary forces in the analysis 
leads to significant variations in the hydrodynamics of the 
system, especially in the vicinity of the free surface. Further
more, system hydrodynamics are most profoundly influenced 
near the cold wall, which would correspond to the solid-liquid 
interface in a solidification or melting application. Hence, a 
consideration of the resulting impact on local and overall heat 
transfer rates across the host liquid layer is warranted. 

Hot and cold wall Nu distributions associated with the 
simulations of Figs. 2-5 are presented in Fig. 7. Figure 7 (a) is 
associated with Ra=104 and the free surface conditions of 
Fig. 3. Local heat transfer rates change as the surface condi-

Fig. 7 Local hot and cold wall Nu distributions for (a) the predictions of 
Fig. 3 and (b) the predictions of Fig. 5 

tions are varied and, as expected, the modifications in Nu are 
most severe at the upper cold wall. The local heat transfer 
rates are bracketed by results for the no-slip case and the situa
tion where only thermocapillary forces are included in the 
analysis. As solutocapiUary forces are increased, Nu is 
decreased at y/H =1.0 and slightly increased below 
y/H =0.65. The results for E = 0.3 are nearly identical to those 
associated with incorporation of no-slip boundary conditions. 

Figure 1(b) includes Nu distributions associated with 
Ra= 103 and .the free surface conditions of Fig. 5 as well as 
£=0.0 and no-slip cases. Again, the results are bracketed by 
the extreme cases of imposed no-slip free surface condition 
and the £"=0 results. In contrast to the results of Fig. 7(a), 
slight differences exist between the Ma= 103, £=0.3 and the 
no-slip results and are traceable to the decreased free surface 
stagnation length due to decreased buoyancy effects. 

Finally, consideration is given to average cavity heat 
transfer rates in Fig. 8. Figure 8(a) reports Nu for Le= 100 
and Ma r=103 while Fig. 8(i>) shows Nu for Le=100 and 
Mar = 250 for a range of Ra and E. As expected, the impact of 
surface tension forces on heat transfer is most severe at small 
Bo. At larger Bo, the condition of the free surface has little in
fluence upon heat transfer in the system. Within the range of 
smaller Bo, solutocapiUary effects systematically decrease heat 
transfer rates from the E = 0 results to the E=oo case, which 
corresponds to the imposition of no-slip boundary conditions 
aty/H=\. It is noted that Bo values of order unity are com
mon in many materials processing applications involving 
melting and solidification (Oreper and Szekely, 1984). 

Summary and Conclusions 

A numerical investigation has been conducted to identify 
and quantify phenomena that are responsible for the develop
ment of no-slip free surfaces in thermocapillary-affected 

7 3 4 
10 10 10 

Ra 
Fig. 8 Average heat transfer for various Ra and (a) Ma r = 103 and (b) 
MaT = 250 
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flows. No-slip conditions are considered to be a third flow 
regime in combined buoyancy-thermocapillary flows and liq
uids that normally exhibit no slip boundary conditions are 
identified in the Appendix. 

The hypothesis for no-slip boundary condition development 
is the counteracting role of solutocapillary forces in systems 
that may otherwise be thermocapillary-dominated. Surfactant 
concentration gradients develop along the free surface in 
response to bulk liquid motion and induce solutocapillary 
forces, which subsequently stagnate the free surface. Results 
show that variations in buoyancy, thermo-, and 
solutocapillary forces all affect the amount of free surface 
stagnation but variations in the species diffusion rate do not 
play a significant role. 

The stagnating action of solutocapillary forces leads to 
reductions in the local and average heat transfer rates 
associated with thermocapillary-buoyancy convection. 
Decreases in the local heat transfer rate are most dramatic at 
the upper cold wall. Average heat transfer rates are decreased 
by solutocapillary forces for flows associated with small Bo. 

Since the cold wall Nu distribution is most dramatically 
modified by thermo- and solutocapillary effects, the observed 
phenomena may be important in melting and solidification 
heat transfer. Furthermore, the role of solutal effects may be 
different in melting than in solidification since contaminants 
are often rejected from the solid phase during freezing, while 
species rejection is not an issue during melting. However, pure 
liquid issuing from a melting solid may reduce the surfactant 
concentration adjacent to the solid-liquid interface, allowing 
significant thermocapillary induced flow adjacent to the 
solid-liquid interface. Finally, if solidification of alloys is con
sidered, the surfactant-induced solutocapillary effects may be 
overwhelmed by surface tension forces due, ultimately, to 
species rejection from the solid phase. Solutocapillary forces 
resulting from the presence of multiple species gradients along 
the free surface may, in fact, be common. 
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A P P E N D I X 

Experiments have been performed to visualize the flows of 
regimes 1 and 3 qualitatively and to categorize the propensity 
of various fluids to exhibit the flow of a particular regime. 

A test cell was constructed using multipass copper heat ex
changers to impose isothermal boundary conditions on the 
sides of the test fluid. The side walls were separated by 10 mm 
to insure a small Bo and, in turn, induce substantial ther
mocapillary effects, relative to buoyancy. Two-dimensional 
flow was approximated by making the test cell deep relative to 
its width (65 mm). An air gap of approximately 2 mm was 
placed above the liquid layer to minimize evaporation and 
convection effects. 

The test fluid was seeded with aluminum particles and il
luminated with a vertical sheet of laser light. Time exposure 
photography was used to visualize streamlines. 

The surfactant in question is absorbed from the environ
ment or leached from test cell components. As such, its com
position and average concentration are unknown. In order to 
illustrate the tendency of common fluids to exhibit the flow of 

Fig. 9 Experimentally observed streamlines for (a) ethanol and (b) 
water 
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regime 3, precautions were taken to avoid contamination of 
the host liquid and included: (1) covering all interior surfaces 
of the test cell with teflon or glass, (2) ultrasonically cleaning 
the test cell for four hours, and (3) triple rinsing with triple-
distilled water prior to each flow visualization experiment. 

Figure 9 shows streamlines for ethanol and water, which 
were sketched from the photographs. (The original 
photographs are not presented since the free surface curvature 
causes local overexposure of the film and their quality is 
poor.) Each condition is characterized by Ra= 105 and M a r 

values of 1.4x 104 and l.Ox 104 for ethanol and water, respec
tively. The value of E is unknown. 

Ethanol (Fig. 9a) clearly exhibits regime 1 flow as the center 
of rotation is above y/H=0.5, implying relatively large free 
surface velocities. As is well known, however, water (Fig. 9b) 
exhibits regime 3 flow as the center of rotation is at j>/i/=0.5. 

Table 1 summarizes the tendency of various host liquids to 
fall into a specific flow regime. Entries in the table without 
references were identified experimentally and the appearance 

Table 1 Regime behavior of various liquids 

Regime 1 Regime 2 Regime 3 

Water above 4°Ca Water below 4°Ca Water 
Fluorocarbons Aqueous alcohol solutidnsf n-Octadecane 
Sodium nitrateb Binary metal alloyse w-Hexadecane 
Silicon oilc Decanol 
Molten glassd 

Molten tine 

"Platten and Villers, 1987. 
bSchwabe et al., 1978. • 
cChun, 1980. 
dMcNeiletal., 1985. 
eCameletal., 1986. 
fLegrosetal., 1984. 

of a fluid in multiple regimes indicates that extreme precau
tions (beyond those taken here) are necessary to avoid regime 
3 behavior. 
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Effects of the Heat Transfer at the 
Side Walls on Natural Convection 
in Cavities 
Numerical solutions are obtained for fluid flows and heat transfer rates for three-
dimensional natural convection in rectangular enclosures. The effects of heat losses 
at the conducting side walls are investigated. The problem is related to the design of 
cavities suitable for visualizing the flow field. The computations cover Rayleigh 
numbers from 103 to JO7 and the thermal conductance of side walls ranging from 
adiabatic to commonly used glazed walls. The effect of the difference between the 
ambient temperature and the average temperature of the two isothermal walls is 
discussed for both air and water-filled enclosures. The results reported in the paper 
allow quantitative evaluations of the effects of heat losses to the surroundings, 
which are important considerations in the design of a test cell. 

Introduction 

Natural convection in rectangular enclosures heated on one 
vertical wall and cooled on the opposite one has received a 
great deal of attention in recent years. Numerous numerical 
results have been presented for the laminar regime and several 
studies have reported on two- and three-dimensional 
numerical analysis of the turbulent flow regime using the k-t 
model (Fraikin et al., 1980; Ozoe et al., 1986). These models 
contain empirical constants that must be experimentally deter
mined. However, due to the lack of available experimental 
data for the turbulent quantities, there are differences of opin
ion on the correct values of these constants. Therefore, addi
tional experimental works on natural convection in enclosures 
with basic geometries are required to improve the turbulence 
models, as well as to evaluate the accuracy of numerical solu
tions at high Rayleigh numbers. 

Although natural convection in enclosures is necessarily 
three dimensional, it is clear that, at a first stage, experiments 
should be performed in cavities where the time-averaged flows 
in the central part can be approximated as two dimensional, in 
order to reduce the complexity of the analysis. Since flow 
visualization or LDA velocity measurements require the use of 
glazed side walls, care should be taken to reduce heat losses at 
the side walls to a negligible level, especially when using gases 
or low-conductivity fluids as working fluids, since these losses 
are responsible for a lack of two dimensionality in the flow. In 
addition to the dimensions of the rectangular box, hot and 
cold wall temperatures, Th and Tc, and thermophysical 
properties of the working fluid, the evaluation of the heat 
losses requires the specification of two key parameters: the 
thermal resistance of the walls and the ambient temperature 
T 
1 a' 

However, from an overall view of what has been ac
complished experimentally, it appears that such data are 
generally not reported, although noticeable end effects were 
mentioned; for example, by Eckert and Carlson (1961), 
Mynett and Duxbury (1974), Morrison and Tran (1978) and, 
more recently, by Cheesewright and Zlai (1986). Qualitative 
discussion of the effect of thermal boundary conditions and 
measurements of the heat transfer in air-filled cavities with an 
aspect ratio of 5 and for various bounding walls were also 
presented by ElSherbiny et al. (1982). Despite the fact that 
their work has emphasized the need for reporting all the 
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parameters representing the interaction of wall conduction 
and fluid convection (also including radiative interaction for 
transparent and semi-transparent fluids), the relevant data 
have not been specified in the more recent experimental 
results. As a consequence, difficulties are still encountered 
when comparing numerical and experimental solutions, 
especially for gas-filled enclosures of moderate aspect ratio. 

The present work is the second part of a numerical study in
tended to provide data for the design of experimental systems 
for the basic geometry. We use a three dimensional-finite dif
ference scheme to solve the governing equations with continui
ty and momentum equations written in terms of vector poten
tial and vorticity. In a previous paper (Le Peutrec and Lauriat, 
1987a), computations carried out for air and water, the most 
commonly used working fluids, have shown that the dif
ference in Prandtl number produces weak effects on both the 
flow and the heat transfer in the laminar regime for cavities 
with four adiabatic bounding walls. Also, it has been 
demonstrated that the flow within a cavity with longitudinal 
aspect ratio Ay = 2 can be assumed as two dimensional pro
vided that the side walls are perfectly insulated; for such a 
case, the three dimensional motion is negligible in regions 
away from the side walls in the range of Rayleigh number 
from 103 to 107. In the present study, we focus on the effects 
of heat losses at the vertical side walls on natural convection 
flow and heat transfer in enclosures with a cross-sectional 
aspect ratio Az = l and adiabatic horizontal walls. The results 
are for air and water and the interaction between the bound
aries and the fluid flow is discussed for a wide range of 
Rayleigh numbers in the laminar regime. 

Mathematical Formulation 

A schematic diagram of the physical situation to be in
vestigated is shown in Fig. 1. The vertical walls of height H 
located at x = 0 and x = D are isothermal but at different 
temperatures, Th and Tc, respectively. The horizontal walls of 
width D are insulated while conduction heat losses through the 
side walls at y = 0 and y=L are allowed. The present study is 
conducted in the framework of the Boussinesq approxima
tion. Therefore, the fluid properties are assumed to be con
stant except the density in its contribution to the bouyancy 
force in the momentum equation. The fluid is considered in
compressible and the flow is assumed laminar and three 
dimensional. The dependent variables appearing in the equa
tions governing the conservation of mass, momentum, and 
energy are normalized by choosing D, the distance between the 
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Heat losses _ ^ 
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Fig. 1 Schematic diagram of the cavity 

isothermal walls, as a scale factor for length, a/D2 and 
p0a

2/D2 as scale factors for time and pressure, respectively. 
The local temperature difference (T—T0), where T0 is the 
average temperature of the isothermal walls, is scaled by 
temperature difference, AT= Th — Tc. Then the dimensionless 
governing equations become 

VV = 0 (1) 

the paper, the dimensionless length and height of the enclosure 
are denoted Ay and Az, respectively (Ay=L/D, AZ=H/D, 
parallelepiped enclosure lxAyxAz). The corresponding 
dimensionless boundary conditions are as follows: 

9 rigid and impermeable boundaries: V = 0 on all 
boundaries 

• thermal boundary conditions: 

de 

dz 

6(0, y,z) = 0.5 

6(1, y,z)=-0.5 

= 0 atz = 0, A, 

~dz 
•=±C(6-da) a.ty = 0,Ay 

(4) 

(5) 

(6) 

(7) 

where C is the thermal conductance of the side walls and 6„ the 
dimensionless ambient temperature. 

The momentum equations were recast in terms of the vor-
ticity vector, Q= V Xi/\ and a vector t̂ , which is a solenoidal 
potential for velocity, V = V X f Then equations (1) and (2) 
may be reformulated into the form 

fl=-V2^ (8) 

+ V« W = - VP + PrV2V + RaPr0k 

JUL 
It .+ v ( V 0 ) = V20 

(2) 

(3) 

where k is the unit vector in the direction opposite to the 
gravitational force, P is the local pressure minus the 
hydrostatic component, Ra is the Rayleigh number 
(Ra = g/3D3A77ai'), and Pr is the Prandtl number. Throughout 

dQ 

It -+ V x(0 + V) = PrV2ll + RaPrV x(0k) (9) 

Boundary conditions for ^ and fi were derived from the veloci
ty boundary conditions. The condition of impermeability 
restated in terms of \p implies that \p is normal to the 
boundaries and that the normal derivative of its normal com
ponent is zero (Mallinson and de Vahl Davis, 1977). An exam
ple of the form of the boundary condition for \p is given 
below: 

a 

Ay 

*z 

C 

C 

D 
H 
he 

k 

L 
Nu 

Nu2D 

ANu 

= thermal diffusivity, 
m 2 s _ 1 

= longitudinal aspect 
ratio = L/D 

= vertical aspect ratio = 
H/D 

= dimensionless thermal 
conductance of the side 
walls (equation (23)) 

= dimensional group 
defined as 
C'=D/(R + l/he), 
Wffi- 'K- ' 

= enclosure width, m 
= enclosure height, m 
= external heat transfer 

coefficient, Wm~ 2 K - 1 

= unit vector in the z 
direction 

= enclosure length, m 
= average Nusselt 

number 
= average Nusselt 

number for two-
dimensional flow 

= difference in average 
Nusselt numbers at the 
hot and cold walls = 
NuA — Nuc 

P 
Pr 

q(M) 

Q 
R 

Ra 

t 
T 

T 
1 0 

AT 

V 

«, v, w 

x, y, z 

13 

6 

K 

= dimensionless pressure 
= Prandtl number = v/a 
= dimensionless heat flux 

density 
= average heat flux 
= thermal resistance of 

the side walls, 
m 2 KW-' 

= Rayleigh number = 
gfiD3AT/av 

= dimensionless time 
= temperature, K 
= reference temperature 

= (Th + Tc)/2, K 
= temperature = 

T>, — Tc, K 
= dimensionless velocity 

vector 
= dimensionless velocity 

components 
= dimensionless coor

dinates, Fig. 1 
= thermal expansion 

coefficient, K~' 
= dimensionless 

temperature = 
(T-T0)/AT 

= dimensionless ambient 
temperature 

V 
V 

t 
h > *l>y, 4>z 

Q 

o„ Q„ n, 

Subscripts 
a 

ad 
c 
h 
P 

w 
II 

X 

= thermal conductivity of 
the fluid, W m - ' K " 1 

= kinematic viscosity, 
m 2 s - 1 

= potential vector -
= components of the 

potential vector 
= rotational vector 
= components of the 

rotational vector 

= ambient 
= adiabatic 
= cold 
= hot 
= refers to average heat 

flux at the side walls 
= wall 
= refers to surfaces 

parallel to the isother
mal walls 

= refers to surfaces 
perpendicular to the 
isothermal walls 
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-V*- = 0, tf, = tfz = O a t x = 0 , 1 (10) 
dx ' 

At non-slip surfaces, the tangential derivatives of the velocity 
components vanish. The boundary conditions on vorticity 
follow directly and may be exemplified at the wall x = 0 by 

flx = 0 (11) 

Qy=-dHy/d
2

x, Qz=~d2tz/d
2

x (12) 

Following Mallinson and de Vahl Davis (1973), equation (11) 
and (after integration) equation (12) are used as boundary 
conditions for solving the vorticity equation. 

Heat Transfer 

For three-dimensional flows, great attention must be paid to 
the heat transfer results. As will be discussed in the following 
section, discrepancies in the heat fluxes at the isothermal walls 
can be used as a measure of the three dimensionality of the 
flows for the basic geometries. The nondimensional local heat 
flux at a given point M(x, y, z) is defined as 

q ( M ) = - V 0 + V0 (13) 

The average heat flux for a surface S with n as a unit vector 
normal to the elementary surface ds is 

Qs=-^\s(-V6 + X8).nds (14) 

In this paper, we discuss the heat transfer rate only on vertical 
surfaces parallel or perpendicular to the isothermal walls. The 
nondimensional average heat flux through a section of 
x = const is written as 

1 [Av f-4? / dd \ 
e"w=^7)o I (-arH** (15) 

At x=0 and x=l, we define the mean Nusselt number on the 
isothermal walls as 

Nu A =e , (0) (16c) 

Nuc = Q,(l) (166) 

For adiabatic side walls (C=0 in equation (7)), the average 
heat flux is independent of x at steady state. Therefore 

Q , (x )=Nu ; ,=Nu c = Nu„, 0 < x < l (17) 

When we want to designate the average heat flux through a 
vertical section perpendicular to the isothermal walls of 
y = const, we write 

i tAz r1 / de \ 
Q^y)^i \A-^r+ve)dxdz (18) 

and 
Q±(y)=o if c = o 

In addition to the thermal conductance, the level of the am
bient temperature greatly affects the flow structure and heat 
transfer rates. Mathematically, the presence of a nonzero con
stant in equation (7) leads to a loss of the centrosymmetry 
properties of the solution. For convenience, we can distinguish 
the two following cases: 

(a) 0„=O: The mean temperature T0= (Th + Tc)/2 is 
equal to the ambient temperature and, whatever the C value, 
the solution is centrosymmetric provided the flow is laminar 
and stationary. Consequently 

Nu„ = Nuc=NU>v (19) 

and 

QAy)=0 0<y<Ay (20) 

Indeed, the average heat fluxes through each section of 
y = const are zero because the heat input in the regions near the 
cold wall exactly compensates for the heat output near the hot 
wall. The heat transfer at the side walls influences Qt (x) only. 
Variations in Qt show the three dimensionality of the flow. 

(b) 6a ?*0: The difference between the total heat fluxes 
transferred at the isothermal walls matches the heat losses 
through the side walls. Consequently, for identical thermal 
boundary conditions at the side walls, a heat flux balance 
reads 

\Nuh-Nuc\Ay = 2Qp (21) 

where 

QP = Qx(P) = Q±(Ay) (22) 

Numerical Solution 

Various numerical procedures have been used to solve the 
equations governing natural conrection flows in cavities. In 
many previous papers, it has been shown that the transport 
terms in the momentum and energy equations must be 
represented at least with a second-order accuracy in order not 
to introduce false diffusion. For this purpose, accurate 
numerical methods such as pseudo-spectral methods (Le 
Quere and Alziary de Roquefort, 1985; Haldenwang and 
Labrosse, 1986) or improved finite element and finite dif
ference methods (Upson and al., 1980; Lauriat and Altimir, 
1985) were employed. However, comparisons with previously 
published results show that finite difference methods with a 
formal second-order accuracy provide extremely good 
representation of the flows in the whole extent of the laminar 
regime (Le Peutrec and Lauriat, 1987b). 

The discretization of the governing equations can be 
achieved by using either a control volume finite-difference 
procedure with staggered grids or Taylor series expansions. 
No clear consensus has so far emerged about the best method, 
especially when using nonuniform meshes to increase the 
resolution near the walls. In this work, coordinate stretching 
transformations have been applied to the three coordinates. 
Accordingly, the physical coordinates are transformed using 
one-dimensional exponential stretch x = x(p), y=y(q), and 
z = z(r). For example, the x-grid points are determined as a 
function of the equally divided coordinate/? as follows: 

x=0.5(e*"- l ) / (e 0 - 5*-l ) 0 < p < 0 . 5 (23) 

^ = l . - [ 0 . 5 ( e « 1 - ^ - l ) / ( e ° - 5 ( , - l ) ] 0 . 5 < J D < 1 (24) 

As an illustrative example, the equation for the x compo
nent of the vorticity vector is: 

dt " dq ' dr L " dp2 " dp 

A,d2Qp „ dUp A,d2Qp „ dO„l 

+ WA»+Aq>^+Ar°^ (25) 
v dq dq dr 

Then, the vorticity and vector potential equations were 
discretized using Taylor series expansions. A control volume 
formulation was employed for the energy equation because it 
works well with respect to the energy conservation properties. 
Central difference approximations were used for all the spatial 
derivatives. 

The time integration was performed with a standard ADI 
scheme. The resulting set of algebraic finite difference equa
tions are tridiagonal and a vectorized version of the Thomas 
algorithm was employed for the solutions. The convergence 
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Table 1 Average Nusselt numbers computed with various 
grids and stretching parameters (Haidenwang and Labrosse, 
1986) 

Ra Grid 

21 

31 

31 
106 

41 

107 41 

b 

\ ° 
4.407 

4.350 

8.856 

8.704 

17.42 

1 

4.365 

4.344 

8.710 

8.660 

16.86 

2 

4.361 

4.348 

8.667 

8.651 

16.47 

3 

4.376 

4.356 

8.665 

8.657 

16.40 

4 

4.398 

4.366 

8.687 

8.670 

16.40 

5 

4.422 

4.376 

8.710 

8.681 

16.43 

6 Ref 

4.446 

4.385 

8.731 
8.61 

8.693 

16.49 16.12 

criterion for steady state was based on the variations of the 
maximum value of the vorticity components and by monitor
ing the overall energy balance at each time step. 

Computations were carried out on a series of grids in order 
to determine the minimum number of meshes and the op
timum stretching parameter required to obtain accurate 
enough solution. An example of grid size study is shown in 
Table 1 for a cubical air-filled enclosure. The same stretching 
parameters were used in each direction. The value of b should 
be adjusted so that at least two grid points are located be
tween the walls and the maximum velocity. It should be noted 
that the stretching parameters should never exceed i s 5 in 
order to suppress numerical instabilities in the central part of 
the cavity. Such effects are closely linked to the size ratio be
tween the largest and the smallest mesh. From the results 
reported in Table 1, it can be concluded that a grid of 
31x31x31 with 6 = 3 represents a reasonable compromise 
between accuracy and computing cost for Ra=106 while a 
41x41x41 mesh with b = 4 can be employed at Ra = 107. For 
comparison purposes, the results recently computed using a 
spectral method (Haidenwang and Labrosse, 1986) are also 
reported in Table 1. As can be seen, a fairly good agreement is 
obtained for the highest Rayleigh number considered in the 
present work (Ra= 107). 

Using a CRAY2 supercomputer, the solution for 41 grid 
points in each direction took 100 s to accomplish 100 time 
steps; about 1000 time steps are needed to achieve steady-state 
results at Ra= 107 when the solution obtained at Ra= 106 is 
used as the initial condition. When increasing the longitudinal 
aspect ratio, initial calculations were carried out for a cubical 
enclosure and the stretching parameter in the y direction was 
decreased to insure a sufficient grid fineness over the core of 
the flow. Therefore, the grid resolution was decreased in that 
direction and the solutions for large Ay values suffer from the 
highest inaccuracies. 

Results and Discussion 

The effects of heat losses through conducting side walls are 
discussed both for air and water, the most generally used 
working fluids. In a previous study (Le Peutrec and Lauriat, 
1987b), it has been shown that the heat transfer rate was weak
ly dependent upon the Prandtl number of the fluid in the 
laminar regime for 0.7<Pr<7 and adiabatic side walls. 
Therefore, the numerical predictions show that water can be 
used as the working fluid instead of air to investigate heat 
transfer by natural convection in cavities of smaller sizes at 
Rayleigh numbers up to Ra = 2x 107. However, it should be 
noted that larger effects of the Prandtl number could be seen 
on the flow structure at much higher Rayleigh numbers since 
increases of Pr lead to decreasing influences of the transport 
terms in the momentum equation. For example, the threshold 
for oscillatory convection is a function of the Prandtl number, 
as discussed by Gill and Davey (1969). 

The objectives of the present work being to bring quan
titative information for the design of test cells, care must be 

taken when discussing the results in terms of dimensionless 
parameters. Indeed, their variations should be restricted 
within the ranges of practical application. In the following sec
tions, special attention will be paid to the dimensionless con
ductance of the side walls defined as 

D 
C= (26) 

\f(R + \/he) 
where R is the thermal resistance based on the thickness and 
effective thermal conductivity of the side walls. Heat trans
ferred to the surroundings by convection and radiation is 
represented by a uniform heat transfer coefficient he, whose 
value is of the order of 5 W»m~2K"' (Kirkpatrick and Bohn, 
1986). Since C is based on the thermal conductivity of the 
working fluid, its value is much greater for a gas-filled cavity 
than for a liquid-filled cavity. Therefore, for a designed test 
cell, the effects of side losses increase when it is filled with a 
fluid of low thermal conductivity. In addition, from a com
parison of the thermophysical properties of air and water, it 
can be readily shown that enclosures of larger size should be 
used when using air at atmospheric pressure. By taking these 
two effects into account, typical C values for air are found to 
be roughly 50 times greater than for water. Indeed, the ther
mal conductivity of air is about 20 times smaller and a two to 
three times wider spacing should be used to obtain the same 
Rayleigh number at atmospheric pressure and temperature 
differences compatible with the Boussinesq approximation 
(Ar<30 K for air and A!T<5 K for water). 

Figure 2 shows the variations in the Nusselt numbers at the 
hot wall and at the cold wall as a function of C for cubical 
enclosures filled with air or water. The differences 
ANu = NuA — Nuc are also presented (ANu = 2Qp for a cubical 
enclosure, equation (21)). The results are for Ra=103, 105, 
5 X 106 and the cold wall temperature matches the ambient 
temperature (6a= -0.5), as it was done in the experimental 
work of Bajorek and Lloyd (1982), for example. For a given 
set of input parameters, it can be deduced from equation (7) 
that this d„ value yields maximum effects of the heat losses 
through the side walls. For C= 10 ~2, the side walls may be 
considered as adiabatic. For each Rayleigh number, the 
predicted NuA increases with C while Nuc decreases, which is 
expected since the side wall temperatures approach da asymp
totically as C^oo. At the lowest Ra, the effects of C are 
largest in relative value, but the convective motion has very lit
tle influence on the heat transfer rate. In that case, the present 
results agree very well with calculations performed for two 
dimensional conductive transfer in a horizontal cross section 
with two isothermal walls and the boundary conditions given 
by equation (7) applied at the two other walls. Also, the effect 
of the difference in Prandtl numbers for air and water is 
negligibly small for Ra<05. When increasing Ra, ANu in
creases dramatically, especially for C> 10. It should be noted 
that opposite though similar variations are shown for Nuc and 
Nu/| in the strong convective regime. A week effect of Pr can 
be seen for Ra>105 because the convective terms in the 
momentum equation become increasingly important. 
However, it should be noted that the Pr effects remain in the 
range of experimental uncertainties and have very little in
fluence on ANu as Cincreases from 10"2 to 10. Therefore, it 
can be concluded that the effects of variations in Prandtl 
number in the range [0.7, 7] are similar for adiabatic and con
ducting side walls. On the other hand, it is evident that the 
thermal conductivity of the working fluid has a strong effect 
on ANu. 

From these results, it can be concluded that a C value less 
than about one should be retained in order to maintain the ef
fects of the side losses within acceptable limits. It is also im
perative to record both the power supplied to the heaters and 
the heat flux transferred to the cold plate of an experimental 
apparatus in order to check the reliability of the 
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Fig. 2 Variations of the Nusseit numbers at the isothermal walls of a 
cubical enclosure as a function of the thermal conductance of the side 
walls at various Ra and 8a = - 0.5 ( air, water): (a) Ra = 1 0 , (b) 
Ra = 105,(c)Ra = 5 x 1 0 6 

measurements. Since the above conclusion has been shown 
valid independently of the Prandtl number, it follows that the 
minimum thermal resistance of the side walls should be about 
i? = 1.5 D-0.2 (m2K.W-') and i? = 40 D-0.2 (m^-W"1) 
for water and air, respectively. It can be deduced that highly 
thermally insulated side walls should be used for cavities filled 
with air or with fluids of low thermal conductivity. 

Fig. 3 Temperature distributions fa) and velocity vectors projected in 
vertical cross sections (b). Three-dimensional view of the isotherm 9 = 0 
(c). Cubical enclosure with adiabatic side walls (C = 0) filled with air at 
Ra = 106. 

The above discussed discrepancies in Nusseit numbers at the 
isothermal walls can be used as an indication of the strength of 
the three-dimensional motion produced by the heat losses at 
the side walls. In Figs. 3-6, we present the contours of 
isotherms, vertical views of velocity vectors for vertical planes 
of constant y as well as three-dimensional plots of the 
isotherm 0 = 0 for a cubical enclosure at Ra= 106. Figure 3 is 
for an air-filled cavity with adiabatic side walls (C=0.). The 
plots for water are not shown because no significant dif
ferences are found. In the vertical middle plane (y = 0.5), the 
flow is almost the one obtained with two-dimensional simula
tions. Some changes are seen in the regions adjacent to the 
isothermal walls, especially for the velocity plots presented for 
,y = 0.011. In these plots, the length of the arrows represents 
the magnitude of the velocity projected in a vertical x-z plane. 
However, it should be noted that the development of three 
dimensional flows produced only by no-slip boundary condi
tions at the side walls appears to be weak, in particular at high 
Ra numbers. As discussed by Le Peutrec and Lauriat (1987a), 
such weak three-dimensional effects have little influence on 
the heat transfer provided that the longitudinal aspect ratio Ay 
is greater than one and Ra> 106. That conclusion is supported 
by the plot of the isotherm 8 = 0, which shows that the flow is 
almost two dimensional. 

When C is less than one, the effects of the side losses on the 
velocity plots and isotherms in the vertical middle plane re
main negligible. It is evident that three-dimensional motions 
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Fig. 4 Temperature distributions (a) and velocity vectors projected in 
vertical cross sections (b). Three-dimensional view of the isotherm 9 = 0 
(c). Cubical enclosure with conducting side walls (C = 30, 0a = - 0.5) 
filled with air at Ra = 106. 

are more pronounced in regions close to the side walls but re
main at a low level. These motions increase when C increases 
and penetrate throughout the cavity, as can be seen in Fig. 4 
for C=30. In this case ANu = 8.13, while the Nusselt number 
for adiabatic side walls is Nu = 8.68. Here again, the effects of 
Prandtl number are of minor importance. Therefore, the plots 
presented in Fig. 4 are for air only. When Fig. 4 is compared 
with Fig. 3, it can be seen from the isothermal patterns and 
velocity fields that the central-symmetry property in the ver
tical section ^ = 0.5 is lost for conducting side walls. In the 
plane y = 0.011, the flow structure is completely modified and 
the fluid is mostly flowing downward, the upward motion be
ing predicted only in the corner region. From the temperature 
distributions at the side walls, it is clear that the bottom half is 
almost kept at the ambient temperature while temperatures 
greater than d = 0 are restricted to a narrow strip along the hot 
wall. The indication is that the heat losses at the side walls 
have pronounced effects both on flow structure and on 
average heat fluxes at the isothermal walls. 

For practical application, it can be concluded that the ther
mal resistance of the side walls should be multiplied by about 
the ratio Xwater/Xait if a cavity is filled with air instead of water 
in order to confine the side effects to the same level. 
Therefore, to provide more physical insight into these results, 
we have re-examined the problem using the dimensional group 
C" =D/(R + \/he) kept at the same value for the two fluids, 
i.e., C'=0.3W«m_ lK_1 . This value appears to be realistic as 

Journal of Heat Transfer 

Fig. 5 Temperature distributions (a) and velocity vectors projected in 
vertical cross sections (b). Three-dimensional view of the isotherm 0 = 0 
(c). Cubical enclosure with conducting side walls (C'=0.3 mK/W, 
0a = -0.5) filled with air at Ra = 106. 

can be shown by choosing he = 5 W«m~2K~', 0.2<D<1 m, 
which lies in the range of width of the experimental apparatus, 
and0.4</?<3m2K«W-'. 

Figures 5 and 6 show plots for air and water, respectively. 
Since the C value for air is then C—11.5, strong entrainment 
of fluid downward is predicted in dynamic boundary layers 
adjacent to the side walls. The numerical solutions show that 
the dimensionless thickness of these boundary layers is of the 
order of 0.06 at Ra= 106. At the same time, it can be seen 
from Fig. 5(c) that the flow structure is fully three dimen
sional. On the other hand, the C value for water being C=0.5, 
the side walls may be assumed to be adiabatic, at least at a 
rough estimate. That can be deduced by comparing Figs. 3 and 
6. These results suggest that reliable flow visualizations 
through glazed side walls of gas-filled cavities are highly dif
ficult to achieve if the aspect ratio of the cross section is 
moderate and for cold wall temperature close to the ambient 
temperature. 

The variations in the differences between the Nusselt 
numbers at the two isothermal walls are presented in Fig. 7(a) 
versus Ra and for various dimensionless ambient 
temperatures. Here again, these results are for C = 0 . 3 
W/m-K. It should be noted that opposite values of ANu 
would be obtained for 0„>O. As can be seen, little change is 
obtained for water when increasing Ra whatever the 0a_value 
investigated. In contrast to these results, increases of ANu are 
shown for air-filled enclosures, which might be expected since 
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Fig. 6 Temperature distributions (a) and velocity vectors projected in 
vertical cross sections (b). Three-dimensional view of the isotherm 9 = 0 
(c). Cubical enclosure with conducting side walls (C'=0.3 mK/W, 
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Fig. 7 Variations of the differences in Nusselt numbers at the isother
mal walls as a function of Rayleigh number for cubical enclosures 
( air, water) 

large effects of the side losses are reported in Fig. 5 for this C" 
value. However, the side effects have a decreasing relative in
fluence on the heat transferred between the isothermal walls as 
Ra is increased from 103 to 107. That is demonstrated by the 
variations of ANu normalized by the Nusselt number obtained 
for adiabatic side walls (Fig. lb). According to the da value, 
the relative discrepancies between Nu,, and Nuc are restricted 
in the range [0.5 percent, 3 percent] for water at Ra=107. 
Since small temperature differences may be used, it is clear 
that the side losses have negligible effects both on flow struc
ture and heat transfer rate at high Rayleigh numbers in water-
filled enclosures. On the other hand, the discrepancies for air 
are much larger since the above range is extended from 7 to 30 
percent at Ra= 107. It can be concluded anew that test cells 
with highly insulated side walls must be employed if low-
conductivity fluids are used as working fluids when 6a 7* 0. 

Decreasing effects or reductions of the heat losses at the side 
walls can be achieved either by increasing the longitudinal 
aspect ratio or by keeping the average temperature of the 
isothermal walls close to the ambient temperature. These two 
possibilities are examined in this section. 

The Nu variations reported in Fig. 8 are for air-filled 
cavities at Ra = IO6 and 6a = - 0.5. The C value is the one that 
was used for plotting the velocity fields and isotherms shown 
in Fig. 5 for a cubical enclosure. Also presented are the asymp
totic two dimensional result for a square cavity (Nu = 8.80) 
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Fig. 8 Variations of the heat transfer rate at the isothermal walls ver
sus longitudinal aspect ratio in air filled enclosures of square cross sec
tion (Ra = 106, C = 11.5, 9a = -0.5) 

and the three dimensional results for cavities with perfectly in
sulated side walls. In the latter cases, the heat transfer rate is 
seen to be relatively independent of Ay provided Ay > 2. For 
conducting side walls, the calculations show that the values of 
Nuc and Nuh tend toward the asymptotic value Nu2D as Ay in-
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Table 2 Nusselt numbers as a function of the longitudinal 
aspect ratio; Ra = 106, Az = 1, Pr = 0.71, 9„ = - 0.5, 
C = 11.5 

Ay 

N u
a d 

Nu* 
Nuc 

1 

8.68 

11.48 

5.99 

2 

8.71 

10.36 

7.26 

3 

8.73 

9.92 

7.75 

4 

8.75 

9.68 

8.01 

5 

8.77 

9.52 

.8.18 

6 

8.78 

9.42 

8.29 

10 

8.80 

9.19 

8.52 
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Fig. 9 Average Nusselt number as a function of the dimensionless 
thermal conductance of the and walls at various Ra for 0a=O (air-filled 
cubical enclosure) 

creases: the relative discrepancies between Nu,, and Nu2D are 
30 percent for Ay = 1 and only 4.4 percent for Ay = 10. Similar 
differences are obtained at the cold wall (Table 2). 

It should be noted here that the side losses Qp are almost in
dependent of Ay. Therefore, the above findings could be 
directly deduced from the energy balance expressed by equa
tion (21). Since ANu = (2Qp)/Ay, decreases in AaN are propor
tional to A~l for constant Ra. When increasing Ra, the data 
displayed in Fig. 7(a) show that Qp increases. Hence, it can be 
concluded that a cavity with a larger longitudinal aspect ratio 
should be used in order to maintain ANu at the same level. On 
the other handj when arguing in terms of the relative dif
ferences, i.e., (NuA — Nu2D)/Nu2D for example, it is clear from 
Fig. 1(b) that shorter cavities could be used at high Ra to con
fine the side wall effects to a given relative level. For example, 
a longitudinal aspect ratio close to 5 should be enough so that 
(NuA -Nu2D)/Nu2D is less than 4 percent at Ra= 106 while Ay 
should be of the order of 13 at Ra= 105. In other words, if the 
test cells are designed with rather efficient thermal barriers as 
side walls (i.e., i?=0.5 for £> = 0.2 m), large longitudinal 
aspect ratios are not required to produce flows that can be 
considered as two-dimensional provided the Rayleigh number 
is large enough. 

The average Nusselt numbers at the isothermal walls ob
tained with T0 = Ta (or, equivalently, 6a = 0) are presented in 
Fig. 9 for a cubical enclosure. For these cases, Nuc = Nu,, 
whatever the C value. As can be seen, Nu is found to be in
dependent of C for C< 1 in the whole range of Ra investigated 
while increases of Nu are shown at low Ra for C>1. For 
Ra>5.106, it is rather surprising to notice that the heat 
transfer rates at the isothermal walls become independent of 
the thermal conductance of the side walls. In fact, Qp is 
negligibly small because the heat output in the top half of the 
side walls is balanced by the heat input in the bottom half. The 
isotherms displayed in Fig. 10 for C=50 at Y=0 support this 
conclusion. Therefore, Fig. 9 shows that the most important 
parameter to be controlled in experimental runs is the 
temperature difference between the average temperature of 
the isothermal walls and the ambient temperature. 

(a) 

C = 50 

Fig. 10 Temperature distributions and velocity vectors in vertical cross 
sections for adiabatic (C = 0) and conducting side walls (C = 50) 
(Ra = 107,Pr = 0.71,/lz = 1 , 4 y = 2 , fla=0) 

However, these findings do not imply that the heat fluxes 
transferred through the side walls have only a marginal effect 
on the flow structure. This point must be examined since 
reliable measurements of velocity fields and temperature 
distributions have to be performed in order to improve the 
understanding of the transition from steady convection to 
chaotic flows. To this end, computations were carried out for 
an air-filled cavity with Ay = 2 at Ra=107 and 0„ = O. From 
the plots of isotherms and velocity vectors projected in cross-
sectional planes presented in Fig. 10, it can be concluded that 
the longitudinal motion produced at the side walls has a weak 
effect on the flow structure except in layers adjacent to the 
side walls, the thickness of which is less than Ay/10. Flows in 
planes 0.2<y<l.S are essentially two dimensional. 
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Conclusions 

Heat transfer by natural convection in a rectangular box 
with two vertical walls held at uniform temperature and 
adiabatic horizontal end walls depends on the thermal 
boundary conditions applied at the side walls that confine the 
fluid layer in the spanwise direction. Focused on two impor
tant parameters that characterize the heat losses, at the side 
walls, namely the thermal conductance of the walls and the 
ambient temperature, the present study indicates the 
following: 

1 For enclosures filled with low-conductivity fluids, heat 
losses have appreciable effects if the average temperature of 
the hot and cold walls is not kept very close to the ambient 
temperature. 

2 However, their relative influences decrease when in
creasing both Rayleigh number and the longitudinal aspect 
ratio. 

3 For water-filled enclosures, side walls made of 1-cm-
thick perspex are sufficient to confine the effects of the heat 
losses to an acceptable level. 

4 Experiments for two-dimensional flows in air-filled 
cavities could be conducted at Rayleigh numbers corre
sponding to the end of steady convection in enclosures with 
Ay>2 provided the mean temperature of the isothermal walls 
matches the ambient temperature and double-glazed windows 
with low emissivity coatings are used as side walls. 
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Unsteady Multicellular Natural 
Convection in a Narrow Horizontal 
Cylindrical Annulus 
Numerical and analytical solutions are presented for multicellular flow instability 
and the subsequent nonlinear development in a horizontal cylindrical annulus. The 
Boussinesq approximated Navier-Stokes equations are simplified to Cartesian-like 
boundary layer equations by means of a high Rayleigh number small gap asymptotic 
expansion. The full numerical problem is explored for the limiting case of zero 
Prandtl number. A t a finite scaled gap spacing, an instability sets in, which results in 
periodic multicellular flow. The numerical solutions are found to progress through 
an increasingly complex sequence of periodic solutions, culminating in a very com
plex unsteady solution that has features normally associated with chaotic systems. 

1 Introduction 

The need to predict the rate of natural convection heat 
transfer in the annular region between concentric cylinders 
constitutes an important engineering problem that occurs in a 
wide variety of technological applications. Examples of great 
interest range from latent energy thermal storage systems to 
nuclear reactor design. Other technological applications may 
be found in high-voltage electric transmission cables, and in 
aircraft cabin insulation design. 

The basic flowfield induced by buoyancy force consists of 
two crescent-shaped cells, which are symmetric with respect to 
the vertical plane containing the axes of the cylinders (Liu et 
al., 1961; Grigull and Hauf, 1966; Mack and Bishop, 1968; 
Powe et al., 1969, 1971; among others). While numerous ex
perimental, numerical, and analytical studies all corroborated 
this picture of the basic flow, peculiar transitions appeared in 
the flow under various conditions. In particular, a 
multicellular flow was generally observed in the top portion of 
a narrow annulus for sufficiently high values of the Grashof 
number Gr (or the Rayleigh number Ra), suggesting a thermal 
or Rayleigh-Benard type of instability (see Liu et al., 1961; 
Powe et al., 1969, 1971; and more recently, Rao et al., 1985). 

Other types of flow instability were also observed when Gr 
was increased to sufficiently large values. For annular regions 
that are relatively wide, oscillations of the basic flow convec
tion cells were observed experimentally (Liu et al., 1961; 
Bishop et al., 1968; Powe et al., 1969). Oscillations of 
multicells in the top of the annulus were observed numerically 
(Rao et al., 1985). With annular regions of intermediate 
width, three-dimensional spiral vortices were found to exist 
(Powe et al., 1969; Rao et al., 1985). One other type of in
stability was also reported for low-Pr flows in wide annular 
regions (Mack and Bishop, 1968). They presented the first 
four terms of a regular perturbation solution for the problem 
using Ra as the expansion parameter. The closed-form solu
tion of Mack and Bishop (1968) allowed them to investigate 
the effect of Pr over the extraordinary range of [0.02, 6 x 106]. 
They found that for Pr>0.7, very little qualitative change oc
curred in their solutions. But for 0.02<Pr<0.3, a flow in
stability consisting of multicells distributed along both the top 
and bottom of the annulus appeared. (Similar results have 
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since been reported by Huetz and Petit (1974) and Charrier-
Mojtabi et al. (1979)). This behavior was never observed in 
any of the numerical and/or experimental studies mentioned 
above. Powe et al. (1969) attempted to draw together the 
several types of flow instability that had been observed to oc
cur, and, with the notable exception of the low-Pr instability 
observed by Mack and Bishop (1968), they succeeded in 
developing a flow regime map that neatly categorized all the 
flow patterns in terms of a critical Gr, which was a function of 
dimensionless gap width. 

Independently of the investigations being carried out on an
nular geometries, Korpela et al. (1973) and Korpela (1974) 
used classical linear stability theory to study the growth and 
decay of disturbances on the natural convection base flow in 
narrow, vertical, and inclined slots. A later numerical study by 
Lee and Korpela (1983) supported the earlier results for the 
vertical slot (Korpela et al., 1973). These studies demonstrated 
that a critical Gr was a key parameter for low-Pr flows, 
whereas a critical Ra was a key parameter for high Pr flows, in 
determining states of neutral stability. But an even more im
portant result was that the value of Pr was found to have the 
dominant influence upon the type of instability that was 
observed to occur. Two fundamentally different types were 
recognized: 

(i) High-Pr flows: The disturbance energy (kinetic energy 
for perturbations to base flow) originates from the potential 
energy associated with the buoyancy force acting on the 
fluid—the instability is thermal in nature. Counterrotating 
cells are produced. 

(ii) Low-Pr flows: the disturbance energy originates from 
the kinetic energy of the base flow—the instability is 
hydrodynamic in nature. Like-rotating cells are produced. 

Other related studies of natural convection instabilities in 
vertical channels can be found in Elder (1965), Vest and Ar-
paci (1969), Thomas and de Vahl Davis (1970), Pepper and 
Harris (1977), Seki et al. (1978), Choi and Korpela (1980), and 
Drummond and Korpela (1987). 
. For the inclined slot geometry, only a hydrodynamic type of 
instability can occur for Pr<0.24. This number has great 
relevance to the present study because locally, a narrow an
nulus looks like a narrow inclined slot. Walton (1980), using a 
WKB formulation, confirmed that Pr = 0.24 was also a critical 
value of Prandtl number for the annular geometry. For 
Pr>0.24, instability first forms at the top of the annulus, in
dicating that it is thermally dominated. Only for Pr<0.24 can 
the instability first form elsewhere, indicating a significant 
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hydrodynamic contribution to its origin. The value of Pr is 
seen to play a fundamental role in characterizing flow in
stability in (at least narrow) annular regions. The Pr effect is 
completely missing in the flow regime map of Powe et al. 
(1969). Most likely, it was never observed because (with the 
sole exception of the study by Mack and Bishop (1968)) the Pr 
ranges that had been examined in numerous works never con
tained sufficiently small values of Pr. Air, for which Pr = 0.7, 
was consistently used as the example of a low-Pr case. 

The appearance of the thermal and hydrodynamic in
stabilities has generally been associated with small-scale radial 
and azimuthal distances and cells of O(l) aspect ratio (i.e., the 
same width as length). For example, Walton (1980) concludes 
that for the small-gap problem, a small portion of the channel 
can become unstable, presumably leading to cell development 
in the more nonlinear stages. The actual angular position of 
this instability is generally a strong function of the annular gap 
spacing, Rayleigh number, and, perhaps more importantly, 
the Prandtl number. In this study, a fundamentally different 
type of instability was encountered, which also appears to be 
relevant to the hydrodynamic instability problem, and pro
duces qualitative and quantitative behavior, which is seen to 
be consistent with previous computation and experiment. This 
instability is believed to be the large gap limit of a high 
Rayleigh number equivalent of Walton's (1980) problem. A 
brief analysis of this conjecture has been conducted by one of 
the authors, A. P. Rothmayer, and is presented in the appen
dix. In Walton's study the instability was highly localized 
about a given point in the annulus and was strongly affected 
by the azimuthal diffusion terms in the governing equations. 
This result followed from the assumption that the cells were 
expected to have O(l) aspect ratio. The present study differs 
from Walton's work in that the Rayleigh number is taken to 
be large, the Prandtl number small, and the cells have very 
large aspect ratio. That is, the cells are asymptotically much 
thinner in the radial coordinate than in the azimuthal coor
dinate. The cells are therefore spread throughout the entire an
nulus and are not confined to the neighborhood of a given 
angle, as in Walton's study. The present study concludes that 
azimuthal diffusion is not a necessary precursor for 
hydrodynamic instability. Additional circumstantial evidence 
and preliminary analysis supporting this view is presented in 
the appendix. 

The equations governing these cells are found to be 
nonlinear boundary-layer equations with negligible azimuthal 
diffusion. The boundary-layer equations are driven by a 
gravitational field that appears periodic from the geometric 
frame of the annulus. For the small Prandtl number fluids 
governed by these boundary-layer equations, an unsteady 
hydrodynamic multicellular flow is found to originate near the 
vertical section of a two-dimensional narrow horizontal cylin
drical annulus. 

This unsteadiness is in contrast to the vertical slot studies, 
for which only steady multicellular flow has been observed in 

180° 

-90° 

360°,0° 

Fig. 1 Two-dimensional concentric cylinder geometry 

the zero Pr limit. The initial instability behaves in a stationary 
manner, for values of the scaled gap spacing that are slightly 
larger than the critical value for instability. Upon slightly in
creasing the scaled gap spacing, a simple periodic multicellular 
motion ensues. Further increasing the scaled gap spacing 
results in more complicated periodic motions. Still further in
creases of the scaled gap spacing lead to a flow that has no ob
vious periodic character. The present model also gives 
evidence of sensitivity to initial conditions—a hallmark of 
chaotic dynamics—when the solution is in an unsteady, 
nonperiodic mode. Given the limited nature of the present 
computations, however, and the lack of theoretical develop
ment to determine whether the complicated unsteady flow is 
chaotic, it is too early to definitely conclude that any sort of a 
transition to chaos is occurring. Since most of the theory and 
computational results for transition to a chaotic solution have 
been derived for low-order systems (i.e., a reasonably small 
number of ordinary differential equations or a low-order spec
tral approximation to a partial differential equation), it is 
noteworthy that the solutions calculated in this study appear 
to follow a sequence of events that typically characterize the 
transition to chaos in such low-order systems. The interesting 
sequence of unsteady solutions observed in the present study 
were calculated using a relatively simple partial differential 
equation that is locally parabolic, but rendered globally ellip
tic due to periodicity and possible flow reversal. 

2 Basic Mathematical Formulation 

The Boussinesq-approximated Navier-Stokes equations and 
the thermal energy equation with negligible viscous dissipation 
form a starting point for the derivation of the high Rayleigh 

a 
b 

r/v 
G 

Pr 
r 

Ra 
/ 

= inner cylinder radius 
= outer cylinder radius 
= dimensionless stream 

function 
= dimensionless gap spacing 
= Prandtl number 
= dimensionless radial 

coordinate 
= Rayleigh number 
= dimensionless time 

T = 

T, = 
To = 

u = 

V = 

w = 

{T-T0)/(Ti-T0) = dimen
sionless temperature 
inner cylinder temperature 
outer cylinder temperature 
dimensionless radial velocity 
component 
dimensionless circumferential 
velocity component 
w*/(y/a2) = dimensionless 
vorticity 

4/ = dimensionless circumferential 
coordinate 

Superscripts 
* = dimensional variables 

~ = dimensionless variable scaled 
for large Ra, small G asymp
totic limit 

" = dimensionless variable scaled 
for large Ra, small G, and 
small Pr asymptotic limit 
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number small-gap limit. These equations may be used to deter
mine the buoyancy-induced steady or unsteady flow fields be
tween horizontal isothermal concentric cylinders. The vortici-
ty-stream function formulation will be adopted here. The 
flow is assumed to be laminar, Newtonian, and two dimen
sional (see Fig. 1). The dimensionless governing equations are 
(see Fant, 1987) 

_ dT dT Gv dT 
G2-^—+Gu—- + dt dr r+G~ dt 

Pr I 

1 r d2T dT 

(energy) (2.1) 

Pr l dr2 

( , dw „ dw Gv dw 
Pr 1G2-^— + Gu-^— + 

= Prf 

dt 

d2w 

r+G~l dr (r+G'*)2 dt2 

] 
a2w 

dr ' r + G~l 

1 dw 

dt 

I 
-] 

+ GRa 

dr1 r+G~l dr (r+G~1)2 dt2 

( . , dT cos t dT -) 
sin +-— + — - — j - —— (vorticity) (2.2) 

I. dr r+G ' dt J 

d2f 1 df 1 d2f 

dr2 - + - - = G2w 
r+G~l dr (r+G-1)2 dt2 

(stream function) (2.3) 

The stream function is defined by 

- 1 df I df 

G(r+G~l) dt G dr 
(2.4) 

In the above system of equations, three independent 
parameters are needed to describe the problem, namely the 
Rayleigh number, the Prandtl number, and the gap spacing 

Ra = 
g/3a3(T,-T0) 

Pr = - G = -
b-a 

(2.5) 

The Rayleigh number is based on the temperature difference 
between the cylinders and the inner cylinder radius. Here g is 
the local uniform vertical acceleration due to gravity, /3 is the 
coefficient of thermal expansion, v is the kinematic viscosity 
of the fluid, and a is the thermal diffusivity. T, and T0 are the 
inner and outer cylinder temperatures, respectively (see Fig. 
1). The radius of the inner cylinder is a, whereas b is the radius 
of the outer cylinder. The time, the angular coordinate, and 
especially the radial coordinate have been nondimensionalized 
as in Prusa and Yao (1983) 

t=t*/(a2)/v t = V 
b-a 

(2.6) 

This means that the nondimensionalized radial coordinate re
mains O(l) irrespective of the actual physical gap spacing. All 
of the effects of the gap spacing are incorporated into G. The 
isothermal and no-slip nondimensional boundary conditions 
for the above system of equations are 

1 a2 / 
7 W , 0 ) = 1 , / « - , 0) = 0, andw«- ,0) = 

G2 dr2 <t, 0) 

(2.7) 

on the inner cylinder, as well as 

T(t, 1) = 0, f(t,l) = 0, and w(t, 1) = - ^ - - ^ - « s 1) 

(2.8) 

on the outer cylinder. The initial condition for this problem is 
either the state of no flow within the annulus or the solution 
from the previous numerical calculation. 

3 Asymptotic Analysis for the Narrow Annulus 

In this section, high Rayleigh number asymptotic expan
sions will be developed for the narrow-gap limit. A simpler set 
of equations shall be developed from this intermediate set for 
the small Prandtl number limit. In both cases, the 
Navier-Stokes equation are found to reduce to Cartesian-like 
boundary-layer equations. 

In the high Rayleigh number limit for finite gap spacing, ex
perience suggests that the annular flowfield can be divided in
to an inner wall and an outer wall boundary layer with an in-
viscid core in the center. In fact this type of expansion has 
been carried out by Jischke and Farshchi (1980), although the 
correct theory is slightly more complicated than the simple one 
suggested above. In their study, Jischke and Farshchi (1980) 
failed to observe multicell development. In addition, many 
studies, and in particular the study of Walton (1980), suggest 
that cell development will be found in very narrow cylindrical 
annuli. Another argument for generating the small gap spac
ing limit is that the wall boundary layers for finite gap spacing 
are noninteracting. In general, one might expect the classical 
boundary-layer singularities to arise in the situation of 
multicell development. Such a problem can be avoided by let
ting the gap spacing tend to zero until the boundary layers 
merge. Once the boundary layers merge, the pressure will not 
be prescribed and any boundary-layer singularity is avoided; 
for example see Smith (1983). In either case it seems 
reasonable to search for multicells in a narrow annulus where 
viscous effects act across the entire channel. 

A preliminary analysis for finite gap spacing boundary-
layer theory, and a limit of that solution for small gap spacing, 
suggests the following expansions for the dependent variables: 

(u, v, w,f 7)~(Ra 1 / 4«, Ra1/2u, Ra3/4vv, Ra1/4/, f) + . . . (3.1) 

The temperature is maintained at O(l) to satisfy the imposed 
wall boundary conditions and all the other terms follow from 
this assumption. The gap spacing in which the boundary layers 
merge is found to be 0(Ra~ l / 4 ) , provided that the azimuthal 
coordinate is O(l). The gap spacing is rescaled to this order of 
magnitude giving 

G = R a - | / 4 G (3.2) 

To bring unsteady effects into play at leading order the time is 
rescaled as follows: 

/ = R a " (3-3) 

This time scaling produces very high-frequency waves and 
multicells. Note that the above scaling for the gap spacing im
plicitly includes the assumption of a small temperature dif
ference between the inner and outer cylinders, which is one of 
the basic assumptions of the Boussinesq approximation. There 
is a relatively strong effect of temperature on the critical gap 
spacing to introduce nonlinearity, which will affect the scaling 
of the gap spacing if the Boussinesq approximation is aban
doned. Substituting the above expansions, equations (3.1), 
(3.2), and (3.3) into equations (2.1) through (2.3) gives the 
final governing equations of the small gap limit 

G24^+GT df dT d2f 

dt 

G 2 4 1 + G | 
dt t 

dr dt 

df dw 

df df^_ 

dt dr i Pr dr2 

(energy) (3.4) 

df dw 32w 

dr dt dt 

G . 
+ ^ — sin t Pr 

dr 

df 

~dV 

dr2 

(vorticity) (3.5) 

a2/ 
dr2 •-G2w (stream function) (3.6) 
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The error introduced by neglecting streamwise diffusion ef
fects in the energy and vorticity equation is, in both cases, on 
the order of the gap spacing squared, or 0(Ra~1 / 2) . Note that 
the radial coordinate r has not been rescaled because of the 
manner in which it was nondimensionalized. The boundary 
conditions retain the same form as equations (2.7) and (2.8) 
but in rescaled variables. (Similar equations have been 
developed by Bejan (1984) for inclined channels.) 

Now, in order to simplify the equations further we consider 
the small Prandtl number limit. The resulting expansions are 
found to be 

(vv,/, f)~(Pr-V4W, Pr~1 / 4F, T)+ . . . (3.7) 

Again to maintain viscosity acting across the entire channel, 
the channel gap spacing must be reduced still further 

G = Pr1 / 4G (3.8) 

Once again, in order to bring unsteady effects into play at 
leading order, the time is rescaled as follows: 

t = PrW2t (3.9) 

This produces an unsteady response at an even higher frequen
cy than the finite Prandtl number equations. In this limit, the 
temperature equation is found to reduce to a pure conduction 
equation across the annulus (i.e., Tn = 0) giving a temperature 
field that is independent of the azimuthal coordinate \p 

T=\-r (3.10) 

Given this temperature field, the vorticity and stream function 
equations are found to reduce to 

dt I 

dF dW dF dW 

dr d\p dxj/ dr 

d2W 

dr2 

d2F 

dr2 

- G sin \p 

= G2W 

(3.11) 

(3.12) 

The boundary conditions on this system of equations are 

F^, 0)=F«s 1) = 0, Wty. 0) = -i--?¥-(*. °)> and 
G2 dr2 

1 d2F 
(3.13) 

Notice that these equations have the form of incompressible 
boundary-layer equations, which are being forced by a 
periodic function—the component of the gravitational field 
tangent to the annulus. Despite their rather simple form, these 
equations (3.10)-(3.13) are found to admit a hydrodynamic in
stability for a critical finite value of the scaled gap spacing (see 
Appendix), which leads to a sequence of periodic solutions as 
well as a rather complex aperiodic solution. 

As G—0, the convective terms on the left-hand side of the 
equation become negligible. The imposed temperature field 
then drives the remaining viscous term, suggesting the follow
ing expansions: 

F~G3Fl + G1F2 + GuFi + 0(G15) (4.1) 

The solutions to the resulting equations are found to be 

sin \j/ 
Fl=r2(r-l)2 

and 

F2= ( + -
2 V5040 1512 

24 

180 

(4.2) 

r 

180 336 1512/ 

sin 2\p 

96 
(4.3) 

The important feature to notice in the above equations is that 
the first-order solution is simply two steady-state vertical 
counterrotating cells, whereas the second-order solution is a 
four-cell solution. Because of the expansion (4.1), the G-~0 
limit is expected to be accurate up to relatively large scaled gap 
spacing G. However, once G becomes large enough, the 
nonlinear effects will set in. The form of the second-order 
solution suggests that multicells might be observed in the 
nonlinear regime. However, it must be stressed that should 
multicells begin to develop, and nonlinearity to set in, the 
G—-0 limit solution is no longer accurate. The forms of equa
tions (4.2) and (4.3) are similar to those given by Walton 
(1980), but for a smaller Rayleigh number and finite Prandtl 
number set of equations. In particular, Walton shows that an 
instability sets in, but for much smaller values of the gap spac
ing parameter and much shorter azimuthal wavelengths, that 
is, instabilities that have a small azimuthal wavelength 
centered about some arbitrary value of \p (see the appendix for 
further discussion on this point). The present work contends 
that another form of instability is possible, and that steady 
and unsteady multicells can develop directly from equations 
(3.10)-(3.13) without the presence of azimuthal diffusion. The 
linear stability issue and its relation to the high Rayleigh 
number equivalent of Walton's (1980) study is discussed in 
more detail in Appendix A. The central issue of this study is 
the nonlinear flow development of equations (3.10)-(3.13) for 
finite values of the scaled gap spacing G. 

For completeness, the stream function expansion (4.1) and 
the stream function equation (3.12) suggest the following ex
pansion for the vorticity solution for the G—0 limit: 

W~GWX+ G5 W2 + G9Wi+ 0(G13) 

where W, is found to be 

W. ('-"-r) 
sin \j/ 

(4.4) 

(4.5) 

4 Viscous-Dominated Flow for Very Small Gap 
Spacing 

As discussed in the introduction, later calculations will show 
that a steady-state multicellular flow was achieved near the 
narrow vertical slot portion of the annulus for finite values of 
G. In these calculations, the nonlinear solution resulting from 
the initial instability behaved in a steady-state manner. In view 
of this, it seems reasonable to look at the very small gap limit 
(i.e., the limit G—0), partly to verify that the solution is 
steady and benign for small values of G, and partly to see 
whether steady-state multicells might be expected to occur. To 
do this, the stream function equation (3.12) is substituted into 
the steady-state version of the vorticity equation (3.11), pro
ducing a single fourth-order equation for the stream function. 

5 Computational Method and Details 

- The two coupled equations (3.11) and (3.12) were solved im
plicitly in time using a point iterative Gauss-Seidel method 
with underrelaxation. The dependent variables at a given time 
level were found by repeated iteration of the governing equa
tions, until a local relative error of 1/106 was reached. The 
solutions were carried out to steady state whenever possible, 
and when unsteady flow behavior occurred, sufficiently small 
time steps (as determine by temporal grid refinements) were 
used to produce time accurate solutions. 

A first-order difference formula was used for the unsteady 
term in the vorticity equation. All radial spatial derivatives in 
the governing equations were second-order centrally differ
enced. This included the radial convective terms, which were 
represented by a first-order upwind expression, together with 
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Fig. 2 Comparison of the numerical results with (0-?r domain) and 
without (0-2* domain) symmetric boundary conditions; time 
dependence of the stream function at (c, ^) = (1/2, TI72) 

the standard correction term, which gives a second-order cen
tral difference form in the converged solution. Because of the 
parabolic nature of equation (3.11), which is first-order in \p, a 
corrected second-order upwind difference scheme was 
employed for the stream wise (azimuthal) convective terms. 
Variable spatial increments were also used in order to concen
trate nodes near the heated and cooled cylinders, and near 
\j/ = 7r/2. We evaluated the use of first-order upwind differenc
ing by turning off the second-order correction terms in our 
numerical algorithm and found that multicellular flow could 
not be observed in this case, even when using 102 angular 
nodes. When the correction terms were turned on, the 
algorithm had no problem capturing multicells. Apparently, 
at least second-order accuracy is required to capture the type 
of secondary-flow instability examined in this study, a result 
that was anticipated earlier by Lee and Korpela (1983). 

The transitional value of G (the value that characterizes the 
transition from bicellular to multicellular flow) was deter
mined by initially calculating the steady-state bicellular solu
tions for successively larger pretransitional values of G. Each 
successive steady-state calculation was run using the previous
ly converged steady-state solution as an initial guess. This pro
cedure was repeated until at some critical value of G a transi
tion to multicells occurred. In the following calculations, the 
grid spacing set the wavelength of the initial instability (see the 
appendix for further discussion). The primary aim of this 
study is to follow the subsequent nonlinear development of the 
instability as an initial value problem. 

For the low Prandtl number boundary-layer equations 
(3.11) and (3.12), symmetry about the vertical centerline was 
assumed for a 31 X 102 mesh (31 radial nodes and 102 angular 
nodes). This assumption was verified by computing a solution 
for the full annulus (0-2TT) and comparing it with a solution 
based upon the symmetry assumption (see Fant, 1987, and 
Fant et al., 1988). The initial time-response behavior of the 
0-27T run reproduced that of the 0-7r run, up to a dimen-
sionless time of T=832, to within one percent error (see Fig. 
2). All the important changes of the cellular pattern with time 
were also duplicated. 

0.0 0.2 0.4 0.6 0.8 1.0 

r 
Fig. 3 Radial variation of the vorticity and stream function at \j> = *72 

6 Numerical Results and Discussion 

Steady-state unicellular results in the half-annulus were ob
tained up to a G value of 5.1. These were found to agree close
ly with the G-*0 steady-state limit solutions even up to a 
relatively large scaled gap spacing. To verify the G—0 limit 
solution, the analytical results for F, and W{, given by equa
tions (4.2) and (4.5), respectively, are compared in Fig. 3 to 
the equivalent numerical results of the boundary-layer equa
tions (3.10) and (3.13) for the pretransitional case of G = 5.1. 
In this comparison, the vorticity and stream function were 
evaluated at ip = ir/2 and G = 5.1. 

^The above results indicate that the pretransitional flow field 
(G<5.1) can be adequately represented by the leading-order 
expansions for G—0. This suggests that the full nonlinear in
fluence only becomes evident just prior to and beyond the 
point ofinstability. Note that the expansions of equation (4.1) 
for the G^0 limit suggest that nonlinearity should become im
portant at about the order of magnitude G~ 10. In the present 
numerical calculations, an instability and the nonlinear effects 
appear to come into play near G = 5.15. This transitional gap 
spacing is a strong function of the azimuthal grid spacing and, 
in fact, the azimuthal grid spacing sets the wavelength of the 
initial instability (see Appendix A). 

At G = 5.15, a steady (stationary) seven-cellular flow field 
was found to develop. The seven cells encompassed an arc of 
about 80 deg near the vertical portion of the annulus (see Fig. 
4). Then at G = 5.2, an unsteady seven-cell instability set in at 
time t of approximately 35.0. Note that the converged steady-
state result for G = 5.1 was used as an initial condition to start 
both the G = 5.15 and 5.2 cases. Also, the initial seven-cell 
flow field for G= 5.2 was very similar to that encountered for 
G = 5.15. 

As previously mentioned, the cellular flow pattern was 
steady for both the vertical slot geometry of Lee and Korpela 
(1983) and the G=5.15 calculations of the present study. 
However, the multicellular flow calculated in the present study 
appears to undergo an unsteady secondary instability at 
around G = 5.20, />35, and vacillates periodically about the 
seven-cell state. The resulting periodic flow is composed of a 
successive 8-7-8-7 cellular pattern. In the seven-cell forma
tion, the stronger cells appeared near ^ = 90 deg (see Fig. 4). 
The remaining cells successively decreased in strength as they 
proceeded away from the ^ = 90 deg point, in a fashion ap
proximately proportional to sin \p. 

At the start of the unsteady multicell cycle at f=35, the 
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Fig. 4 Streamlines of the steady seven-cellular flow field 

seven cells initially present because of primary instability 
weakened (the maximum stream function decreased) as an 
eighth cell formed on top (see Fig. 5). Then, the eight-cell pat
tern grew in strength until the two larger cells near 1̂  = 90 
merged into one cell with the maximum stream function 
shifting upward to about 92 deg, forming an upward-shifted 
seven-cell flow pattern. Similarly, these seven cells then 
weakened as an eighth cell formed on the bottom portion of 
the chain of cells (see Fig. 6). Again, the eight-cell pattern 
grew in strength until the two larger cells merged into one with 
the maximum stream function shifting downward to about 87 
deg, forming a downward-shifted seven-cell flow pattern and 
completing the 8-7-8-7 cycle. The strength of the stream func
tion at ^ = 90 and r=0.5 behaved in a "square wave" time-
periodic fashion, as clearly illustrated in Fig. 7(a). 

To examine the change in the unsteady cellular behavior as 
the scaled gap spacing G was increased beyond the secondary 
transition point, solutions were calculated for values of 
6 = 5.3,^5.4, 5.4841, and 5.5 using the G = 5.2 seven-cell solu
tion at t= 35.0 as an initial condition. Figures 7 and 8 display 
the time variation of the stream function (for G = 5.2, 5.3, 5.4, 
5.4841, and 5.5, respectively) at ^ = 90 and r = 0.5, with con
stant time steps At varying from 1.0 to 0.25, respectively. The 
unsteady flow patterns for G = 5.3, 5.4, and 5.4841 also ap
pear to be periodic, but thê  shapes of the wave-form have 
noticeable differences. For G = 5.2, the width of the peak is 
approximately 190 time units, and the maximum stream func
tion is about 0.44. At G = 5.3 and 5.4, the peak widths are ap
proximately 85 and 70 time units, while the maximum stream 
functions are about 0.47 and 0.51, respectively. Notice that as 
G increases the unsteady^ traces of the solution become more 
involved. Finally, for G = 5.5. a rather complex unsteady 
development emerges, with the maximum stream function (for 
the first 400 time units) near 0.57, and a peak width of approx
imately 65 time units. Note that the first wave-form shape for 
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Fig. 5 Streamlines of an upward-shifted eight-cellular flow field (eight 
cells—top) 

Fig. 6 Streamlines of a downward-shifted eight-cellular flow field 
(eight cells—bottom) 

Transactions of the ASME 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



) J V 
G = 

(b 

5.3 

y 

200 400 

t 

0.30 • / 

i/l \A v\ 

\l- v 
L' G = 5.4 

W, 

200 400 

t 

200 400 

^ 0.40 

u. 

- A 

J J 
K 

J 
B 

J 
^ 

J 

A 

J 

P 

J 
i 

G 

f 
= 5.5 

Fig. 7 Periodic time dependencies of the stream function at (/,,« = (1/2, F i9- 8 Nonperiodic time dependence of the stream function at (r, 
»/2) W = (1/2, »/2) 

G = 5.5 is similar to that for G= 5.4, and the peak widths are 
within 5 time units. However, the unsteady solution for 
G = 5.5 soon diverges from the behavior observed in the 
(3 = 5.4 solution. The flow for G = 5.5 appears to become 
aperiodic fairly soon within the calculations. This last solution 
has many qualitative features normally associated with chaotic 
solutions. There is no definite period observed in the solution 
(although with longer calculations one may yet emerge). In ad
dition very small changes in "initial conditions" may lead to 
strikingly different unsteady patterns. This claim is^supported 
by the observation that within the same solution, G = 5.5, the 
solutions for the first and third peaks (beginning at t = 28, 
peak A, and 285, peak B, respectively) are similar and yet the 
peaks following each of these are quite different. Whether or 
not a true transition to chaos has occurred in this flow is 
beyond the scope of this study. The numerical solutions are in
conclusive because the relatively small time interval over 
which the solution has been generated contains too few 
waveforms for any definite conclusion to be reached (in par
ticular note that near t = 950 a waveform similar to the starting 
waveform reappears). Unfortunately, computational con
straints did not allow for more extensive calculations (about 
200 hours of CPU time, on a machine equivalent to a VAX 
11/780, were required to generate Fig. la alone). However, it 
is clear from the G = 5.5 solution that a very complex unsteady 
flow pattern is developing. This flow pattern is not only tem
porally but also spatially complex. It must be remembered that 
the complexity of the unsteady trace is due to a shifting of the 
streamline pattern in the physical space. This is an interesting 
result, given the simplicity of the governing equations (3.10) 
and (3.13) for the low Prandtl number limit. For all unsteady 
cases the multicellular flow pattern was similar to that shown 
previously for G = 5.2, except the cellular flow seemed to 
vacillate between nine and ten or ten and eleven cells. Again, 
the maximum stream function occurred near 1̂  = 90 deg, and 
was greatest for the nine-cell structure and least for the eleven-
cell structure. 

7 Conclusion 

A high Rayleigh number, small-gap, small Prandtl number 
asymptotic theory was constructed, which simplified the two-
dimensional Navier-Stokes equations into Cartesian-like 
boundary-layer equations. For these simplified equations, the 
energy equation decoupled from the vorticity equation and 
reduced to a simple pure-conduction form. The only nonlinear 

terms in the governing equations appeared in the vorticity 
equation. 

When the small Prandtl number equations were solved 
numerically, a steady multicellular instability was found to 
develop at a scaled gap spacing G of 5.15 in the vertical por
tion of the narrow horizontal annulus. 

For G = 5.2, a secondary instability appeared, which 
resulted in an unsteady time-periodic multicellular flow, with 
a simple 8-7-8-7 repetitive cellular behavior. For G = 5.3 and 
5_.4 more complicated periodic flow patterns developed. At 
G = 5.5 periodicity appeared to be lost, and chaotic cellular 
behavior may have resulted. Thus, stationary, time-periodic 
and complex unsteady multicellular solutions have been 
calculated from a relatively simple nonlinear parabolic partial 
differential equation. 

The results of this study show that a multicellular 
hydrodynamic instability is indeed possible in the vertical sec
tions of narrow horizontal annuli, for Pr—0. This instability 
does not need the presence of azimuthal diffusion to occur. 
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G 
Fig. A1 The imaginary part of!! as a function of the scaled gap spac
ing; from equation (A3) 

tral decomposition of the disturbance field. To simplify the 
problem, the simpler inclined slot geometry will be addressed 
here. The results of this analysis are expected to have 
qualitative application to the horizontal annulus problem. 

The primary simplification for the inclined channel is that 
the exact baseline solution is 

F0 = r2(r-1) : G3 sin 4>0 

24 
(Al) 

where \p0 is now a fixed channel inclination. This solution is 
exact for all G (i.e., it is not merely the first term of a small G 
limit; also see Bejan, 1984). In addition, the baseline solution 
of equation (Al) is a function of r only. This solution is per
turbed with a small disturbance 

F~F0 + e\f,(r)e' Haifr-at) + complex conjugate) + . (A2) 

where a is real and fl = Qr + /$),-. A positive imaginary part of 
the frequency 0 gives an unstable disturbance, whereas a 
negative imaginary part of fi gives a stable disturbance. 
Substitution of the expansion (A2) and the baseline solution 
into the governing equation gives an eigenvalue equation, 
which was solved using the Frobenius series. The convergence 
of this series was verified numerically for several special cases. 
Most solutions were found to give stable results. However, 
one root, starting with/] ~a0r

2 + . . . , was found to produce 
an instability. For example, a low-order truncation of the 
Frobenius series, to three terms, gives the following dispersion 
relation: 

A P P E N D I X 

A Linear Stability Analysis for Inclined Channels 

The present study suggests that the low Prandtl number 
equations undergo an instability for a finite value of the scaled 
gap spacing G. In this appendix, a stability analysis will be 
presented that supports this claim. It should be noted that 
many prior studies have attributed the hydrodynamic instabili
ty to a localized Orr-Sommerfeld problem in which all diffu
sion effects, and most notably the azimuthal diffusion, are im
portant. The most relevant study as far as the high Rayleigh 
number small-gap problem is concerned is the study of Walton 
(1980). The present study contends that instabilities may still 
be encountered even though streamwise (i.e., azimuthal) dif
fusion is vanishingly small. The stability analysis for the 
horizontal annulus is quite complicated because of the angular 
dependence of the baseline flow. This angular dependence will 
cause a leading order interplay between all the terms in a spec-

G2 [ - * . 11 G4 sin fa 
24 

(A3) 

Note that for G—0 the above equation generates a very large 
negative value for the imaginary part of Q (i.e., very stable 
waves). However, as G increases one of the branches produces 
a positive imaginary part to fl, giving an unstable wave. This 
behavior is shown in Fig. (Al) for the vertical channel, \p0 = 90 
deg. Equation (A3) also suggests that unstable waves will be 
encountered first in the vertical channel, with the inclined 
channel needing larger values of G to generate an instability. 
Also, if \p0 = 0 (i.e., a horizontal channel) then no instability is 
possible. This behavior seems to be consistent with the 
numerical calculations for the annulus. Although a correction 
to the low-order truncation may be developed, the above 
equation appears to be capturing most of the important 
qualitative behavior. In particular, notice that as a increases 
(i.e., the wavelength 2j/a becomes shorter), the neutral G is 
found to decrease as G~ la l~1/4. This suggests a connection 
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with the equivalent of Walton's (1980) instability for the high 
Rayleigh number, small Prandtl number theory, on a shorter 
azimuthal length scale and with a smaller gap spacing. As the 
wavelength decreases, stream wise diffusion is expected to 
emerge when the azimuthal length scale is comparable to the 
radial length scale. This gives an azimuthal length scale of 

\a\-
/[ Ra 1 " 1 / 3 \ ~°(hd ) (A4) 

The above analysis shows that an instability can occur within 
the context of a boundary-layer set of equations, and the 
streamwise diffusion effect incorporated by Walton (1980) is 
not a necessary precursor of instability, although it probably 
sets the minimum gap spacing for instability. If the above 
analysis is correct and all disturbances that are linearly 
unstable eventually emerge as nonlinear disturbances, then the 
above analysis suggests that multicells will be observed at all 
gap spacings. 

It appears that the multicells observed in the numerical 
calculations were selected by the grid spacing in the numerical 
method. A grid size study was conducted to determine the sen
sitivity to the gap spacing of the initial instability. The results 
of this study are shown in Fig. (A2). Note that these results for 
the full annulus produce a transitional gap spacing G that 
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Fig. A2 Numerical result for transitional gap spacing as a function of 

the azimuthal grid spacing; ("trans'*^0 '2508 

varies as At/<1/4, which is consistent with the above predictions. 
Even though the instability will manifest itself for all gap spac
ings, the later nonlinear numerical calculations may still be 
viewed as an initial value problem, with the grid setting the in
itial condition. 
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Thermal Confection With Large 
Viscosity Variation in an Enclosure 
.With Localized Heating 
The present study is undertaken in order to gain an understanding of certain aspects 
of convective transport in a magma chamber. We have chosen to represent the 
chamber by an enclosure with localized heating from below. Results of both lab
oratory experiments and computer modeling are reported. The experimental ap
paratus consists of a transparent enclosure with a square planform. An electrically 
heated strip, with a width equal to 1/4 of the length of a side of the enclosure, is 
centered on the lower inside surface of the enclosure. For the experiments reported 
here, the top of the fluid layer is maintained at a constant temperature and the 
depth of the layer is equal to the width of the heated strip. The large viscosity 
variation characteristic of magma convection is simulated by using corn syrup as 
the working fluid. Measured velocity and temperature distributions as well as overall 
heat transfer rates are presented. The experiment is numerically simulated through 
use of a finite element computer program. Numerically predicted steamlines, iso
therms, and velocity distributions are presented for the transverse vertical midplane 
of the enclosure. Good agreement is demonstrated between predictions and meas
urements. 

Introduction 
The present study was undertaken in order to gain an un

derstanding of certain aspects of convective transport in a 
magma chamber and is being pursued in support of the Magma 
Energy Extraction Program at Sandia National Laboratories 
(Ortega et al., 1987). The approach taken in our studies is first 
to characterize the convection in the magma chamber and then 
to examine the convective heat transfer to an energy extraction 
device inserted into the magma chamber. Typically, a magma 
chamber is periodically recharged at a discrete location (Clark 
et al., 1987). Hence, we elect to represent the magma chamber 
as an enclosure with localized heating from below. Specifically, 
the enclosure chosen for study has a square planform with a 
heated strip centered on the lower inside surface of the enclo
sure. The large viscosity variation characteristic of magma 
convection (Clark et al., 1987) is simulated by using corn syrup 
as a working fluid. Results from laboratory experiments and 
computer modeling are presented. 

Thermal convection is of continuing interest (Globe and 
Dropkin, 1959; Chu and Goldstein, 1973; Adrian et al., 1986) 
because of its application in the modeling of flow and energy 
transfer in geophysics, meterology, and astrophysics as well 
as in numerous applications to engineering systems. The nu
merical modeling of Torrance and Turcotte (1971), which treats 
thermal convection between horizontal free boundaries, ap
pears to be the first such study to consider large viscosity 
variations. For a Rayleigh number of 3600, the viscosity was 
found to exert a signficant influence on the flow field. Richter 
et al. (1983) and Booker (1976) experimentally investigated 
thermal convection with large viscosity variations in a hori
zontal fluid layer using a variety of working fluids including 
a golden syrup. In addition, Richter et al. (1983) also measured 
horizontally averaged temperatures in the fluid layer. Their 
results indicate that the Nusselt number Nu for the variable 
viscosity cases can be approximated by the constant viscosity 
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results if the correlation is cast in a form where the Rayleigh 
number Ra is normalized with the Rayleigh number at the 
onset of convection, i.e., Nu = C (Ra/Rac)", where C is a 
constant, the subscript c indicates a critical value, and the 
viscosity is evaluated at the average of the boundary temper
atures. Furthermore, temperature measurements showed the 
existence of a stagnant conduction zone above the actively 
convecting part of the layer. 

Previous studies of enclosure convection with localized heat
ing from below have been concerned mainly with cases in
volving a circular heater on the lower surface of an enclosure 
(Torrance et al., 1969; Kamotuni et al., 1983). Boehm (1977) 
carried out numerical studies of natural convection in air due 
to strip wise heating, from below, on a horizontal surface. For 
a Grashof number of 105, a plumelike structure was found to 
exist above the heated strip. 

It appears from the literature review that the combination 
of large viscosity variation and localized heating in an enclosure 
has never been studied before. In addition to the fact that 
localized heating is appropriate for modeling magma chamber 
flow, this particular geometry produces a convective flow field 
that is relatively straightforward to model numerically. 

Experimental Program 

Apparatus. A schematic of the test section is shown in Fig. 
1. The enclosure is an open top box with a square planform 
measuring 55.9 cm on a side and 60 cm high and is constructed 
from 13-mm-thick Lexan (polycarbonate) sheets. A heater as
sembly consisting of a centered heated strip measuring 13.6 
cm by 55.9 cm is attached to the lower inside surface with 
silicone adhesive. The heater assembly is a three-layer struc
ture. The top layer is made of a sheet of 13-mm-thick Lexan 
with a centered recess machined into the sheet to accept the 
heated strip. This top layer is glued to two 10-mm-thick Lexan 
glazing sheets. The glazing sheets are extruded sheets with 
longitudinal cells, providing structural strength and effective 
insulation. The heated strip consists of a 3-mm-thick copper 
plate with a thin, flexible, etched foil heater glued on the 
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Fig. 1 Schematic of the test section showing thermocouple locations 

underside. The resistance of the foil heater is nominally 8 ohms. 
The temperature of the heated strip is monitored by 12 ther
mocouples embedded in the copper plate. In addition, there 
are 7 thermocouples in the unheated portion of the bottom 
plate. The side wall temperature is similarly monitored with 4 
thermocouples. The thermocouples are made of 0.25-mm cop-
per-constantan wires mounted flush with the surface. The ther
mocouple locations are shown in the schematic. 

The fluid layer is bounded from above by a constant tem
perature plate made of 25.4-mm-thick brass. The temperature 
of the plate is maintained constant by the circulation of cooling 

water, from a temperature-controlled bath, in twenty 13 mm 
by 19 mm parallel channels machined in the back of the plate. 
The back of the plate is sealed by a 6-mm-thick brass plate. 
The plate temperature is monitored by .thirteen type E (chro-
mel-constantan) thermocouples. During the experiment, the 
plate temperature was found to be uniform within 0.05°C for 
plate temperatures ranging from 15 to 50°C and within 0.1 °C 
for plate temperatures below 6°C. The constant-temperature 
plate is supported from an overhead frame with three threaded 
adjusting rods, which allow the depth of the fluid layer to be 
varied. The fluid layer depth for the present series of experi
ments was fixed at 13.6 cm, the same as the heater width. The 
horizontal dimension of the layer is thus essentially four times 
that the layer depth. 

Experimental Method. Three types of data are obtained 
from the experiments: (1) overall heat transfer rates, (2) ve
locity fields, and (3) temperature profiles. For overall heat 
transfer measurements, the entire test section is insulated with 
13 mm of packing foam and 3.8 cm of urethane insulation. 
The packing foam forms a conforming seal between the ure
thane sheet and the Lexan wall to prevent infiltration. For 
each run, the top surface temperature and the heater power 
were set to the desired values and a data point was obtained 
when the heated strip temperature reached a steady state. The 
average temperature of the central half of the strip is used as 
the characteristic temperature of the heated strip. The heat 
transfer coefficient is defined in terms of the temperature dif
ference between the heated strip and upper surface and the 
area of the heated strip. Typically, the temperature difference 
varies less than 2 percent over the central region of the heated 
strip. 

The velocity field was made visible by taking time lapse 
photographs of scattered light from seeded particles in the 
working fluid. The particles used were glass balloons with 
typical sizes ranging from 20 to 100 /xm. Because of the large 
viscosity of the fluid and the small size of the particles, the 
particles can remain in suspension essentially indefinitely (sev
eral months). Approximately 0.1 cm3 of glass balloons were 
added to each 20 liter bucket of syrup. The resulting particle 
density was estimated to be in the range of 30-100 particles 
per cm3 of fluid. The light source used was a 15 mW He-Ne 
laser. A 10 mm diameter quartz rod acting as a cylindrical lens 
was used to create a vertical sheet of laser light cutting through 
the central plane of the test section. Five-minute time exposures 
were used to obtain streamline patterns. 
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Computational Approach
For computational purposes, a steady, planar flow field was

assumed for the vertical midplane of the enclosure. The non
dimensional continuity, incompressible Navier-Stokes, and
energy equations are

more than ±0.03°C. Therefore, the maximum error in the
measured temperature difference is no more than ±O.I°C.
The electrical power input to the heater is determined to an
accuracy of ±0.2 percent, based on the known accuracy of
the calibrated instruments'used in the measurement. The net
rate of heat loss or gain between the test section and the sur
roundings is estimated to be no more than ± 2.0 percent of
the electrical power input.

Working Fluid. Th~ working fluid used is a commercial
corn sweetener commonly known in the food industry as 42/
43 corn syrup (Critical Data Book, 1975). It has a solid content
of 80.3 percent, by weight. Detailed specifications for the ma
terial have been published (Critical Data Book, 1975). Al
though this syrup has been used in a number of studies (Olson,
1984), the temperature dependence of some of the thermo
physical properties has not previously been available. As a
consequence, the temperature dependence of thermal conduc
tivity and viscosity was measured as part of the experimental
program. Equations used for the determination of fluid prop
erties are summarized in the appendix.

Since only provisional values of thermal conductivity are
available (Critical Data Book, 1975), a line heat source probe
was used to measure the thermal conductivity of corn syrup
as a function of temperature in the range 9-60°C. Details of
the experimental method are similar to those described by
Hickox et al. (1986). The thermal conductivity probe produced
measurements of thermal conductivity that were within ± 1.0
percent of those measured with a standard line source probe
(Drotning and Tormey, 1984). When used to measure the ther
mal conductivity of glycerol, the standard probe produced
results within ± 1.5 percent of handbook values. Therefore,
the accuracy of the thermal conductivity measurements is ± 2.5
percent. A total of 27 runs covering five temperatures was
made. Thermal conductvity k was found to be a linear function
of temperature with an rms deviation of the fit (given in the
appendix) from the data of 0.5 percent (Littel et aI., 1988).

Since the variation of viscosity with temperature is of prime
importance in the present studies, the viscosity of the syrup
was measured in a series of falling ball experiments. The ex
periments were carried out in a 17.3-cm-dia. cylinder at five
temperatures ranging from 9 to 51°C. Wall effects were cor
rected according to the procedure described by Happle and
Brenner (1973). Viscosity measurements made with the falling
ball technique are accurate to within ± 1.0 percent, with a
typical repeatability of ±0.5 percent, and are in excellent
agreement with graphic data (Critical Data Book, 1975). The
experimental data and high-temperature data (Critical Data
Book, 1975) were combined to fit the viscosity temperature
dependence with a superexponential form (Richter et al., 1983)
with an rms deviation of the fit from the data in the range of
interest of 3.5 percent.

Density and specific heat were obtained from published data
(Detailed Tables. .. , 1984, Critical Data Book, 1975),. and
the thermal expansion coefficient was calculated by dIffer
entiation of the curve of density versus temperature. Typical
values, at 25°C, for density, specific heat, thermal expansion
coefficient, thermal conductivity, and viscosity are, respec
tively, 1.423 g/cm3, 2.30 J/gK, 3.96 x 10-4 K- 1, 0.380 W/mK,
and 748 poise.

(1)au + au = 0
ax ay

Fig. 2 example of multlple·exposure particle tracking: Case A (see text
for details); exposure Interval: 15 s

For velocity determinations, the laser beam is interrupted
by a shutter to create a multiple exposure of instantaneous
positions of particles at fixed intervals apart. One-second ex
posures 15 to 30 s apart were found to be satisfactory. A typical
example of multiple-exposure particle tracking is shown in Fig.
2. The photograph corresponds to case A (see later section for
details) in the present study. Our method is a variation on the
time exposure method used by Carey et al. (1981) and is less
demanding photographically. It also allows three-dimensional
flow effects normal to the illuminated plane detecting region
(laser sheet) to be readily detected, which otherwise may be
misinterpreted from a time exposure as lower velocities.
Shadowgraphs were also used to visualize the temperature field.
A 6-mm aperture illuminated with a slide projector was used
as the light source. A parallel beam of light was then produced
by a 25-cm-dia. f/6 spherical mirror and subsequently directed
through the test section onto a screen placed in contact with
the test section wall. A double pane window of Lexan was
used to minimize the heat loss during photography.

A vertical temperature profile was obtained using a specially
made L-shaped probe. The probe body was made of 1.8-mm
o.d. stainless steel tubing with O.l3-mm thermocouple wires
strung through the center. The vertical leg of the probe passes
through a penetration in the upper, constant-temperature plate.
The horizontal leg of the probe consists of a stainless steel
section approximately 3.5 cm long and a double-bore alumina
tube glued inside the stainless steel tube and extending 3 mm
beyond it. The two thermocouple wires (copper-constantan)
emerging from the alumina tube are welded to form the meas
uring junction. Because of the large viscosity of the working
fluid, the temperature measurement must be accomplished rap
idly before the entire flow field adjusts substantially to the
presence of the probe. A typical temperature profile meas
urement requires approximately one hour.

Thermocouples used in the experiment were calibrated in
the Standards Laboratory at Sandia National Laboratories
using a resistance thermometer, which was calibrated against
freezing point standards. The maximum calibration error is ±
0.02°C. The combined errors introduced by the ice-point ref
erence junction and by curve fitting are estimated to be no
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where the Oberbeck-Boussinesq (OB) approximation (Yih, 
1977) has been invoked, the hydrostatic pressure has been 
absorbed into the pressure term, and all physical properties 
are treated as temperature dependent. The horizontal and ver
tical coordinates are denoted byxand.y, and the corresponding 
velocity components by u and v. Gravity g acts in the negative 
y direction. The nondimensional pressure is P and the non-
dimensional temperature is 6 = (T- T0)/AT, where T is the 
temperature, T0 is the temperature of the upper surface of the 
enclosure, and AITis the overall temperature difference between 
the heated strip and the upper surface. The Rayleigh number 
is Ra0 = gftATW3/p0a0, and Pr0 = v0/a is the Prandtl number, 
where the subscript o indicates properties evaluated at T0. Also, 
v0 = V-0/Po and a0 = k0/p0c0 where /n0, p0, k0, and c0 are, re
spectively, the reference viscosity, density, thermal conductiv
ity, and specific heat. For the nondimensionalization, the 
reference length is the heated strip width W, the reference 

velocity is ^RaJ^t^/lV, and the reference pressure is 

/VV Ra0Pr0a0/W2. The variations of physical properties with 
temperature are given by /*/V„=/(0), k/k0 = g(d), and c/c0 

= h (0), which can be obtained from the expressions presented 
in the appendix. For computational purposes, the variation of 
density with temperature is represented in the usual manner 
by p/p0= 1 -(3A2T9, where /3 is the thermal expansion coeffi
cient, and is assumed constant. 

An additional comment is appropriate with regard to the 
OB approximation. As is well known, this approximation en
tails the assumption that density changes are important only 
in the buoyancy term in the equations of motion and are 
negligible elsewhere. Often, the approximation is invoked along 
with the additional restriction of constant thermophysical 
properties. In this "restricted" approximation, the allowable 
temperature difference is quite small for liquids (approximately 
4°C for water at 15°C and 1 atm). However, it can be shown 
that, if the approximation is "extended" by allowing for the 
variation of thermophysical properties (other than density) 
with temperature while retaining the incompressible form of 
the continuity equation, then the allowable temperature dif
ferences can be two to three orders of magnitude larger for 
liquids (Gartling and Hickox, 1985). This is especially true for 
liquids that exhibit a strong temperature dependent viscosity. 
It is thus quite likely that the use of the OB approximation 
will not introduce any appreciable errors into our analysis. 

Numerical solutions to equations (l)-(4) are sought subject 
to the conditions of no slip on all solid boundaries, 6 = 1 on 
the heated strip, 6 = 0 on the upper surface, and zero heat 
flux on the remaining boundaries. A finite element computer 
program (FIDAP User's Manual, 1988), based on the Galerkin 

= o 

Fig. 3 Computational grid: Nondimensional width and depth are 2.06 
and 0.98, and the heated strip half-width is 0.5 
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Fig. 4 Overall heat transfer correlation 

formulation of the finite element method, was utilized for the 
numerical simulations. Initial simulations of the entire flow 
field produced flows that were symmetric about the vertical 
midplane and in essential agreement with experimental obser
vations. Hence, the numerical simulations described here were 
performed for a symmetric half of the flow field. The com
putational domain was discretized using a nonuniform mesh 
of 600 nine-node, quadrilateral elements, as shown in Fig. 3. 
A discontinuous pressure discretization was used and a con
sistent penalty function approach was adopted to enforce the 
incompressibility constraint. Steady-state solutions were ob
tained by first using approximately 10 successive substitution 
iterates with a relaxation factor of 0.5, followed by 10 to 20 
Newton-Raphson iterates, with the same relaxation factor. 
Depending on the particular numerical values of the param
eters, it was sometimes necessary to increment the parameters 
of a converged solution to obtain converged solutions for larger 
Ra0, Pr0, or viscosity variations. Convergence was assumed 
whenever IIui-ui_lII/IIu,II < 0.01 and \\R{u^\\/\\R{u0)\\ < 0.01 
where II • II denotes the Euclidian norm, t/,is the solution vector 
at iteration i, and R(uj) is the residual solution vector. Grid 
refinement studies were performed prior to the selection of the 
grid geometry used in the simulations in order to assure that 
the grid spacing was appropriate for the resolution of the flow 
field to be studied. 

Results 

Heat Transfer. A total of 30 heat transfer runs were made 
with average heat input ranging from 0.067 to 0.136 W/cm2, 
top surface temperature from 4.1 to 50.1°C, and heated strip 
temperature from 42.7 to 74.6°C. The largest top-to-bottom 
viscosity ratio across the layer was 1397; the smallest ratio was 
3.12. Using the mean of the heater and upper surface tem
perature as the reference temperature and the layer depth (same 
as the heater width in the present case) as the characteristic 
dimension, the Rayleigh number was calculated to vary from 
5 x 104 to 2 x 106, and the Prandtl number from 9.2 x 103 

to 3.3 x 105. As shown in Fig. 4, the Nusselt number (Num 

= qD/kmAT, where q is the mean heat flux) for the heated 
strip was found to be well correlated with the power law 
formulation 

Journal of Heat Transfer MAY 1990, Vol. 112/391 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Parameters for the three cases simulated

Case To !:J.T, Rao Ram Pro Prm "'o/"'h ko/kh CO/Cil Po/Ph
·C ·C X 10-4 X 10- 4 X 10- 5 X 10- 5

A 29.2 20.5 6.05 21.7 2.53 0.73 9.9 0.98 0.97 1.01
B 15.6 37.0 1.38 20.1 19.78 1.37 101.3 0.97 0.95 1.02
C 5.3 51.9 0.28 19.4 134.39 1.96 1026.0 0.96 0.92 1.02

(5)

Fig. 5(8) Computed Isotherms, streamlines. and photographs of par·
tlcle paths for case A

NUm= 0.54(Ram)0.25 ~:) -0.035

where the subscripts m, 0, and h indicate that properties are
evaluated at the mean, upper surface, or heated strip temper
atures. It is interesting to note that the largest effect of property
variation is accommodated by evaluating properties at the mean
temperature. The additional power law correction based on
the viscosity contrast is relatively small. For a viscosity contrast
of 1000, the correction is only 21 percent. In this respect, the
present result is in agreement with the observations made by
Richter et al. (1983) and Carrigan (1987). The rms deviation
of the data from the fit is 2.46 percent, and the maximum
deviation is 7.7 percent. A quite remarkable result, considering
the large viscosity variation involved.

Lloyd and Moran (1974) extended an observation by Gold
stein et al. (1973) and proposed a universal correlation for
natural convection from arbitrary planforms in an extended
medium as

Nu = 0.54Ra2·~5 (6)

where the characteristic length L * is defined as the ratio of
surface area to surface perimeter. In the present case, if the
perimeter is taken to mean the perimeter available for entrain
ment, excluding the ends of the heated strip, there is then an
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Fig. 5(b) Computed Isotherms, streamlines, and photographs of par·
tlcle paths for case C

exact correspondence between the present result and the Lloyd
and Moran correlation. However, this exact correspondence
may be somewhat fortuitous since the entrainment mechanism
is different for the two cases.

The total error in the determination of the Nusselt number
is ± 5.9 percent. The individual uncertainties are: ± 3.0 percent
for the thermal conductivity, ± 2.0 percent for the rate of heat
transfer with the surroundings, ± 0.7 percent for the temper
ature measurement, and ± 0.2 percent for the power meas
urement. The total error in the determination of the Rayleigh
number is ± 10.2 percent. The individual uncertainties are:
±6.5 percent for the viscosity (±4.5 percent for the meas
urement itself and ±2.0 percent for the measurement of tem
perature), ±3.0 percent for thermal conductivity, and ±0.7
percent for the measurement of temperature difference.

Velocity and Temperature Fields. Comparisons between
experimental and computational results were investigated for
three cases. Pertinent parameters for the cases studied are
summarized in Table 1. The primary distinguishing feature of
each of the three cases in the viscosity contrast l1o/l1h' which
ranges from 10 to 1000. The three cases have essentially the
same mean Rayleigh number Ram' All simulations were per
formed for a fluid layer of nondimensional half-width 2.06
and depth 0.98.

In Fig. 5, computed isotherms and streamlines are shown
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x/W 
Fig. 6 Measured and computed vertical velocity distributions on the 
horizontal planes identified in Table 2 

Fig. 7 Measured and computed temperature distributions on the ver
tical center plane of the enclosure 

along with photographs of tracer particle path lines, rendered 
visible by illumination with a vertical sheet of laser light, for 
cases A and C. The flow field is laminar, steady, and symmetric 
with respect to the vertical midplane and consists of two coun-
terrotating cells driven by a plume rising from the heated strip. 
There is good qualitative agreement between the observed and 
computed flow structure. For the higher viscosity contrast (case 
C), it is apparent that the flow is more strongly inhibited in 
the vicinity of the upper surface when compared with case A, 
which has a much smaller overall viscosity variation. 

Measured and computed vertical velocity distributions on 
two horizontal planes are compared in Fig. 6 for all three 
cases. For each case, a vertical velocity profile was determined 
along a horizontal reference plane passing through the vortex 
centers of the two cells. The velocity is normalized with respect 
to the maximum centerline velocity on the reference plane. A 
second horizotal plane was established for each case at a dis
tance of W/4 above the initial reference plane. On this upper 
plane, the velocities are also normalized by the maximum cen
terline velocity determined for the original reference plane. 
Experimental data for these planes are plotted as symbols and 
the results of the numerical simulations are plotted as contin
uous curves. The maximum centerline velocities for each case 
and each horizontal plane are tabulated along with the ele
vations of the planes in Table 2. The quantitative agreement 
between measurements and numerically predicted results is 
good. The magnitudes of the reference velocities differ by as 
much as 14 percent when experimental data are compared with 
numerical predictions, as is apparent from an inspection of 
the information in Table 2. However, when scaled with the 
reference velocity for each case, the distributions have nearly 

Table 2 Comparison of measured and computed maximum 
centerline velocities 
Case 

A (measured) 
A (calculated) 
B (measured) 
B (calculated) 
C (measured) 
C (calculated) 

Plane 1 
elevation 

(y/W) 

0.44 
0.42 
0.41 
0.39 
0.40 
0.39 

vx 
centerline 
(cm/min) 

1.25 
1.38 
1.38 
1.49 
1.68 
1.92 

Plane 2 
elevation 

(y/W) 

0.69 
0.67 
0.66 
0.64 
0.65 
0.64 

Vi 
centerline 
(cm/min) 

0.73 
0.79 
0.73 
0.84 
0.88 
1.05 

the same shapes and the experimentally determined distribu
tions are in excellent agreement with predictions. 

The nondimensional vertical temperature distribution along 
the center of the enclosure is plotted in Fig. 7. Experimental 
data are indicated by symbols and the continuous curves are 
the computed distributions. Reasonably good agreement is 
obtained between experimental and computed values. In all 
cases, a conduction layer is observed to exist adjacent to the 
upper surface. The layer occupies approximately 15 percent 
of the depth of the fluid layer. With increasing viscosity con
trast, the conduction layer grows progressively thicker and a 
corresponding larger fraction of the temperature drop occurs 
in this layer. As a result, the underlying convecting layer grows 
thinner. This is most likely the reason that the elevation of the 
vortex centers of the convective cells decreases with an increase 
in viscosity contrast, as evident from a consideration of the 
data in Table 2. 

It is interesting to note from the isotherm plots in Fig. 5 
that the heat flux is a maximum at the center on the top surface 
where the rising plume impinges on the surface. Correspond
ingly, the heat flux is a minimum at the center of the heated 
strip where the plume leaves the surface. The variation of heat 
flux on the heated strip is demonstrated qualitatively in Fig. 
8 by a slit-deflection shadowgraph (Jacob, 1967), for Case C. 
In this method, a slit of parallel light directed along the heated 
surface is deflected away from the surface as a result of the 
temperature-induced gradient in the refractive index of the 
fluid next to the surface. To first order, the amount of de
flection is proportional to the temperature gradient, and is 
thus an indication of the local heat flux. For comparative 
purposes, the calculated, nondimensional heat flux distribution 
is included in the figure. The calculated heat flux exhibits a 
pronounced peak at the edge of the heated strip, reflecting the 
singular nature of the computational model at this location. 
The absence of this peaking phenomenon in the slit-deflection 
shadowgraph is a result of lateral conduction near the edges 
of the heated strip, an effect not represented in the compu
tational model. Both the experimental and computed heat flux 
distributions exhibit a region of near-uniform flux distribution 
and a significant dip at the base of the rising central plume, 
a shadowgraph of which is also shown in the figure. The ratios 
of the computed Nusselt numbers Nu,„, based on the mean 
temperature, for Cases A, B, and C, to the corresponding 
Nusselt numbers predicted from equation (5) are 0.98, 0.97, 
0.93, respectively, indicating good agreement between com
puted and experimentally determined values. 

Errors in the measurement of the temperature distribution 
are difficult to assess because the usual methods of bounding 
the estimate do not provide meaningful results. It is observed 
that the long term effect due to the presence of the measuring 
probe is not merely to modify the flow field, but rather to 
alter completely the geometry of the flow field. For example, 
the location of the central plume is ultimately displaced by 
several centimeters in response to the additional resistance to 
flow associated with the presence of the probe. Therefore, it 
was necessary to make measurements "quickly" before sig-
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dition, it has produced useful engineering guidelines for the
calculation of energy extraction from magma.
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nificant alterations in the flow field occurred. The uncertainty
in the location of the measurement location associated with
the temperature probe is ±0.5 mm, resulting in a maximum
measurement error of ±0.8°C within the thermal boundary
layer. The overall temperature difference between the heated
strip and the upper surface, as predicted from an extrapolation
of the measured temperature distribution, is consistently lower
than the surface temperature measurement with the largest
discrepancy being ± 3.0 percent of the overall temperature
difference. Velocity measurements are estimated to have an
uncertainty of no more than ± 7.0 percent.

Concluding Remarks
Measurements made in the present series of experiments

show that, even with very large viscosity variations, overall
heat transfer rates can still be correlated in terms of conven
tional, constant-viscosity formulations provided that proper
ties are evaluated at the mean temperature. Residual variable
viscosity effects can then be represented by a multiplicative
power law correction factor involving the viscosity contrast.

Computer modeling and flow visualization showed that the
flow field for the present configuration consists of two coun
terrotating cells driven by a central plume rising from the
heated strip. Computed velocity and temperature fields are in
good agreement with detailed measurements. It appears that
the bulk of the viscosity variation is confined to an essentially
stagnant conduction layer next to the cold surface.

The results obtained here are for a specific configuration.
However, the observed trends for large viscosity variations are
likely to hold for other enclosure configurations involving lam
inar thermal convection. While by no means complete, the
present investigation does provide important insights into the
understanding and modeling of magmatic convection. In ad-

· .. ;z:.osm
REFERENCE LIT LOCATION

H
;:s 20.0
~

394/Vo1.112, MAY 1990 Transactions of the ASME

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A P P E N D I X 

Physical Properties of 42/43 Corn Syrup 

Viscosity: 
/i = fl0exp[a,exp(- T/a2j], (°C, poise) 

«o = 0.2412, «)= 12.5867, a2=55.7805 

Thermal conductivity: 

k = b0 + biT, (°C, W/mK) 
bQ = 0.3724, bi = 3.034 xl0~4 

Specific heat: 

c = c0 + C!T+c2r
2, (°C, J/gK) 

co = 2.2005, C] = 3.9532 xlO"3, c2=-6.7883 x 10~6 

Density (as used in numerical simulations) : 
p = po[l-0(T-To)], (°C,g/cm3) 

p0=1.4314, /3 = 4.1218xl0-4 

Density and thermal expansion coefficient (best estimate): 
P = P0/(1+A), (°C, g/cm3) 

Po= 1.4255, A = (rfo + rf13
n+rf2r

2)/10,000 
d0=-74.5333, ^ = 3.5691, tf2 = 7.8788 X lO"3 

'-;£) 
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An Analytical Study on Natural 
Convection in Isotropic and . 
Anisotropic Porous Channels 
This paper is an analytical study on natural two-dimensional convection in horizon
tal rectangular channels filled by isotropic and anisotropic porous media. The chan
nel walls, assumed to be impermeable and perfectly heat conducting, are 
nonuniformly heated to establish a linear temperature distribution in the vertical 
direction. We derive the critical Rayleigh numbers for the onset of convection and 
examine the steady flow patterns at moderately supercritical Rayleigh numbers. The 
stability properties of these flow patterns are examined against two-dimensional per
turbations using a weakly nonlinear theory. 

1 Introduction 

Natural convection in porous media has received increasing 
interest over the last twenty years due to its numerous applica
tions in geophysics and energy-related systems. 

So far, theoretical and experimental investigations have 
usually been concerned with isotropic porous media. The 
papers on thermal convection in anisotropic media are not 
numerous compared to the number of publications on 
isotropic media; see Kvernvold and Tyvand (1979) and the 
review article by Bories (1987), and the references quoted 
therein. However, in several applications the porous materials 
are anisotropic. 

The present paper is an analytical study on natural two-
dimensional convection in horizontal rectangular channels 
filled by isotropic and anisotropic porous media. The channel 
walls are assumed to be nonuniformly heated to establish a 
linear temperature distribution in the vertical direction, and 
the appropriate temperatures are assumed to be maintained on 
the walls at all times. This is plausible if the walls have a very 
large thermal conductivity and heat capacity relative to the 
porous medium. We derive the critical Rayleigh numbers for 
the onset of convection and examine the steady convective mo
tions existing at moderately supercritical Rayleigh numbers. 
Moreover, we analyze the stability properties of these flow 
patterns against two-dimensional perturbations by using a 
weakly nonlinear theory. 

There are two things that distinguish this paper from related 
work. The boundary conditions involve specified 
temperatures on the lateral boundaries instead of the more 
common insulating conditions. In addition, anisotropy in the 
permeability and thermal diffusivity is considered. 

The analogous problem for an isotropic porous channel 
with perfectly insulating lateral boundaries has been studied 
by several authors, e.g., Sutton (1970), Riley and Winters 
(1987), and Impey et al. (1987). Also convection in isotropic 
porous media confined by rectangular boxes has been in
vestigated in the case of perfectly insulating lateral boundaries 
(e.g., Beck, 1972; Straus and Schubert, 1978, 1979; Home, 
1979). 

Beck (1972) seems to have been the first to carry out a linear 
stability analysis of convection in a finite three-dimensional 
box. His results show that near convection onset the fluid mo
tion for thin boxes is always two dimensional in the form of 
roll-cells. We therefore restrict our problem to short rec
tangular cylinders assuming, that the end sections are perfectly 
insulated. 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division October 
17, 1988; revision received July 7, 1989. Keywords: Natural Convection, Porous 
Media. 

For an isotropic medium our results differ essentially from 
the well-studied case with insulating sidewalls; see, e.g., Sut
ton (1970) and Beck (1972). This is not unexpected since con
ducting sidewalls change the physical conditions considerably. 
The heat exchange through the lateral walls increases the 
critical Rayleigh number and alters the cellular formation at 
the onset of convection. 

We notice the hydraulic analogy between the flow in an 
isotropic porous medium and flow in a narrow gap between 
parallel vertical walls, i.e., Hele-Shaw cell; see Hartline and 
Lister (1977). The present study restricted to isotropic media 
can therefore be applied to a rectangular Hele-Shaw cell. 

2 Mathematical Formulation 

We consider two-dimensional free convection in a horizon
tal porous channel nonuniformly heated. The porous medium 
is assumed to be anisotropic and saturated by a homogeneous 
incompressible fluid. The channel is rectangular with height h 
and width a, and we choose a Cartesian coordinate system 
with the z axis in the vertical direction and x axis in the 
horizontal direction perpendicular to the channel axis. The 
horizontal channel walls are at z = 0 and z = h, and the vertical 
walls at x = -a/2 and x = a/2; see Fig. 1. 

On assuming that the Prandtl-Darcy number is large so that 
inertia terms may be neglected and invoking the Boussinesq 
approximation, the two-dimensional forms of the 
Darcy-Boussinesq equations become 

1 dp v 

p0 dx kx 

1 dp p v 
r ^ + — g + — W = 0 

P0 OZ Po K-i 

dT d2T d2T 
c 1- v• V T= KX . ,, + K7 dt dx2 dz2 

(2.1) 

(2.2) 

(2.3) 

Fig. 1 
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du dw 
- — - + —— = 0 

dx az 

p=Po(i-/3(r-r0)) 

(2.4) 

(2.5) 

The upper and lower boundaries are at isothermal 
temperatures T0 and T0 + AT, respectively, where AT1 is a 
positive temperature difference. All the boundaries are as
sumed to be impermeable and perfectly heat conducting. 
From the governing equations (2.1)-(2.5) it follows that a mo
tionless conduction state exists only if the static temperature 
distribution is independent of x and depends linearly on z. The 
present study is restricted to this case. 

It is convenient to express the temperature in the form 

T=[T0+AT(I—^)}+e (2.6) 

where 6 is the deviation from the static temperature. Since the 
flow is two dimensional we introduce the streamfunction ^ by 

w = - dz dx 
(2.7) 

We also define nondimensional variables denoted by 
asterisks 

h2 

t = c 1*, 
X-7 

T0 = ATT$, 

W = K7——W" 
z h 

6 = ATd*, 

z = hz 

-p* 

(2.8) 

By introducing these expressions into equations (2.1)-(2.5), 
eliminating the pressure and the density, and deleting the 
asterisk, we get the governing equations in the following form: 

/ d2 d2 \ 86 

( ^ + ^ > + * R a l F = 0 (2-9) 

H de 
dx dt 

•+V V6 (2.10) 

where Ra is the Darcy-Rayleigh number (also called the 
Rayleigh number) defined by 

Ra = 
pgATkzh 

(2.11) 

and £ and t) are the anisotropy/aspect ratio coefficients de
fined by 

^=J^(JLY = "•* ( h V 
k, V a ) K, \ a ) 

(2.12) 

The requirements of perfectly heat-conducting and im
permeable boundaries lead to the boundary conditions 

^ = 0 = 0 on -

x=——, x =—, 0 < z < l 

(2.13) 

z = 0, z=\, 
1 1 

2 2 

3 Linear Stability and Steady Flow Patterns 

The onset of convection is described by the linear versions 
of equations (2.9) and (2.10). The solutions can be expanded 
in the Fourier series 

( 1 °° "i 
ip-eotj_^Co+ 2^ Q c o s nirz + £)ri sin n7rzl (3.1) 

e = e"'\ —F0 + ^ F„ cos mrz + G„ sin nvz (3.2) 
^ 2 „=1 J 

where C„, D„, F„, and G„ are functions of x and a is the 
growth rate. The boundary conditions (2.13) are satisfied if 
C n=F„=0foral lA: . 

By substituting the solutions (3.1) and (3.2) (with 
Cn=Fn=Q) into the linearized governing equations and 
equating terms with same sin nirz dependence, we get the 
following set of ordinary differential equations: 

^ - - ^ • ^ - o 

cPG„ 

' dx2 -n2^G„ 
dD„ 
dx 

- = oG„ 

(3-3) 

(3.4) 

The boundary conditions are 

<-T)M-T)"- °.(-T)-°-(4-)-
(3.5) 

The operator on the left-hand side of equations (2.9) and 
(2.10), with the given boundary conditions (2.13), is shown to 
be self-adjoint, from which we can conclude that a is real. 
Thus, in order to find the critical Rayleigh number Rac, giving 
marginal stability, we put a- 0 into equation (3.4). The system 
of equations (3.3)-(3.4) subject to the boundary conditions 
(3.5) represents a self-adjoint eigenvalue problem with eigen
values Ra, the smallest of which is Rac. The general solution is 
Dn (x, Ra) = c{ cos px + c2 sin px + c3 cos qx + c4 sin qx 

(3.6) 

a 
c 

cp 

g 
h 

kx 

K 
P 

Q,S,A 
r, s 
Ra 

Rac 

Nomenclature 

= width 
= (pcp)m/(pcp)f; m = mix

ture; / = fluid 
= specific heat capacity 
= acceleration of gravity 
= height 
= horizontal permeability 
= vertical permeability 
= pressure 
= amplitudes 
= constants 
= Rayleigh number 
= critical Rayleigh number 

ARa 
t 

T 
T0 

AT 

u, w 

x, z 

a 

= R a - R a c 

= time 
= temperature 
= reference temperature 
= characteristic 

temperature difference 
= horizontal and vertical 

velocity components, 
respectively 

= horizontal and vertical 
Cartesian coordinates, 
respectively 

= constant 

0 

V 

e 
Kx> Kz 

V 

S 
p 

Po 
a 
* 

— 

= 
= 

= 

= 
= 
= 
= 
= 
= 

thermal expansion 
coefficient 
{Kx/Kz)\h/af 
deviation from static 
temperature 
horizontal and vertical 
components of thermal 
diffusivity, respectively 
kinematic viscosity 
(kx/kz)

2(h/a)2 

density 
reference density 
growth rate 
streamfunction 
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Gn(x, Ra)=s{rc1 sinpx—rc2 cospx 

+ c3 sin qx—c4 cos qx] 

where c1,c2,c3, and c4 are constants and 

P -

r= 

VRag - («7r)2(vl-V^)2 ± ^Rag - (n7r)2(vT+V^)2 

<7((7»r)2 + J/?2) qfy+p<l («7r)2 + ? V 

(3.7) 

(3.8) 

(3.9) 
p((mr)2 + ^ 2 ) p^+qJt, ' £Rap 

Here the boundary conditions ensure that p ^ q at Ra = Rac. 
From the conditions (3.5) we conclude that there exist non-
trivial solutions of the boundary value problem when 

I ( l - r ) s i n ^ — - - ( l + / - ) s i n ^ ^ = 0 a n d c 2 = c 4 = 0 (3.10) 

or 

II {\-r)s\xJ-—-+(l+r)sin-^^- = 0 a n d c 1 = c 3 = 0 (3.11) 

Fig. 2(a) 

Fig. 2(b) 

Fig. 2(a and b) £ = 0.5, Rac = 59.218 

In the case of £=?;, which is satisfied for an isotropic 
medium, the problem is easily solved analytically and an exact 
expression for Rac is found. When £=/TJ we have to calculate 
Rac numerically. 

(a) The Isotropic Case: £ = ij. In addition to an isotropic 
medium the condition £ = TJ is satisfied when kx/kz=Kx/nz, 
i.e., the ratios of the horizontal and vertical components of 
the permeability and diffusivity, respectively, are equal. 

In this case r= 1 and cases I and II both lead to the condi
tion 

p — q = 2mir m = l,2, 3, (3.12) 

which implies that 

Ra = 47r2(/i2 + £m2) 
n = l , 2 , 3, . . . 

(3.13) 
773=1, 2, 3, . . . 

The eigenvalues are given by equation (3.13), the smallest of 
which is the critical Rayleigh number 

Rac = 4ir2(l + £) (3.14) 

which corresponds to the lowest mode n = 1 and m = 1. For an 
isotropic medium relation (3.14) may be written 

Rac = 4 . 2 ( l + ( A ) 2 ) (3.15) 

In the limit (h/a) —0 the channel tends to an infinite horizon
tal porous layer. In that case Rac — Air2, which is in accordance 
with a well-known result for porous layers (Bories, 1987). On 
the other hand, the critical value from equation (3.15) differs 
from the result found for a channel with perfectly insulating 
lateral walls carried out by Sutton (1970). For a square chan
nel equation (3.15) gives Rac = 87r2, while the corresponding 
result when the lateral walls are perfectly insulated is 
Rac=4ir2 . A higher critical value with conducting sidewalls 
was expected, of course, since we in this case have heat ex
change through the walls. 

The flows for moderately supercritical Rayleigh numbers is 
usually characterized by the flow at the onset of convection. 
Since the left-hand-side relations of equations (3.10) and 
(3.11) coincide when £ =j), there exist two linearly independent 
solutions of the boundary value problem. This is also seen 
from the stationary linearized version of the governing equa
tions (2.9) and (2.10). If \p0, 0O is a solution at Ra = Rac, then 
^1 = — £Ra0o, (/[ = \p0 is a linearly independent solution. 

Fig. 2(c) 

Fig. 2(d) 

Fig. 2(c and d) £ = 0.2, Rac = 47.374 

Two sets of solutions are 

0<» = 

,/,U> = Q sin(7rVl/£ + bc)cos TTX sin irz 

1 

(3.16) 

Q cos (7rVT/£ + lx)cos TTX sin irz (3.17) 

(3.18) 

VIS* 
î <2) = V£RacS cos (TT\/1/£ + 1X)COS TTX sin irz 

0<2) = S sin ( W l / £ + lx)cos TTX sin irz (3.19) 

where Q and S are amplitude constants. The solution 
(3.16)-(3.17) yields a symmetric flow pattern consisting of 2n 
cells, where the integer n depends on £; the solution 
(3.18)-(3.19) yields a symmetric flow pattern consisting of 
2 M ± 1 cells. It follows from the analytical form of the solu
tions that the condition 

l/£ < 3 yields patterns consisting of 2 
and 3 cells 

3 < l / £ < 8 yields 3 and 4 cells 
8 < 1 / £ < 1 5 yields 4 and 5 cells 
( T Z - l ) 2 - l < l / £ S 7 7 2 - l yields 77 and 77+ 1 cells 77 = 3, 4, 

5 

The computed streamlines and isotherms are shown in Fig. 2 
for % = 0.5 and? =0.2, when (a/h)2 = 2. 
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Tabic 1 Computed values for Rac for various values of £ and 
17. The main diagonal corresponds to the isotropic case. 

V 

1 

8 
1 

4 
1 

2 
1 
2 
4 
8 

1 

44.42 

67.00 

107.5 

183.2 
312.4 
555.6 

1033.8 

1 

T 
33.50 

49.35 

77.11 

124.6 
209.5 
371.0 
688.8 

1 

2 

26.85 

38.55 

59.22 

94.34 
157.6 
278.5 
516.7 

1 

22.90 

31.16 

47.17 

78.96 
131.5 
232.2 
430.6 

2 

19.53 

26.19 

39.39 

65.75 
118.4 
209.0 
387.6 

4 

17.36 

23.19 

34.81 

58.04 
104.5 
197.4 
366.1 

8 

16.14 

21.53 

32.83 

53.83 
96.90 

183.0 
355.3 

In the case l/£ < 3 the results are very similar to those found 
for convection in a horizontal circular cylinder studied by 
Storesletten and Tveitereid (1987). 

(b) The Anisotropic Case: £^17. For £5*17 there exist 
nontrivial solutions for D„, G„ when equations (3.10) or (3.11) 
are satisfied. In case I the solution has the form 

cos • 
D„ = cos px— cos qx 

cos 

(I) 

cos 
G„=s( r sin/wc-- sin qx 

cos 

and in case II 

Dn=s\npx-- sm qx 

sin 

(II) 

s in • 

G„=s\ —r cospx + -
. Q 

sin 
2 

cos qx 

There exist solutions (I) and (II) for an infinite set of eigen
values Ra. Let R^ and Raj, be the smallest eigenvalues cor
responding to (I) and (II), respectively. These will occur at the 
lowest mode n = 1. For given £ and 17 we calculate numerically 
Ra, and Ran from the equations in (3.10) and (3.11), and the 
critical Rayleigh number Ra c=min(Ra, , Ran). Usually 
R a ^ R a n , which means that there exists a unique solution, 
i.e., there is a unique steady flow pattern at the onset of con
vection. Table 1 shows the computed values of Rac for various 
values of £ and ?j. This table possesses a symmetry about the 
main diagonal according to the relation £Rac(£, r/) = »jRac(??, 
£), which follows from the governing equations. 

We shall also examine the steady motion at the onset of con
vection, how the number of cells depends on the anisotropy 
coefficients £ and 77, the uniqueness of solutions, etc. If £^r; 
the left-hand sides of equations (3.10) and (3.11) coincide only 
when 

. (P + q\ . (P-<1\ n sH—r s i nv-T-v= 0 

which leads to the nonuniqueness condition 

(3.20) 

Fig. W) 

4 v 0 j ^ 
Fig. W) 

Fig. 3 Computed streamlines and Isotherms for the anisotropic case 
when (a/h)2=2 and (I) £ = 0.5, 17 = 2, Rac = 157.60; (II) £ = 2, ij = 0.5, 
Ra. = 39.39 

to=-
1 

m = 2, 3, 4, (3.21) 
(m2 -1)2' 

On the hyperbolas (3.21) in the £, 17 plane the critical Rayleigh 
number is found analytically as 

Rac = 7 r 2 [ ( l+Vv | ) 2 + 4r,] (3-22) 

Furthermore, on these curves there exist two solutions D ( l ) , 
£><2> (and G<», G<2») given by 

Z><» = 2 cos(W 1 + 1 / V i d e o s TX (3.23) 

£><2> = 2 sin(Wl + l/V£ijx)cos irx (3.24) 

corresponding to two different flow patterns. However, when 
equation (3.21) is not satisfied and £ ^17, there exists a unique 
flow pattern where the number of cells depends on £ and rj in 
the following way: 

£ < i} yields 2 cells 

£ > 7; yields 3 cells 

£<rj yields 3 cells 

£ > 7) yields 4 cells 

1/V£i)<3 and 

3<1/V£??<8 and 

8<1/V£^<15 and 
£ < -q yields 4 cells 

£ > i) yields 5 cells 

( / 2 - l ) 2 - l < l / V £ 7 ? < r t 2 - l and 
£ < r) yields n cells 

£ > i) yields n + 1 cells 

n = 3, 4, 5, . . . 

The computed streamlines and isotherms are displayed in 
Fig. 3 for £ = 0.5, 77 = 2 and £ = 2, T? = 0 . 5 . 

4 Nonlinear Stability 

It has been revealed from the linear analysis in the preceding 
section that different kinds of convective motion can be 
generated for slightly supercritical Rayleigh numbers. If £ =?), 
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two steady flow patterns are found consisting of n and n + 1 
cells, respectively, «>2. On the other hand if £^77 we found 
only one flow pattern, consisting of n cells if £ < ij and n + 1 
cells if £>i7, n>2. 

In this section we shall examine the stability properties of 
the steady flow patterns occurring at slightly supercritical 
Rayleigh numbers. By taking into account the right-hand side 
of equation (2.10), including the nonlinear term, we derive the 
so-called Landau equations of the problem. This nonlinear 
system of equations will be the basis for our stability analysis. 

The solution of equations (2.9) and (2.10) can be approx
imated by the formal expansions 

\l/ = \l/l+\l/2+ . 

Ra = Rac + Ra, +Ra2+ . . . 
Moreover, we introduce multiple time scales given by 

9 _ d d 

(4.1) 

(4.2) 

We suppose 
i/*, = 0(e')ase-0 (4.3) 

holds uniformly, and similarly for the other quantities 0, Ra, 
and d/dt. By introducing the expansions (4.1)-(4.2) into equa
tions (2.9) and (2.10) and equating terms of the same order, we 
find an infinite set of linear equations. 

(a) The Isotropic Case: £ = J/. The solutions of the first-
order system are in this case 

t^QipQ+Sts, d^Qdg + Sds (4.5) 
where ^q = f^/Q, 6Q = 6^/Q and i/<s = ipVS, 6S = 0<2>/S are 
the solutions (3.16)-(3.19) found in the linear analysis, and Q, 
S are amplitudes of order e. 

The solvability condition of the second-order equations im
plies 

R a , = ^ - = 0 (4.5) 

The Landau equations are now deduced from the solvability 
condition of the third-order equations. By neglecting the 
third-order terms of the expressions (4.1) and (4.2) we get 

„ dQ 
dt 

dS 
dt 

• = ARae-JP1(Q2 + 47r2£(l+?)S2)e 

= ARaS-P2(Q2 + 4Tr2£(l+£)S2)S 

where 

A2 = 2\l + 

3 ,,.J,.,.^.(i±i) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The Landau equations (4.6) and (4.7) describe the evolution of 
the amplitudes due to nonlinear interactions. 

For subcritical Rayleigh numbers, ARa<0, it follows that 
Q—0, S—0 as t— 00. For supercritical Rayleigh numbers, 
ARa > 0, the motionless conduction state Q = S = 0 is unstable. 
However, there exist steady nonzero solutions satisfying 

e2+47r2£(l + £)S2 = ARa/P (4.11) 
i.e., 

Fig. 4ffl 

A 

Fig. Mil) 

Fig. 4 Computed streamlines and isotherms for the composite flow 
patterns when (a/hf = 2 and (/) f = ij = 0.5, a = 0.1; (II) i = >; = 0.5, a = 0.32 

Fig. 5 Sketch of the perfect bifurcation case: -
unstable solution 

Q = Q0, S = aQ0 

where a is a constant, 0 < a < 00, and 

Ql = ARa/P( 1 + 4ir2£(l + £)<*21 

Ra0 

•: stable solution; 

(4.12) 

(4.13) 

The steady-state solution corresponding to a = 0 represents the 
flow pattern consisting of 2n cells, while the (2«± l)-cell pat
tern is obtained when a—00. For 0 < a < 00 the solution (4.12) 
is a composition of the 2/2- and (2n±l)-cell structures. Com
posite flow patterns are displayed in Fig. 4 for the case £ = 0.5. 

By considering small perturbations superposed on the 
steady-state solutions, it is proved that solutions (4.12) are 
stable for all values of a. The stability analysis is similar to 
that performed in the circular cylinder problem (Storesletten 
and Tveitereid, 1987) where the Landau equations had exactly 
the same form. The actual flow pattern, which depends on the 
constant a, is not uniquely determined by the boundary condi
tions. The nonlinear analysis therefore fails in selecting a 
preferred flow pattern. This may be explained by the sym
metry of the problem as it appears in the Landau equations 
(P, = P2). Therefore, in order to find a preferred flow one 
should .include other effects, as for example a nonlinear term 
in the momentum equations (2.1) and (2.2) (non-Darcian 
fluid). However, in the next section we show that in the 
anisotropic case we get a unique stable solution. 

In order to draw the bifurcation diagram it is convenient to 
introduce the amplitude A, defined by 

^42 = g2 + 47r2£(l + £),S2 (4.14) 

From equation (4.11) we get 
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v4=±VARa/P (4.15) 
Thus, according to the nonlinear analysis there is a sharp 

transition from conduction to convection when the Rayleigh 
number exceeds the critical value Rac. This is a so-called 
perfect bifurcation, sketched in Fig. 5. 

(b) The Anisotropic Case. The first-order system has in 
this case (£ ^ r; and equation (3.21).not satisfied) a unique solu
tion found in the linear analysis. Proceeding as in the isotropic 
case we derive the Landau equation 

A3-^- = ARaQ-P3Q
1 (4.16) 

at 
where Q is the amplitude of order e. The coefficients A3 and 
P3, which depend on £ and ?J, have to be calculated numerical
ly. The motionless conduction state is stable when ARa < 0 and 
unstable when ARa > 0. In the supercritical case (ARa > 0) the 
nonzero steady-state solution is stable for all £ and 17. As in the 
isotropic case there is a perfect bifurcation at the critical 
Rayleigh number Rac. 

5 Summary 

We have examined two-dimensional convection in isotropic 
and anisotropic porous horizontal channels. The channel 
walls, assumed to be impermeable and perfectly heat-
conducting, are nonuniformly heated to establish a linear 
temperature distribution in the vertical direction. The main 
results are: 

(a) When £=ri, which is satisfied for an isotropic 
medium, the critical Rayleigh number is found to be 

Rac = 47r2(l + £) (5.1) 
At the onset of convection there exist two different steady 
flow patterns consisting of n and « + l cells, respectively, 
where the integer n depends on the aspect ratio a/h. For an 
isotropic medium, where l/£ = (a/fc)2, the number of cells is 
given as follows 

(a/h)2 < 3 yields 2 and 3 cells (5.2) 

(« -1)2 - 1 <(a/h)2 <n2 - 1 yields n and n + 1 cells (5.3) 

n = 3, 4, 5, . . . 
A nonlinear stability analysis at moderately supercritical 
Rayleigh numbers shows that both of the flow structures are 
stable against two-dimensional perturbations. In addition it 
turns out that any composition of these two flow patterns is a 
stable nonlinear solution. The actual flow, which will usually 
be of the composite type, is not uniquely determined by the 
boundary conditions. According to the nonlinear analysis 
there exists a sharp transition from conduction to convection 
when the Rayleigh number exceeds the critical value Rac, 
which is called a perfect bifurcation. 

(b) In the anisotropic case £^17, the critical Rayleigh 
numbers are calculated numerically; see Table 1. There exists 

(when equation (3.21) is not satisfied) a unique steady flow 
pattern at the onset of convection consisting of n cells if £ < •n, 
and n + \ cells if £>?7, where n depends on the product £77 in 
the following way: 

f£ < 77 yields 2 cells 
1/V£^<3 and -I (5.4) 

[j; > 7? yields 3 cells 

f£ < r) yields n cells 
( r t - l ) 2 - l < l / V £ ^ < n 2 - l and j (5.5) 

| j > 77 yields n + 1 cells 

n = 3, 4, 5, . . . 
The stability analysis carried out in section 4 shows that the 
unique solution is stable against two-dimensional perturba
tions for all values of the parameters £ and 77. AS for the 
isotropic case there exists a perfect bifurcation at Ra = Rac. 
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Enhanced Absorption Due to 
Dependent Scattering 
The role of multiple scattering on dependent scattering as well as on dependent ab
sorption is investigated for heterogeneous media containing a high concentration of 
particles. The decrease of scattering and increase of absorption for lossy (with in
trinsic absorption) particles in a lossless matrix is quantitatively described using a 
Rayleigh region solution derived from a multiple scattering formalism. For smaller 
wavelengths, dependent scattering and absorption can be obtained by solving the 
resulting dispersion equation numerically. Results are shown for lossless particles in 
a lossy matrix, which models an optical coating system. 

1 Introduction 
It is well known that when any form of energy propagates 

through a medium containing scatterers (particles), the en
trained energy will be either redistributed in various directions 
by scattering or absorbed by intrinsic absorption mechanism. 
Although the importance of multiple scattering is recognized 
theoretically when the population of scatterers is high, the 
roles of the accompanying dependent scattering and depen
dent absorption are not well understood in several 
applications. 

In a recent series of studies on light scattering from 
pigmented surface coatings (Nelson et al., 1986; Kunitomo et 
al., 1985) or by radiative heat transfer in powder insulators 
(Chu, 1988; Tien and Wang, 1984; Tong and Tien, 1983), it 
has been shown that for densely populated heterogeneous 
media both dependent scattering and dependent absorption 
have to be considered. As a result, for paint opacity, the 
dependent scattering-absorption can greatly affect the diffuse 
reflectance as it does the overall thermal radiation resistance 
of the powder insulation composites. 

Analogous to the aforementioned applications, chemical 
and nuclear reactors, fuel combustors, cryogenic insulation, 
microwave and laser coatings, artificial obscuration materials, 
and many other commercial and military systems usually in
volve a high concentration of particles. In order to analyze the 
energy transport characteristics, the dependent scattering and 
absorption properties cannot be ignored. 

For pure scattering and for the small absorption case, multi
ple scattering effects have been investigated for acoustic, elec
tromagnetic, and elastic problems for various applications 
(Ma et al., 1984; Varadan et al., 1983, 1985a, 1985b). Suc
cessful comparison with experimental measurements en
courages us to extend this approach to the current problem. 
The multiple scattering formalism employed in the previous 
study is dynamic in nature and hence considers the response 
beyond the Rayleigh region. For a small particle, a closed-
form solution can always be derived for scattering and absorp
tion efficiencies, which enables one to distinguish the con
tribution from either the dependent scattering or the depend
ent absorption. In addition, particles of nonspherical shape 
with aligned or random orientation can also be handled via the 
iT-matrix (Varadan et al., 1980, 1988) with a detailed 
knowledge of position distribution function (Ma et al., 1987, 
1988). Other recent investigation on these problems has either 
been limited to spherical particles in the Rayleigh region or has 
been confined to the gas model in approximating the position 
distribution function (Cartigny et al., 1986; Kumar and Tien, 
1987). 
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The plan of the paper is as follows. Since most details can be 
found in previous publications, in Section 2 we briefly 
describe the multiple scattering formalism and use the results 
to obtain the scattering and absorption efficiencies. Although 
the formalism can be modified for different radiation forms 
(acoustic, electromagnetic or optical, elastic), only the elec
tromagnetic case is considered in this paper. The Rayleigh 
region (long-wavelength limit) results for dependent scattering 
as well as absorption efficiencies are given in terms of the 
refractive indices for the optical case in Section 3. In Section 4, 
we discuss the results based on the multiple scattering for
malism and show the quantitative contribution from depend
ent scattering and dependent absorption for soot deposited on 
walls in which the particle has absorption and for pigment par
ticles in a vehicle (matrix) in which the vehicle has absorption. 

2 Analytical Approach (Multiple Scattering) 

Consider the propagation of a plane harmonic electro
magnetic wave (the incident radiation) in a medium referred 
to as the matrix characterized by complex values of the dielec
tric function e2 = e{ + ie% and magnetic permeability 
fi2 = 1*2 + if-2- Embedded in the matrix is a random distribution 
of uniform size scatterers whose permittivity 6] =e{ + ie" and 
permeability n\ = n{ + in". The matrix of volume K contains N 
scatterers such that N-*<x, K—-co, but the number density n0 
(=N/V) is finite. 

Let E, E°, Ef, Ef be, respectively, the total electromagnetic 
field, the incident wave field, the field exciting the Ah scat-
terer; and the field scattered by the Ah scatterer. All the fields 
have implicit exp( - iut) time dependence and satisfy the vec
tor Helmholtz equation. Let Re 4>n and Ou cj>„ denote the basis 
of orthogonal functions, which are eigenfunctions of the 
Helmholtz equation. The qualifiers Re and Ou denote func
tions that are regular at the origin and outgoing at infinity, 
which are, respectively, appropriate for expanding the field 
that is incident on a scatterer and that which it scatters, which 
in turn must satisfy outgoing or radiation conditions (Varadan 
and Varadan, 1980). If a spherical coordinate system is 
employed, the regular and outgoing functions are generally 
the spherical Bessel and Hankel functions. Thus, we can write 
the following set of self-consistent equations: 

E = E°+££J 

E°= E«i,Re<Mr-r,.) 

(1) 

(2) 

E1 = E « « R e < M r - r ; ) ; a < l r - r , l < 2 a (3) 
n 
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CIRCUMSCRIBING 
SPHERE. 

ST) 
V _ _ ^ k-th SCATTERER 

/«= E 7™','<V (5) 

Fig. 1 Geometry of the scattering problem 

E ^ E / . ' O i i M r - r , ) ; l r - r , l > a (4) 

In equations (2)-(4), the incident field E°, the exciting field 
Ef, and the scattered field Ef are all expanded using the or
thogonal basis functions. Depending on the incident 
wavenumber, the subscript n, which is the order of the func
tion, can vary from 1 to infinity. The difference between the 
incident, exciting, and scattered fields is that the exciting field 
at one particular scatterer consists of the incident field and the 
scattered fields from all scatterers except itself. In the equa
tions aj,and/^ are unknown expansion coefficients and «J,are 
known incident field coefficients. We observe in equations (3) 
and (4) that a is the radius of the sphere circumscribing the 
scatterer and that all expansions are with respect to a coor
dinate origin located in a particular scatterer. The geometry of 
the scattering problem is depicted in Fig. 1. 

The T-matrix by definition simply relates the expansion 
coefficients of Ef and Ef, provided the sum of them is the total 
field. Thus, 

If the addition theorem for the basis functions is invoked, we 
have 

Ou<Mr-r,)= £ f f ™ ' ( r ; - r y ) R e < ^ ' ( r - r ; (6) 

where ann, is the translation matrix. Substituting equations 
(2)-(6) into .equation (1), and using the orthogonality of the 
basis functions, we obtain 

a' = a'+ Yl/T-ioiTi-rjW (7) 
J*I 

This is a set of coupled algebraic equations for the exciting 
field coefficients, which can be iterated and leads to a multiple 
scattering series. 

For randomly distributed scatterers, an ensemble average 
can be performed on equation (7), leading to 

<«'•>,=«' + <u(ri-Tj)PW)iJ)i (8) 
where angle brackets and their subscripts /' and ij denote condi
tional averages. Equation (8), when iterated, is an infinite 
hierarchy involving higher and higher conditional expectations 
of the exciting field coefficients. In actual engineering applica
tions, a knowledge of higher order correlation functions is dif
ficult to obtain, and usually the hierarchy is truncated so that 
at most only the two-body positional correlation function is 
required. 

To achieve this simplification the quasi-crystalline approx
imation (QCA), first introduced by Lax (1952), is invoked, 
which is stated as 

<«'>„-<a/>y (9) 
Equation (9) is strictly valid in the crystalline case since the 
neighborhood of every scatterer is the same. By doing this, the 
fluctuation of the scattered field due to a deviation of a parti
cle / from its average position is eliminated. As mentioned by 
Hudson (1980), for random distributions, the QCA is accurate 
to third order (triple scattering). Then, equation (8) simplifies 
to 

<«'>, = «* +<ff(r,-r /)7*<«'>y> / (10) 

Nomenclature 

E 
/ 

Im 

incident field coefficients 
or size of particle 
volume fraction of 
particles 
electromagnetic field 
scattered field 
coefficients 

g() = radial distribution 
function 
imaginary part of a com
plex number 
effective propagation 
constant 
wavenumber = 2it/\ 
refractive index 
number density 
position distribution 
function 
efficiency 
real part of a complex 
number 

K = 

k 
n 

n0 

P() 

Q 
Re 

r = 

T = 

V = 

w = 

<t> = 

< > = 

position vector 
X-matrix = scattering 
transfer matrix 
volume of the 
heterogeneous medium 
packing factor = 
(l-c)V(l+2c)2 

exciting field coefficients 
relative electric 
permittivity 
wavelength 
relative magnetic 
permeability 
translation matrix or 
cross section 
basis function, e.g., 
Bessel or Hankel 
function 
ensemble average or ef
fective property 

Subscripts 
ad = 
ai = 
ed = 
ei = 

/ory = 
n or nn' = 

sd = 
si = 
1 = 

2 = 

Superscripts 
e = 
o = 
s = 

dependent absorption 
independent absorption 
dependent extinction 
independent extinction 
referring to particle i or j 
modal number 
dependent scattering 
independent scattering 
properties pertaining to 
particle 
properties pertaining to 
matrix 

pertaining to exciting 
pertaining to incident 
pertaining to scattering 
real part of a complex 
quantity 
imaginary part of a com
plex quantity 
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Qt£rTf 

Fig. 2 Radial distribution function versus interparticle distance for dif
ferent volume fraction 

an integral equation for <a'>,-, which in principle can be 
solved. We observe that the ensemble average in equation (10) 
only requires the joint probability distribution function. In 
particular, the homogeneous solution of equation (10) leads to 
a dispersion equation for the effective medium in the quasi-
crystalline approximation. Defining the spatial Fourier 
transform of <«'>,- as 

<<*'> <-4'K- riX(K)dK (ID 

and substituting into equation (10), we obtain for the 
homogeneous solution 

*' '<K) = E jff(r,-r,)7*p(r /lr /)e«-«' '- '>>JP'(K)A / (12) 
Mi 

If the scatterers are identical 

Xi(K)=XJ(K)=X(K) 

and thus for a nontrivial solution to <«'>,-> we require 

/ - £ \o(ri-rj)Pp<.Tj\Ti)e
iK-(ti-rj)drj = 0 

(13) 

(14) 

where / is an identity matrix. In equations (12) and (14), 
p(Tj\Tj) is the joint probability distribution function. For 
isotropic or spherical statistics, 

CO; l r , - r . l<2(? 
P{xj\xi) = \ (15) 

U ( l r , . - r ; l ) / F ; l r , - r y l > 2 a 

where we have assumed that the scatterers are impenetrable 
with a minimum separation between the centers, and in equa
tion (15), 2a could be the diameter of the circumscribing 
sphere. For spherical scatterers, the joint probability distribu
tion depends only on the interparticle distance and not on the 
orientation of the vector joining the centers. The function 
g( lr, — tjl) is called the radial distribution function. A discus
sion of various radial distribution functions and their limita
tions has been given by Varadan et al. (1985). In Fig. 2, dif
ferent values of the radial distribution function for different 
volume fractions are plotted against the normalized radial 
distance using the Monte Carlo technique (Barker and 
Henderson, 1971). 

From the dispersion equation (14) we can solve for the ef
fective propagation constant K ( =Kk0 = (K' + iK" )k0, k0 is 
the direction of incident radiation) of the heterogeneous 
medium as a function of frequency, the properties, the shape, 

size, and orientation of the scatterer via the T-matrix, and the 
statistics of the distribution via the joint probability distribu
tion function. Although the dispersion equation is exact, the 
determination of K is computationally involved except in the 
long wavelength limit. 

For dependent scattering, in addition to multiple scattering, 
another element is the in-phase addition of the far-field scat
tered radiation, which is, here, through the effective or 
coherent propagation constant K using the concept of 
coherent wave (Lax, 1952; Mai and Bose, 1974; Hudson, 
1980; Varadan and-Varadan, 1980). Most interesting to us is 
the imaginary part of K, which will be shown later to be 
related to the extinction efficiency composed of dependent 
scattering and dependent absorption. 

3 Dispersion Equation in the Long Wavelength Limit 

The objective of the self-consistent multiple scattering for
malism derived for the problem is to obtain an analytical ex
pression for the dispersion equation of radiation propagating 
in the heterogeneous medium. By solving the dispersion equa
tion, we obtain an effective propagation constant of the 
heterogeneous medium. If the wavelength in the matrix 
material is much larger than the size a of the particles and 
results in a small nondimensional frequency ka in the Rayleigh 
region, one can solve the dispersion equation in the long 
wavelength regime and obtain a closed-form solution. 

Without considering the magnetic permeability of the 
matrix and scatterer materials for most optical applications, 
the dispersion equation can be reduced to the following form 
(details from Varadan et al., 1986): 

where 

T(Ao+A2/2)-l=0 (16) 

A„ = m/Xl + w 

A2 = m(K/k2)
2/Xl 

Q = c/[\-(K/k2)
2] 

T= i(2Xl/3)[(n] - n\)/(2nl + n\)\ 

w = ( l - c ) V ( l + 2 c ) 2 

X2=Re(n2k0) 

ni =n[ + in" 

n2 = ni + in% 

k2 = n2k0 

K = Effective propagation constant = (n)k0 

k0 = 2ir A„ 

X0 = Wavelength in free space (vacuum) 

<«> = <« ' ) + /<«" )= Effective refractive index 

c = Volume fraction of scatterers 

The subscripts 1 and 2 represent the properties pertaining to 
scatterer and matrix, respectively. The refractive index n is 
related to the dielectric function e and permeability fi through 
n = (e/t)l/2. For randomly distributed lossy/lossless scatterers 
with a high concentration in a lossy/lossless matrix, the effec
tive propagation constant can be obtained, by solving equa
tion (16), 
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<K)/k2 = (n)/n2=i\-Ww-{cy-ci)/(l+y1)](B + iH)) 

/{l-[Pw+(cy-ci)/2(l+y2)](B + iH)}1/2 (17) 
where 
B = 2(Cy-D) H=2(Dy + C) 

C=[(n{2 -n{'2 -n{2 + «2"
2)(2n2'

2 -2n2"
2 + n{2 -n{'2) 

+ (2n[n'{- 2n2
,n2

v)(4n2'rt2
v+ 2n{n{')]/& 

£> = [ (2K 1 ' « 1 " -2 /Z^ ' ) (2« 2 ' 2 -2« 2 " 2 + «,'2 -«,"2) 

+ (« 1 ' 2 -« 1 " 2 -"2 2 + «2"
2)(4nX+2«1'n,'0]/A 

A = (2«2'
2 - 2n{2\n{2- n{'2)2 + (4n2'rc2"+ 2n[n{')2 

y = (X{3 - 3X\X{)/VC\ - 3X2X{ 2) 

^ = {.X\-3X2X{2)/3 

Xi = lm(n2k0) 

Without considering dependent scattering and dependent 
absorption, the reduced intensity is, from the Lambert-Beer 
law 

I=I°exp(-n0<jez)=I°expl(-n0o)Qeiz)] (18) 
where 1° is the intensity of the incident radiation, n0 the 
number density, oei the independent extinction cross section, 
and z the thickness of the heterogeneous medium. In equation 
(18), the independent extinction efficiency Qei is actually the 
normalized extinction cross section with respect to the physical 
cross section a of the particle. 

If dependent scattering is considered, the reduced intensity 
becomes the coherent intensity and has the following expres
sion (Twersky, 1979): 

I=I°exp(-2K"z)=I°exp[(-n0<T)Qedz)] (19) 
where K" is the imaginary part of the effective propagation 
constant K. 

Comparing equations (18) and (19), one can show that the 
dependent extinction efficiency Qed is related to K" through 
the following equation: 

Qed=(8/3c)(K"/k0)(k0a) (20) 

Equation (20) is derived specifically for spherical particles in 
which the volume fraction c is equal to n„47r«3/3. 

Because the dependent extinction efficiency is the combina
tion of the dependent absorption efficiency Qad and the 
dependent scattering efficiency Qsd, by the use of equation 
(17), for lossy particles suspended in air (n2 = 1 + 0/'), we have 

Qad = [4D(k0a) (k0/K')]/[(! - cQ2 + (2pwC+ cD)2} (21) 

Qed 

10 

n,= 2+1 i , k0a = o.i 

n.= 2+0.5 i , kna=o.i „ ^ ' 

10 

n'(=2+ii, k,p = o.05 

n,= 2+0.5 i, k0a = o.05 

, n i 

V 

id3 
10 

-i 
10 

Fig. 3 Dependent extinction efficiency of lossy particles in air 

Case 2. Lossy Scatterers in a Lossless Matrix. This is a 
common occurrence in various problems, e.g., suspensions in 
fluids and soot in flames. For this case, n2" =0 but n" is not. 
Equation (17) can be reduced to the following form: 

(n}/n{ = [{ 1 +2((3w + d) (D-iC)} 

/{l+2[Pw-ci/2](D-iC)}]l/2 (24) 
Again, <«> becomes n2 when c = 0. However, when c= 1, 

(n)/ni = l(.l+2C+2iD)/(.l-C-iD)]W2 = nl/n'2 (25) 
It is easy to see that the effective refractive index becomes that 
of the lossy scatterers. 

Case 3. Lossless Scatterers in a Lossy Matrix. This prob
lem has been considered for paint films, e.g., absorption-free 
pigment particles in an absorptive vehicle. For this case, n"= 0 
and n2" is finite. It is easy to show using equation (17), for 
c = 0, <«> =«2. Forc= 1, equation (17) reduces to 

(n)/n2 = [(1 +2C+ 2iD)/{\ -C-iD)]m = «,'/(«2' + in{) (26) 
which means the effective refractive index becomes that of the 
scatterers and is real. 

Case 4. Lossy Scatterers in a Lossy Matrix. For this 
case, the complete form of equation (17) must be considered. 
As for the relative contribution from scattering and absorp
tion toward <n>, one can easily show by using Case 2 that 

{n)/n{ = ([(1 + 2cC)(l - cC) - 2c2D2]/[(l - cC)2 + c2D2} 

+ i[3cD + epwciC2 +£>2)]/[(l - cQ2 + c2D2]}' (27) 

Qsd = [&wC2(k0ay(k0/K')/3]/[(.l-cC)2 + (2PwC+cD)2] (22) 4 Results and Discussion 

In the following, we discuss some limiting cases when equa
tion (17) is applied to compute the effective refractive indices 
of various systems. 

Case 1: Pure Scattering. If neither the scatterers nor the 
matrix material are lossy, i.e., n"=n2 = 0, only scattering con
tributes to the imaginary part of the effective refractive index 

<n>/^ = [(1 +2cT )/(l -cT) + mwcT 2/(l -cT)2]U2(23) 

where T={n{2-n{2)/(n{2+2n{2). The effective refractive 
index <«> becomes n{ and n{, respectively, when cequal 0 (no 
scatterer) and 1 (matrix material totally occupied by scat
terers). Meanwhile, the imaginary part of <«> vanishes due to 
the disappearance of scatterers. 

We consider two different problems to show the effects of 
dependent absorption. The first problem is the application of 
a long wavelength solution (equation (17)) on small particles 
with a large index of absorption, such as soot deposited on the 
wall or ultra-fine powder for heat insulation. In this problem, 
the absorption of thermal radiation by particles plays an im
portant role in the overall energy transfer (Tien and Wang, 
1984; Tong and Tien, 1983; Kumar and Tien, 1987). 

The refractive index of soot is chosen to be nr=n[ + 
in"=2 + i0.5 (Kumar and Tien, 1987) in the visible range. 
Since the absorption index n" is quite large, in the Rayleigh 
region (i.e., a/\0« 1), one sees from equation (17) that the 
dependent absorption efficiency Qad (of the order k0a) is 
much larger than the dependent scattering efficiency Qsd (of 
the order of k^a4). Therefore, the dependent extinction effi-
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Table 1 Comparison off the imaginary part of the effective refractive 
index <n> using equation (24) and the Maxwell-Garnett (MG) model 

Case 1. nj = 2 + 1 i, n2 = 1 

No difference between Equation (24) and Maxwell - Garnett model from koa « 1 to 

k(,a=0.3 

C a s e 2 . n i = 2 + 0.001 i , n 2 = l 

For k0a « 1 

No difference between Equation (24) and Maxwell - Garnett model. Although the 

difference is small, the magnitude increases as the frequency increases. For example, 

at k0a = 0.1 

volume fraction c <n" > [Equation (24)] < n" > [MG model] 

Q.l 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.63215 x [0-4 

0.1 ISO!) x K)-3 

0.17575 X 10-3 

0.24095 x 10-3 

0.31672 x 10-3 

0.40603 x 10-3 

0.51260x10-3 
0.64158x10-3 

0.80038 x 10-3 

1.00000 x 10-3 

0.51486x10-4 

0.10692x10-3 

0 .16788x10-3 

0.23623 x 10-3 

0.31427 x 10-3 

0.40496 X 10-3 

0 .51224x10-3 

0 .64150x10-3 

0.80037 x 10-3 
1.00000x10-3 

Case 3. nj = 2, n2 = I (pure scattering) 

Maxwell - Garnett model docs not predict any scattering loss 

koa = 0.i 

volume fraction c < n" > [Equation (23)] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.11729 x l ( H 

0.11172X 10"4 

0.78725 x 10-5 

0.47246 x 10"5 

0.24552 x 10-5 

0.10710 x I 0 - 5 

0.36017 X10~* 

0.75917 x 10-7 

0.51004x10-8 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

ciency Qed is mainly composed of the absorption efficiency 
Qad and is plotted against the soot particle volume fraction in 
Fig. 3. To compare the results of Kumar and Tien (1987), we 
used the log-log scale. For lossy particles, depending upon the 
magnitude of the imaginary part of the refractive index n ", 
there is little or no difference between the present result and 
that of Kumar and Tien. Nevertheless, the difference can be 
obvious when lossless particles, i.e., in the pure scattering 
case, are considered. This is due to the difference in the pair 
correlation function employed. When the volume fraction is 
extended to 1, there is no scattering, which is not so in Kumar 
and Tien's case. 

Besides Kumar and Tien's case, for particles with con
siderable absorption, it can be shown that equation (24) gives 
virtually the same results as calculated using the Max
well-Garnett model. Therefore, when the refractive index 
n = 2 + 1 /is considered, the results are indistinguishable when 
plotted against volume fraction. This is not so for small ab
sorption and pure scattering cases. The differences between 
the current approach and the Maxwell-Garnett model can be 
found in Table 1. 

However, one must realize that when the frequency is in
creasing, the effect of scattering efficiency becomes more and 
more important as can be seen in Fig. 4 if the refractive index 
is frequency independent. In obtaining these results, we con
sidered multipole contributions and rigorously solved the 
dispersion equation insteady of using the long wavelength 
solution. 

For highly absorbent particles in air, the independent ab
sorption efficiency can be found to be 

Qai = Ak0a\6n[n'{/[2 + n{2 -n{'2)2 + (2«,'n,")2]) (28) 

Fig. 4 Frequency-dependent extinction efficiency of particles in air 

Qa«/Q, 

f | =2+0.51 

Fig. 5 Ratio of dependent to independent absorption efficiency versus 
volume fraction c of particles in the Rayleigh region 

The ratio between the dependent absorption efficiency and the 
independent absorption efficiency can thus be given, also in a 
closed form 

Qac/Qa, = (2/K')/[(l - cQ2 + (2(3wC+cD)2] (29) 
The effect of the particle volume fraction on the ratio of the 
absorption efficiency is depicted in Fig. 5. It is observed that 
the absorption is increased when the concentration of particles 
is increased. Further, it can be proved that for c= 1 (air fully 
replaced by soot), the ratios between Qad and Qai become 
2.059 and 2.278 for /z, =2 + 0.5/ and «, =2 + 1/, respectively. 
In Fig. 6, we compare the effective absorption index <«"> 
from the current formalism with that calculated using the mix
ture theory in which the absorption is approximated by 
multiplying the index of absorption with the concentration. 

Although a simple equation can be used to predict the 
dependent absorption as well as scattering efficiencies in the 
Rayleigh region, a fairly involved computation is required by 
use of the dispersion equation (14) in the investigation of 
lossless Mie scatterers in a lossy matrix. This problem, which 
deals with the reflectance and/or transmittance of a particle 
layer in the visible region, is very interesting to the paint and 
paper industries. The essential role of the dependent absorp
tion and scattering efficiencies is to predict correctly the op
tical distance or the optical density in the associated radiative 
transfer equation. 

The lossless Mie scatterers are titanium dioxide (Ti02) par
ticles whose properties are well known in the visible range 
(Kunitomo et al., 1985). In the calculation, we take the parti-
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Table 2 Independent and dependent absorption and scattering effi
ciencies of Ti0 2 paint 

./ 

Mixture Theory 

Multiple Scattering Theory 

n!=2 + Q5i 

n2=i 

0.0 0.2 0.4 0.6 
C 

1.0 

Fig. 6 Effective refractive Index (imaginary part) versus volume frac
tion c from Mixture and Multiple Scattering theories 

cle size to be 0.22 ;itm in diameter and choose the incident 
wavelength to be 700 nm. The matrix material at this 
wavelength has the refractive index n2 = 1.525 + 0.3 X 10~5/. 
The corresponding nondimensional frequency k0a is 0.987, 
which is in any case a non-Rayleigh region. We consider four 
different concentrations and the results are given in Table 2. 
As can be seen in the table, this is different from the previous 
case in which absorption dominates. Nevertheless, the de
pendent absorption efficiency, though small, is much larger 
than the independent absorption one. This enhanced absorp
tion greatly affects the diffuse reflectance, as discussed by 
Kunitomo et al. (1985). The difference is shown quantitatively 
here but it has remained unclear in the previous investigations 
(Kunitomo et al., 1985; Chu, 1988). The sensitive change in 
the absorption efficiency will undoubtedly affect the ratio be
tween the absorption coefficient and the scattering coefficient 
and the scattering coefficient in the two-flux model (e.g., 
Kubelka-Munk theory), which has been widely used to 
calculate the reflectance of a diffuse medium. 
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Development of a Network 
Analogy and Evaluation of Mean 
Beam Lengths for 
Multidimensional 
Absorbing/lsotropically Scattering 
Media 
Based on Hottel's zonal formulation, a network analogy is developed for the 
analysis of radiative transfer in general multidimensional absorbing/isotropically 
scattering media. Applying the analogy to the analysis of an isothermal medium and 
assuming that the incoming and outgoing flux density is homogeneous within the 
medium, the effect of scattering on the evaluation of mean beam lengths is il
lustrated. Two concepts of mean beam length, an absorption mean beam length 
(AMBL) and an extinction mean beam length (EMBL), are introduced and shown 
to be important for the analysis of radiative transfer in practical systems. Both mean 
beam lengths differ significantly from the conventional mean beam length in 
systems of moderate and large optical thickness. Relations between AMBL and 
EMBL and their limiting behavior are developed analytically. Numerical results for 
a sphere radiating to its surface and an infinite parallel slab radiating to one of its 
surfaces are presented to demonstrate quantitatively the mathematical behavior of 
the two mean beam lengths. 

1 Introduction 
Radiative transfer in an absorbing/scattering medium is an 

important aspect in many practical engineering problems such 
as the modeling of energy transport in combustion chambers 
and furnaces. Mathematically, an exact solution to the 
radiative equation of transfer, coupled with the fluid flow and 
convective heat transfer occurring inside a furnace, can be ex
tremely complicated and therefore unsuitable for practical 
engineerirg applications. A great deal of research effort in 
radiative transfer in the past fifty years has thus been directed 
toward the development of approximation methods. Sarofim 
(1986) and Viskanta and Menguc (1987) have given excellent 
reviews of the various available techniques. 

One of the most important concepts utilized in practical 
radiative transfer calculations, particularly in applications for 
nongray media, is mean beam length (MBL). Introduced 
originally by Hottel (1927, 1967), the MBL of a gas volume 
radiating to a boundary is defined as the radius of an 
"equivalent" hemisphere that produces a flux to the center of 
its base equal to the average flux radiated to the area of in
terest by the actual volume of gas. Since spectral absorption 
data for all common gaseous species are generally measured in 
one-dimensional line-of-sight experimental systems, the MBL 
concept provides an important theoretical link through which 
the existing one-dimensional spectral absorption data can be 
applied to radiative transfer calculations in complex 
multidimensional systems. 

In recent years, scattering has been recognized to be impor
tant in many particle-laden combustion systems such as fires 
and pulverized coal furnaces (DeRis, 1978; Wessel, 1985; 
Menguc and Viskanta, 1986). While it is well known that scat-

Contributed by the Heat Transfer Division and presented at the National 
Heat Transfer Conference, Houston, Texas, July 24-27, 1988. Manuscript 
received by the Heat Transfer Division October U, 1988. Keywords: Furnaces 
and Combustors, Modeling and Scaling, Radiation. 

tering can have a significant effect on the total radiative heat 
transfer, its effect on MBL has not yet been established. To 
the best of the author's knowledge, an approximate expression 
for the scattering mean beam length in the limit of an optically 
thin weakly scattering medium (Cartigny, 1986) appears to be 
the only reported work addressing this important issue. In
deed, the lack of an accurate definition for MBL in an absorb
ing/scattering medium has led to large uncertainty on the 
result of many existing furnace calculations (Menguc and 
Viskanta, 1986; Viskanta and Menguc, 1987). 

In this work, a theoretical formulation of MBLs in an ab
sorbing/scattering medium is derived. In section 2, a network 
analogy for the calculation of radiative transfer in an emitting, 
absorbing, and isotropically scattering medium is developed. 
By applying the analogy to an isothermal medium and assum
ing that the incoming and outgoing flux density is 
homogeneous, two concepts of MBL, an "absorption" mean 
beam length (AMBL) and an "extinction" mean beam length 
(EMBL), are introduced in section 3. Mathematically, AMBL 
is defined as the radius of a purely absorbing hemisphere with 
the same absorption coefficient as the medium under con
sideration, which produces a flux at the center of its base equal 
to the average heat flux radiated to the area of interest. The 
concept of AMBL is important in estimating the emission 
from nongray gaseous species in the presence of scattering 
particles. EMBL, on the other hand, is defined as the radius of 
an absorbing/scattering hemisphere with the same extinction 
coefficient and scattering albedo as the medium under con
sideration that produces the equivalent heat flux. The concept 
of EMBL is important in the scaling of scattering/absorbing 
media. Based on evaluation of AMBL for an absorbing/scat
tering hemispherical medium radiating to its base, a universal 
relation between AMBL and EMBL is also presented in sec
tion 3. In section 4, exact mathematical expression for the two 
MBLs are generated for two enclosures, a sphere and an in-
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finite parallel slab. Numerical results are presented to il
lustrate parametrically the importance of scattering on the 
evaluation of MBLs. Finally, a conclusion of the present work 
and some comments on the future direction of research in this 
general area are presented in section 5. 

2 Network Analogy for an Absorbing/Scattering 
Medium 

The analogy between electrical network and radiative 
transfer in an enclosure with a nonparticipating medium was 
first developed by Oppenheim (1956). Bevans and Dunkle 
(1960) extended the idea to include the effect of an isothermal 
absorbing medium. The extension, however, is quite com
plicated mathematically and applicable only for a 
homogeneous isothermal absorbing medium. The practical 
application for the Bevans and Dunkle formulation is thus 
limited. Utilizing results generated by the two-flux model, 
Tong and Tien (1980) noted that the heat transfer in a planar 
absorbing/scattering medium can be expressed by a network 
representation. But they did not consider extension to general 
multidimensional systems. To the best of the author's 
knowledge, formulation of the network analogy for a general 
nonisothermal multidimensional enclosure with an absorb
ing/scattering medium has not appeared in the literature. 

For an isotropically scattering and absorbing medium, the 
set of radiative exchange relations generated by Hottel's zonal 
method (Hottel and Sarofim, 1967) is a natural basis for the 
development of the network analogy. Specifically, in an 
enclosure with N isothermal surface zones and M gas zones, 
the energy balance on each zone can be written as 

Afli = E sfij Wj + £ s,gj Ws< j 

W. 

(1) 

(2) 

In the above expressions, H, and W, are the irradiation and 
radiosity (emission plus reflection) of surface A: while 4Hgi 

and 4KWgi can be interpreted as the incoming and outgoing 
(emission plus scattering) flux density of a volume element Vt. 
A'is the extinction coefficient. SjSj, Sjgj, and gjgj are the direct 
exchange factors between A: and AJt At and Vj, and Vt and 

change factors are given by Hottell and Sarofim (1967) and 
will not be repeated here. In general, they satisfy the following 
reciprocity and closure relations: 

SjSj — SjSj 

Sigj=gjSi 

Si&j Sjgi 

N M 

E ^ / + Tig^j=AJ 
; = i / = i 

M N 

T,g#j+L^gj=4KVJ 

(3a) 

(3b) 

(3c) 

(4a) 

(4b) 

The parameters Wh Hh Wgi, and Hgit are related to the sur
face emissive power Et and the gaseous emissive power Eg ,• by 

Wi = eiEi+(l-ei)Hi 

WgJ=(l-u0)EgJ + u0Hgti 

(5a) 

(5b) 

Qi and Qg,-, the net heat transfer from surface At and volume 
Vj, respectively, can be written as 

Q^AiKWt-Hi)-

l - « o 

(Ei-Wt) (6a) 

QtJ =4V>( Wz,i~R
g,i)=

4KV' ( — ) (Es,>~ W*,'> W 

where e( is the surface emissivity of At and co0 is the scattering 
albedo of the medium. 

To develop the necessary equation for the network analogy, 
the first half of equations (6a) and (6b), together with the 
reciprocity and closure relations, can be readily combined with 
equations (1) and (2) to yield 

N M 

and 
N M 

Q*J= %wA»r
tj-n

rj)+Eglgj(wgil-wttj) (ib) 

Vj, respectively. The mathematical expressions for these ex- Based on equations (6a), (6b), (la), and (lb), the analogy 

A, 

D 

Es 

Eg,i 

E3(x) 

F(P) 

8i8j 

SiSj 

Hi 

N o m e n c l a t u r e 

= /th surface area in an 
enclosure 

= thickness of the parallel 
slab system 

= blackbody emissive power 
of surface At 

= blackbody emissive power 
of volume Vgti 

= exponential integral 
function 

= function defined in equa
tion (A9) 

= volume-volume direct ex
change factor between 
Vgi and VgJ 

= volume-gas direct ex
change factor between 
Vgti and Aj 

= irradiation into surface 
A, 

4HS,i 

K 
Eab 

Le 

'-'ex 

q 
Q> 

Qtj 

_R 
S,Sj 

sigj 

= incoming flux density into 
volume Vgi 

= extinction coefficient 
= absorption mean beam 

length 
= conventional mean beam 

length (defined for a pure 
absorption medium) 

= extinction mean beam 
length 

= heat flux 
= total heat transfer from 

surface^,-
= total heat transfer from 

volume Vgii 

= radius 
= surface-surface direct ex

change factor between Aj 
and Aj 

= surface-gas direct ex-

V*J 

W, 
4KWgJ 

a 
)3 
e; 

e 
0. 

e2 

<i> 

<t>m 

<00 

change factor between At 

and Vj 
= rth gas volume in an 

enclosure 
= radiosity from surface At 

= outgoing flux density 
from volume VgJ 

= angle defined in Fig. Al 
= angle defined in Fig. Al 
= emissivity of surface At 

= angle defined in Fig. Al 
= angle defined by equation 

(AlOa) 
= angle defined by equation 

(AlOa) 
= azimuthal angle used in 

equations (A6), (A7), and 
(A9) 

= angle defined by equation 
(All) 

= scattering albedo 
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Fig. 1(b) Network representation for a volume element Vk 
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Fig. 2 Network representation for the mean beam length calculation 
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between electrical network and radiative heat transfer in an 
absorbing/scattering medium is quite apparent. Specifically 

Et= internal potential of surface A, 

Wj = external potential of surface At 

1-e, 

A*,-
- = internal resistance at surface At 

w0 

Egti = internal potential of volume Vt 

Wgij = external potential of volume K, 

• = internal resistance at volume V: 
4ATK;(l-«o) 

l/SjSj = resistance between surfaces At and Aj 

\/Sjgj = resistance between surfaces Aj and Vj 

^/g:Sj = resistance between surfaces Vt and Vj 
Schematic representations of the network analogy for a sur
face element Aj and a volume element V, are shown in Figs. 
1(a) and \{b), respectively. Note that in contrast to Bevans and 
Dunkle (1960), the present network analogy does not require 
the restrictive assumption of an isothermal gas volume. It can 
be applied to any enclosure containing an absorb-
ing/isotropically scattering medium. 

3 Formulation of Mean Beam Lengths 

In the formulation of mean beam lengths, the problem of 
interest is to determine the radiative heat flux incident on an 
area A from a homogeneous isothermal gas volume (with 
volume Vg, emissive power Eg, extinction coefficient K, and 
scattering albedo o0). The area A, in general, is a part of the 
total boundary of the enclosure. Let Ac be the remaining area 
of the enclosure and assuming that Hg and Wg are uniform in 
the gas volume, the network analogy is applicable with an 
equivalent network as shown in Fig. 2. The corresponding net
work equations can be readily solved to yield the following 
heat flux expression at surface A: 

(Egsg/A){l-a0) 
(8) 

1 -
4KV„ 

3(a) Concept of Absorption Mean Length (AMBL). 
The absorption mean beam length (AMBL), Lab, is defined as 
the radius of a hemispherical volume of purely absorbing gas 
(with the same temperature and absorption coefficient as that 
of the actual mixture), which produces a flux to the center of 
its base equal to the acutal heat flux. Mathematically, L„ 
given by the relation 

-'ab 

1 - e - c -<->6>KLab = 
( 1 - e - " . ) (1-wo) 

(9) 

1-
4KV„ 

where the exchange factor sg is written in term of the conven
tional mean beam length Le as 

sg 
••l-e- (10) 

The concept of AMBL is useful when it is necessary to 
estimate the effect of scattering particles on the emission of a 
second species (e.g., the evaluation of the strength of a 
gaseous absorption band in the presence of scattering particles 
in furnace calculation). Note that the mean beam length ex
pression considered by Cartigny (1986) is the absorption mean 
beam length. 
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KL ab 

Fig. 3 Universal relation between KLgb, KLex, and a0 

10 12 

Fig. 4 Relation between KLab and KLex in the weak scattering limit 

are presented in Fig. 3. It can be readily observed that, in 
general, Lab<Lex. In a hemispherical geometry, the primary 
effect of scattering is to reduce heat transfer. A larger absorb
ing/scattering hemisphere is required to generate the same 
heat flux to the center of its base as that of a purely absorbing 
hemisphere. 

3(c) Limiting Behavior of Lex and Lab. In the optically 
thin limit (KLex-~0) and independent of w0, equations (9) and 
(11) are reduced to 

Le=Lex=Lab (12) 

Based on numerical data presented in Fig. 3, Lex and Lab are 
essentially identical for KLex < 1.0. 

Physically, the three mean beam lengths are also expected to 
be identical in the limit of no scattering (co0 = 0). Numerical 
data, however, show that the convergence of Lab to Lex is 
quite slow in the optically thick limit. In Fig. 4, the relation 
between Lab and Lex in the weak-scattering limit (to0<0.1) is 
presented. Note that even for a "small" scattering albedo 
(say, co0 = 0.01), the difference between Lex and Lab can be 
quite substantial in systems with moderate and large optical 
thicknesses. Equation (12), in the more restrictive optically 
thin weakly scattering limit (KLab~0, w0 —0), is also deduced 
by Cartigny (1986). 

In the strongly scattering limit (w0 —1.0), equation (9) can 
be simplified to yield 

KLab-
sg /A 

(13) 

1 
AKVg 

and the relation between Lab and Lex becomes 

KLnh = -
(\-e~KLeX) 

3(b) Concept of Extinction Mean Bean Length 
(EMBL). The extinction mean beam length (EMBL), ! „ , is 
defined as the radius of a hemispherical volume of scattering 
and absorbing gas (with the same temperature, extinction 
coefficient, and scattering albedo as that of the actual mix
ture), which produces a flux to the center of its base equal to 
the acutal heat flux. This concept is important for the scaling 
of a mixture in which the effects of absorption and scattering 
are not readily separable (e.g., the assessment and comparison 
of optical thicknesses for two geometrically dissimilar sooty 
flames). Unlike Le and Lab, a closed-form expression for Lex is 
not available for an arbitrary enclosure since the heat flux to 
the center of the base of an absorbing/scattering hemisphere 
cannot be expressed in closed form. A universal relation be
tween Lab and Lex, however, can be readily generated based on 
the expression of Lab for a hemispherical volume of gas 
radiating to the center of its base. Since Lex for a hemisphere 
radiating to its base is simply its radius, Lex and Lab for an ar
bitrary enclosure are related by 

l - e - ( l - « 0 ) J f i o A = 
( l _ e - A - t w ) ( 1 _ W o ) 

(11) 

1-
4KV„ / hemisphere 

where (gg/4fiTKg)hemisphere is the self-exchange factor per unit 
volume for a hemispherical volume of gas with optical radius 
KLex. Specifically, the evaluation of EMBL for an arbitrary 
enclosure requires first the evaluation of AMBL based on 
equation (9) and then the evaluation of EMBL based on equa
tion (11). _ 

The evaluation of (gg/4KVg)hsmisphm, which has not ap
peared in the literature, is presented in Appendix A. 
Numerical values for KLab for different values of KLex and w0 

^uy 
(14) 

hemisphere 

Note that AMBL and EMBL are both nonzero even in the 
pure scattering limit (co0 = 1.0). Similar to the conventional 
MBL Le, Lab, and Lex are fundamental geometric parameters 
of the enclosure. 

If A is the total surface to the enclosure (i.e., Ac = 0 in Fig. 
2), equation (13) can be further simplified (using the reciproci
ty and closure relations) to yield 

AV 

which is identical to the optically thin limiting expression for 
Le. Physically, this result is not surprising because from the 
pure absorption consideration, a pure scattering medium is 
optically thin. It is important to emphasize that equation (13a) 
holds for all strongly scattering media independent of optical 
thickness. Lex, in the pure scattering limit, must still be 
evaluated using equation (14). 

4 Numerical Examples 

To illustrate quantitatively the effect of scattering on 
AMBL and EMBL, numerical values are tabulated for two 
specific geometries, a sphere and an infinite parallel slab. 
These two cases are selected because many practical furnaces 
can be approximated by these geometries and closeaSform ex
pressions for the necessary exchange factors sg /A and 
gg/(4KVg) are available from standard references (Hottel and 
Sarofim, 1967). 

For an absorbing-scattering spherical medium radiating to 
its surface, Lab is given by 
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1.0 

Fig. 5(a) Absorption mean beam length for a sphere radiating to its sur
face for different optical radii (KR) and albedos (a0) 

KL ab 10 

Fig. 6(a) Absorption mean beam length for an infinite parallel slab 
radiating to one of its surfaces for different optical slab thicknesses 
(KD) and albedos (<o0) 

Fig. 5(b) Extinction mean beam length for a sphere radiating to its sur
face for different optical radii (KR) and albedos (ag) 

KL e x i o - , 

v v v "v ^m.-.-^ 

*S B S3 E 

-®- 4» 0 4 

Fig. 6(b) Extinction mean beam length for an infinite parallel slab 
radiating to one of its surfaces for different optical slab thicknesses 
(KD) and albedos (UQ) 

sg (l-«o) 
1 —e-Q-u<))KLab = -

tial integral function (Hottel and Sarofim, 1967). Numerical 
= — (14) results of Lex and Lab for a slab are shown in Figs. 6(a) and 

1 • < M 
sg 

AKR A 
where 

sg = 1 — 
1 

2(KR)2 (l-(2KR + l)e~2KR) (15) 

with R being the radius of the sphere. Numerical values of 
AMBL and EMBL for different KR and w0 are presented in 
Figs. 5(a) and 5(b). While Lex, in general, increases 
monotonically with co0, Lab first decreases and then increases 
with increasing co0. Physically, the slight decrease in Lab with 
co0 at small albedo can be attributed to the slight enhancement 
of heat transfer by scattering in an optically thick medium. As 
co0 increases, the effect of extinction by scattering becomes 
dominant and Lab increases. A comparison between Figs. 5(a) 
and 5(b) also shows that, in general, Lex is much greater than 
Lab, particularly in the limit of large albedo. 

For a parallel slab of absorbing-scattering medium radiating 
to one of its two bounding surfaces, Lab is given by 

sg ( l-«o) 
l _ e - ( l - " 0 > J f i o 6 = -

^""O-^KD JT") 
where 

sg = l-2E3(KD) 

(16) 

(17) 

with D being the thickness of the slab and E3 (x) the exponen-

6(b). Their qualitative behavior is similar to that for the sphere 
presented in Figs. 5(a) and 5(6). 

5 Conclusions 
A network analogy is developed for the analysis of radiative 

transfer in an absorbing and isotropically scattering medium. 
Based on a network analysis for an isothermal medium and 
assuming that the incoming and outgoing flux density are 
homogeneous, the traditional concept of mean beam length is 
extended to include the effect of scattering. Two concepts of 
mean beam length (an absorption mean beam length, AMBL, 
and an extinction mean beam length, EMBL) are shown to be 
useful in characterizing the radiative transfer in a scattering 
medium. Based on an analysis of a hemispherical absorb
ing/scattering medium, a universal relation between AMBL 
and EMBL is developed. Numerical values for AMBL and 
EMBL for two enclosures are presented to show that the two 
mean beam lengths differ significantly from each other and 
also from the conventional mean beam length in systems with 
moderate or large optical thickness. The use of the conven
tional definition of mean beam length in general absorb
ing/scattering media can thus lead to significant erorr, except 
in the optically thin limit. 

The general behavior of AMBL and EMBL is illustrated by 
numerical results generated by two specific systems, a 
spherical medium radiating to its surface and an infinite 
parallel slab radiating to one of its surfaces. For a fixed extinc
tion coefficient and physical dimension, EMBL is shown to in
crease monotonically with scattering albedo while AMBL first 
decreases and then increases with scattering albedo. 
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Since an isothermal absorbing/scattering medium can, in 
general, have nonuniform incoming and outgoing flux densi
ty, expressions for AMBL and EMBL developed in the present 
work are approximate. Additional exact numerical calcula
tions must also be carried out to develop a more precise rela
tion between the two mean beam lengths and their 
mathematical behavior. Systems with different geometric 
shapes must be analyzed in order to generate quantitative rela
tions, which are useful for practical applications. These ef
forts are currently under way and the results will be presented 
in future publications. 
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A P P E N D I X 

The evaluation of gg/4KVg for a hemispherical volume of 
gas is presented in this section. Let Ax and A2 be the 
hemispherical surface and the base surface, respectively; equa
tions (4a) and (4b) can be readily utilized to yield 

• = 1 -
8*1 gs2 (Al) 

4KVg 4KVg 4KVg 

where the two surface-gas exchange factors can be written as 

Slg 
= 1 

A, 
• V 2 

Ax 

and 

Slg 

A,. 
= 1-

sisi 

A2 

(A2) 

(A3) 

The evaluation of gg/4KVg thus requires the evaluation of the 
two surface exchange factors sxsx and sxs2 • 

The relevant geometry and coordinate system utilized in the 
evaluation of sxs2 is shown in Fig. Al . For the differential 
areas dA; and dA2 as shown, the differential exchange factor 
dsxds2 is given by 

-Kd 

(A4) dsxds2 -dAxdA- cos a cos ae 
•wd2 

where d is the distance between dAx and dA2 and 8 and a are 
as defined in Fig. Al . 

Mathematically, it can be readily shown that a direct 

i d A ' 

R 

dA^-

/ / 

A 

/ dAj/ \ 

S J 
Fig. A1 Geometry and coordinate system for the evaluation of 
(99I4K Vg)hemisphe re 

Table 1 Numerical values for the various exchange factors for a 
hemispherical gas volume 

KJR 

0.00 

0.01 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

2.00 

5.00 

10.00 

sxsx!A ] 

0.5000e+00 

0.4944e+00 

0.4727e+00 

0.4471e+00 

0.4006e+00 

0.3597e+00 

0.3241e+00 

0.2920e+00 

0.264 le+00 

0.2392e+00 

0.2171e+00 

0.1976e+00 

0.1802e+00 

0.8044e-01 

0.1740e-01 

0.468 le-02 

sxs2IA i 

0.5000e+00 

0.4962e+00 

0.4813e+00 

0.4633e+00 

0.4301e+00 

0.3999e+00 

0.3724e+00 

0.3474e+00 

0.3245e+00 

0.3037e+00 

0.2845e+00 

0.2670e+00 

0.2510e+00 

0.1458e+00 

0.5283e-01 

0.2382e-01 

ggl4KVg 

0.0000e+00 

0.7716e-02 

0.2858e-01 

0.5266e-01 

0.1029e+00 

0.1490e+00 

0.1917e+00 

0.2301e+00 

0.2665e+00 

0.2998e+00 

0.3308e+00 

0.3597e+00 

0.3867e+00 

0.5770e+00 

0.7935e+00 

0.8914e+00 

numerical integration based on a Cartesian coordinate is inef
fective in the evaluation of sxsx and sxs2 because the integrand 
becomes singular as </—-0. To overcome this difficulty, equa
tion (A4) is rewritten in terms of a differential solid angle doi2 

as 

cos de~Kd 

dsx ds2 = dA, du2 (A5) 

where du>2 is given by 

dA2 cos a . „ ,„ , 
dw2 = -: = sin 6dod<t> (A6) 

with <$> being the azimuthal angle measured on the surface 
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hemisphere A{ as shown in Fig. Al . In terms of the angles /3, 
8, and <j>, d is given by 

d= 
R cos j8 

cos 8 cos P — sin /3 sin 0 cos 0 

The integration over dA2 becomes 
W4 

ds,s2= LF(/3) 

with 

!
2 i (•»! 

e " M cos 6 sin 0rf0e?4> 
o Jo 

+ 2 

where 

and 

r t 0 2 

cos 0 sin 0e?0c?$ 

(•f+») 

(A7) 

(A8) 

(A9) 

(A 10a) 

<M0. 0)=cos-'(cos 20 cot ]8) 
7T 

(All) 

= Tr+cos-'(cos 28 cot /?) 8> -— 
4 

Carrying out the integration over A {, one obtains 

s s C r^ 
- i f = 2 ] o F(/3) sin /3dj8 (A12) 

In a similar manner, the exchange factor sisl can be ex
pressed as 
^ ^ p ir/2 p 02 

- ^ - = 4 sin 0dP 4>m ((3, 8)e~2KRcos(l cos 0 sin 0d0 
j \ JO J 0 j 

„. / r. TT/2 r / l - sin /3\ 1/2 1 
+ l w H o l^ ( -T - ) +1J 

. ^ ( i z - S * ) " 2 

sin ) (A13) 

Based on equations (Alj^ (A2), (A3), and (A8) through 
(A13), numerical values of gg/4KVg are tabulated for various 

(AlOd) KR and presented in Table Al . These data, together with 
equation (11), generate the universal relation between the two 
mean beam lengths, Lab and Lex, as shown in Fig. 3. 

E R R A T U M 

Erratum for the technical note "Prediction of Heat Transfer in Turbulent Flow Over Rough Surfaces," 
by R. P. Taylor, H. W. Coleman, and B. K. Hodge, JOURNAL OF HEAT TRANSFER, Vol. I l l , pp. 568-572, 
May 1989: 

The constant 1.403 in equation (15) of the referenced technical note was incorrectly published as 1.043 
due to a typographical error. The correct expression is 

Nud = 2.475 Reg-4 Pr036 , Rerf<100 

Nurf = 1.403 Reg5 P r ° " , 100<Red<1000 (15) 
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A Finite-Wolome Method for 
Predicting a Radiant Heat Transfer 
in Enclosures With Participating 
Media 
A new "finite-volume" method is proposed to predict radiant heat transfer in 
enclosures with participating media. The method can conceptually be applied with 
the same nonorthogonal computational grids used to compute fluid flow and con-
vective heat transfer. A fairly general version of the method is derived, and details 
are illustrated by applying it to several simple benchmark problems. Test results in
dicate that good accuracy is obtained on coarse computational grids, and that solu
tion errors diminish rapidly as the grid is refined. 

Introduction 

Fluid flow and convective heat transfer can now be 
predicted with reasonable economy and accuracy in very com
plex geometries. Most methods use finite difference, finite 
volume, or finite element methods to reduce the continuous 
equations of motion to a set of coupled algebraic equations 
that can be solved by computer. For many situations, e.g., 
flows with combustion, it would be desirable to add a solution 
for radiant exchange to the code that solves the fluid flow and 
internal energy equations; it would be convenient if the radia
tion model were based on the same philosophy and perhaps 
even used the same computational grid, as the fluid flow 
solver. Among the solution methods that are currently 
available, such as the many variations on the Monte Carlo, 
Zonal, Ray Tracing, Flux, and Discrete Ordinates methods 
none is fully satisfactory for this purpose except in the limit 
when the diffusion approximation applies (optically dense 
medium). Since excellent recent reviews of the state of the art 
are provided by Viskanta and Mengiic (1984, 1987), the com
peting methods for predicting radiative heat exchange will not 
be reviewed here. 

According to the finite volume method, a solution domain 
is subdivided by a computational mesh that defines nodes for 
each variable and a control volume surrounding each node. To 
compute flows in complex domains, the flexibility allowed by 
a nonorthogonal boundary-fitted mesh is desirable. The pres
ent paper describes a new method for predicting radiative heat 
transfer that also uses such a grid. Besides using the same 
mesh as the flow solver, the method accounts for absorption, 
emission, and scattering in the medium, permits spectral 
dependence through a broad-band model (Viskanta and 
Mengiic, 1987), allows radiation properties to depend on other 
variables (like local pressure, concentration and temperature), 
and permits desired reflectivity properties of the wall to be in
corporated. The method is also fully conservative in the sense 
that the global conservation balance for each discrete intensity 
component, as well as for the radiative flux, is exactly satisfied 
by the discrete equations. 

The model has, until now, only been exercised for simple 
cases. These include heat transfer in rectangular enclosures, 
with diffuse gray isothermal walls, that contain gray emitting-
absorbing and/or isotropically scattering media. To limit the 
model description to these cases would, however, make it dif
ficult to appreciate the general applicability of the model. On 

the other hand, to provide the model in its full generality 
would result in notational complexity that would encumber 
the presentation. As a compromise, generality is restricted in 
those areas where removing the restriction is obvious and sim
ple (e.g., gray medium and diffuse wall). The complexity of a 
nonisotropically scattering medium and a nonorthogonal grid 
is retained in the model development, even though these are 
not used in the test problems. 

Finite Volume Approximation 

The Volume-Integrated Equation for Intensity. Referring 
to the definition sketch (Fig. 1 A) r denotes a location in space, 
doi is a differential solid angle that is centered on the unit vec
tor s, and 5 is distance along a particular pencil of radiation 
that lies in the s direction. Over the path length ds in the direc
tion of the unit vector s, the rate of increase of total intensity 
7(r, s) is (Siegel, 1981) 

-%-=-(K+oy+(KIb + o>r) (1) 
ds 

where the first term on the right-hand side is attenuation 
through absorption and outscattering and the second term is 
augmentation due to emission and inscattering. Because of the 
gray-medium approximation, the absorption coefficient K and 
the scattering coefficient <? are appropriate wavelength-
averaged quantities. The inscattering term is given by 

J(r, s) = —- [ 7(r, s' )*(s, s' )dw' (2) 
47T J4T 

Contributed by the Heat Transfer Division and presented at the National 
Heat Transfer Conference, Philadelphia, August 6-9, 1989. Manuscript re
ceived by the Heat Transfer Division December 8, 1988. Keywords: Numerical 
Methods, Radiation, Radiation Interactions. 

Fig. 1 Part A shows notation used in the model. The control volume, 
for which the integral equation for intensity is derived, appears in B. 
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Fig. 2 Discrete surface panels on the discrete volume centered at P, 
and neighbor control volumes. The intensity /}, from which the flux 
through As f is found, is expressed as an "upstream" value iut found by 
interpolation from nodal values, and a change between uf and f. 

where I(t, s') is the intensity at r within the solid angle doi' 
that lies in the direction of the unit vector s ' . 

Integration of equation (1) over any specified volume yields 
the desired integral equation. Choosing the hexahedron in Fig. 
1(B) for purposes of illustration, the volume is subdivided into 
pencils along s of the cross-sectional area dA". Multiplication 
of equation (1) by the differential volume dY=dA"ds, carry
ing out the integration, and multiplying the resulting equation 
by dbi, yields 

Is{s»n)dAsdw- [-{K+os)I+KIb + osI\dVd<a (3) 

where As and ~V are the surface area and volume of the hex
ahedron, n is the unit surface normal, and Is is the intensity at 
the surface. This equation demands that the net radiant energy 
within dw that leaves through all surfaces of the volume is ex
actly balanced by the excess, within the volume, of inscatter-
ing and emission over outscattering and absorption. 

Discrete Equation, Level 1 Approximation. According to 
the finite volume method, space within the interior of the do
main of interest is subdivided into discrete nonoverlapping 

volumes, and a single "node" is located centrally within each 
volume. The control volume in Fig. 1(B) is redrawn in Fig. 2, 
showing its central node P, and nodes E and S for the 
neighboring control volumes to the east and south. 

Since direction is also an independent variable, it is consis
tent with the finite volume method to subdivide direction into 
N1 discrete, nonoverlapping, solid angles of size u>', 1=1, 2, 
3 which sum to 4 T . The number of angles and their size 
distribution is, like the discretization of space, at the discre
tion of the analyst. 

The objective of the finite volume method is to find I'P, the 
intensity at each node P associated with each discrete bundle 
&>'. An algebraic equation for I'P, is obtained by introducing 
approximations into equation (3). 

Choosing the volume in equation (3) to be the control 
volume associated with node P in Fig. 2, with surface area 
A s_ P, and integrating the equation over the discrete solid angle 
u>', (3) becomes 

L L Is(s'n)dAsdco = 

J J JTp 
l-(K+ 0s)! + KIb + (ffldVdcM (4) 

The simplest approximation of the right-hand side of equation 
(4) is 

f . ( [-(K+^I+K^ + a'fldrdoi 

~\-(KP + Op)IP+ KPIbP + OpFP ]VPw (5) 

In carrying out the volume integrations, all variables have 
been assumed constant over "Vp and u,. A more accurate 
representation, involving, for example some linear distribu
tion between nodes, is possible but is both more complex and 
may have serious negative computational effects (like a strong 
coupling between intensities in different directions that is not 
consistent with equation (1)). 

As the first step to approximating the left-hand side of 
equation (4), the surface of the control volume is subdivided 
into Nj- surface panels of area ASj, a few of which are shown 
in Fig. 2(A). Denoting the radiant transfer through panel/and 
within to' by Q'f, the left-hand side of equation (4) is just the 

Nomenclature 

A, = 

**,/ 

BP 

D 

I = 

/„ = 

h = 

surface area of con
trol volume, m2 

surface area of panel 
/ of control volume, 
m2 

source term in 
algebraic equation, 
e.g., equation (24) 
depth of one-
dimensional plane 
layer, m 
unit vector in the j 
direction 
radiation intensity, 
W/m2Sr 
scattered intensity, 
W/m2Sr, see equa
tion (2) 
average intensity, 
equation (13) 
blackbody 
intensity = ff74/7r 

Il
B = discrete intensity at 

the bottom surface 
within w' 

Ip = discrete intensity at 
node P within w' 

Is = intensity at surface 
control volume 

I'T = discrete intensity at 
the top surface within 
CO1 

K = absorption coeffi
cient, m~' 

Lx, Ly = dimensions of rec
tangular, cavity in x 
and y directions, m 

m = index denoting the &>' 
with boundaries at 
0™ and 0™ (see Fig. 
3(B)) 

n = index denoting the « ' 
with boundaries at 
<j>"+ and $"_ 

Nx, Ny, N; 

n = unit vector normal to 
a control volume 
surface 

N1 = total number of 
discrete solid angles 
number of control 
volumes in the x, y, 
and z directions, 
respectively 

N6, N* = number of discrete 
angles in 0 and <l> 
directions 

q = heat flux, W/m2 

total radiant heat 
transfer rate, W 
radiant heat transfer 
across surface panel / 
position in space 
(KIb + OSI)/K, 

W/m2Sr 
R, R = see equation (21) 

Q 

Q'f 

r 
R 
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sum of Q'j, f= 1, 2, . . . ,Nf. The simplest approximation for 

Q'f=As,f\ ,If{s'nf)do, (6) 

where the intensity and unit normal to the surface have been 
approximated by their values at the integration point " / , " 
located "centrally" on the panel. 

The simplest Level 1 approximation of (3) is therefore 

t - i / = i •> <•> 

= [-(KP + 0%!^+ KPh P + 0pPpl-VpJ (7) 

Discrete Equation, Level 2 Approximation. To close the 
set of equations, relations are needed between the panel 
integration-point values Ij and nodal point values IP, IE, etc. 
Since several different closure relations, all starting from 
equation (7), are possible, these are defined as the Level 2 
approximations. 

In the present study, If was found by tracing back along the 
path taken by the ray in reaching/(i.e., along the -s direction) 
until a location was reached at which the intensity can be 
reasonably found by interpolation between nodes. The loca
tion of the interpolation point will be specified later when the 
grids are generated. For now, it is sufficient to denote its loca
tion by w/as shown in Fig. 2 and the intensity (known by the 
interpolation) by luj. To estimate the value of If from lu} for 
the given s direction, rewrite equation (1) as 

dl 

~ds~ 
- + KI=KR 

where 

K = K+ <? and R = {KIb + <?I )/n 

(8/1) 

(8fi) 

Let R be approximated by the first two terms of a Taylor series 
expansion about point / , and treat K as constant at Kf. Carry
ing out the integration of equation (8/1) over distance S from 
uf to / , shown in Fig. 2(B), the intensity in direction s at in
tegration point/ is 

7 / = V ' +*/(!-* J )-
(dR/ds)f 

(dR/ds)f, the directional derivative in the s direction, is related 
to the gradient ofR, Vi?, by 

dR (-£-),-<'«>• 
Introducing equation (9) into equation (6), and carrying out 

the integration over co,, gives the following estimate of the ra
diant heat transfer within u ' that crosses surface panel/: 

Q^ASJPuf e-KfSN'f+ASJR'f (l-e~KfS)N'f 

i*.- .-*«i+ ,«, E ( « ! ) « 
Kf J=l \ axj 

where R1 is the value of R for the bundle co', where the gra
dient of J? has been arbitrarily written in Cartesian coordinates 
Xj, defined by the unit vectors ey, as 

VR1-- 'fc\ dxj H 
and where TV} and D'jf are integrals that depend only on the 
panel orientation for a given co' 

N>j= \ , (s.n/)tfu D!JJ= \ , (e;.S)(S.n/)</u (11) 

In the integration over co' in equation (6) that led to equation 
(10), Iuf was treated as constant, and S was held constant at S. 
Their values are evaluated along the ray s' that lies in the 
center of the solid angle co'. To include the effect of varying S 
and Iuf over co' would dramatically increase complexity. Fur
thermore, the practice of using constant values is consistent 
with the other approximations embodied in the discrete equa
tion representation of the continuous equations. 

Before continuing, it is of interest to demonstrate that the 
approximations of the heat flux given by equation (10) is 
reasonable. For concreteness, consider the case where the sur
face panel lies in a z plane, with surface normal e3. For the op
tically thin limit (Ky^O), the radiant flux becomes 

QhA s,Af\j (S"e3)tfco 

(1— e f (\ + KfS)) (9) The intensity in this limit is propagated correctly (i.e., without 

Nomenclature (cont.) 

x,y 

$ = 

S = 

s = 

T 

z 

distance along a 
beam in the s direc
tion, m 
unit vector in the 
direction for which I 
is to be calculated 
unit vector in the 
center of discrete 
solid angle co' 
distance from the in
terpolation point to 
the integration point 
(see Fig. 2(B)) 
average value of S 
over the solid angle 
co' 
temperature, K 
volume, m3 

Cartesian coor
dinates, m 
Cartesian coor
dinates; x{ =x, x2 =y, 
x3 = z, m 

X* 

e 

e 

K 

P 
a 

<? 

<t> 

$ 

= (K + K)D, used for 
one-dimensional 
problem 

= surface emissivity 
= polar angle, 

measured from the z 
axis 

= extinction coeffi
cient = A'+crs, m~' 

= surface reflectivity 
= Stefan-Boltzmann 

constant = 
5.729xl0~8 

W/m2K4 

= scattering coefficient, 
m" 1 

= azimuthal angle in 
the x-y plane, 
measured from x axis 
(Fig. 6) 

= phase function for 
scattering from direc
tion s' to direction s 

CO = 

co' = 

Subscripts 
B = 

P,N, 
S, W = 

f '-

uf --

T = 
j = 

Superscripts 
/ = 
* _ 

= solid angle 
= solid angle of the 

discrete bundle 
centered at s' 

= bottom surface 
E, 
= labels for nodes 

within control 
volumes 

= at the integration 
point / 

= at the interpolation 
point (Fig. 2(A)) 

= top surface 
= coordinate index = 1, 

2 ,3 

= in the solid angle co' 
= nondimensional 
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attenuation) from the interpolation point uf to the integration 
point on the panel. 

In the optically thick limit (KJ— oo) 

Summing over / to obtain the net radiant heat transfer crossing 
the panel, and for isotropic scattering (so that R becomes in
dependent of angle /) 

*-?°>-^(-£)(£)/ 
This is the correct diffusion approximation for the optically 
thick limit (Siegel, 1981). Thus the expression for Q} given by 
equation (10) has retained sufficient generality to capture 
both the optically thin and thick limits. Note that, had the 
third term in equation (9) been omitted (which is the usual 
solution (Siegel, 1981) to (SA) for constant K and R), the radia
tion heat transfer across the panel would not have recovered 
the diffusion approximation. 

Returning to the development of the discrete equation for 
I'P, equation (10) is substituted into equation (7). The only re
maining issues are how to interpolate Il

uj from nodal-point 
values like I'P, and how to find R'f. As already mentioned, the 
interpolation will be illustrated when the method is im
plemented on a specific mesh. The value of R'f is obtained by a 
straightforward linear interpolation using values of R', such 
as R'p, that are calculated and stored at the nodes. 

To find R'p at the nodes requires an evaluation of both its 
components (see equation (85)) IP&nd IbP. PPi% obtained from 
the following discrete approximations to equation (2): 

— 8. J<> 

fc-^Ew.iW (12) 

where * ( / ' , /), is the phase function for scattering from the 
solid angle w' to the solid angle &>'. For isotropic scattering, 
* = 1 and equation (12) becomes 

/ V 
1 

4TT £#« ,' = i (UA) 

where IaP is the discrete approximation at node P of the 
average intensity Ia: 

/a(r) I(r, s')du' (135) 

The value of the second component of Rp, i.e., IbP = aT%/-K, is 
found from the thermal energy balance for the P control 
volume. The increase in internal energy due to radiation cross
ing the boundaries of the control volume in Fig. 2(A) is ob
tained by replacing the integration limit u' in equation (4) by 
47T. 

- f \ . I(s'n)dadAs = 4ir\ K(Ia-Ib)dV (14A) 

*4wKP(iaiP-ib PyvP (145) 

The scattering contribution drops out of this energy balance 
for both isotropic and nonisotropic scattering. The 
temperature is established, in general, by a complex interac
tion (Siegel, 1981) of this term with advection and diffusion of 
energy, and with work done by the pressure and other stresses. 
For the simplest case of radiative equilibrium, the fluid 
temperatures adjusts to make the net surface heat transfer in 
equation (14A) zero, so that 

h,p=h,p 05) 

For the special case of isotropic scattering and radiative 

^ 

• N 

"•P^" 

• S"~s 

|Az 

-T B ,«B 

Fig. 3 Geometry and control volumes for radiation in a plane par
ticipating medium contained between isothermal gray walls 

equilibrium, combining equations (85), (13), and (15) results 
in 

R'P=RP=I, a,P - (16) 

Summary and Discussion. This section has provided the 
details of a general finite volume method, except for the inter
polation to obtain Puj- and the application of boundary condi
tions. These details, and the performance of the method, are 
illustrated in the following sections by application to some 
simple problems for which benchmark solutions are available. 

One-Dimensional Radiant Heat Transfer in a Plane 
Medium 

Problem Description. Very precise solutions (Heaslet, 
1965) (see Viskanta and Mengiic 1987 for other references) 
have been obtained for radiant heat transfer between two 
isothermal, diffuse, flat plates, at temperatures TB and TT and 
emissivities eB and eT (see Fig. 3), that enclose a gray 
isotropically scattering or absorbing-emitting medium with 
constant scattering and absorption coefficients, and that is in 
radiative equilibrium. The finite volume method is first ap
plied to this problem. 

Discrete Equations. The natural control volumes for this 
problem are shown in Fig. 3(A). The depth Az of each control 
volume is arbitrary and nodes are located midway between the 
control volume faces, except for the first and last nodes, which 
are located on the plates. Integration points, like n and s, 
which are denoted by x , lie on the volume faces. On the walls, 
the integration points b and t lie in the medium distance 5 from 
the walls, where 6—0. 

For this problem, the radiation intensity depends on z and d 
(Fig. 3(B)). The discrete solid angle o>' is defined as the annular 
cone between 0Land d'+. The interpolation point uf that is 
upstream of the integration point n is taken to lie on the plane 
of node P, as shown in the figure. From the assumption that 
the intensity varies spatially only with z, I'Uf in equation (10) 
can be replaced by / / for s»e3 > 0 and by 1^ for s«e3 <0 . For 
s-e3>0, the radiant heat transfer within w' that travels 
through the control volume surface n that lies north of node P 
is, according to equation (10) and Fig. 3(5) 

Q'n- F'„I'P+G'n *•-*(-£-). (17) 

where the angular dependence of R has been dropped due to 
the isotropic scattering approximation. In this equation 

F'n=Ase-KstN' Gin=As(\-e-"s')N' (18/1) 

//(,= — (1 -e-"s'(\ +KS'))D<3 (185) 

S' = (z„— zP)/cos 6' is defined here as the distance S in Fig. 
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3(B) for the angle d = d> = (6L+d'+)/2. From equation (11) for 
this geometry 

N'= I (s.e3)rfo)= -TT[COS2 6 ^ - C O S 2 0 _ ] 
J 0) 

D'3= \ , (s.e3) 
27T 

2doi= ——[cos3 0i-cos30L] 

and the solid angle is 

( = , 2TT sin 6>rfe =• -2TT[COS 0^-COS 0!_] 

(18C) 

(l&P) 

(18£) 

Substitution of equation (17) for Q'n, and a similar equation 
for the heat transfer through the south face Q's, into equation 
(7), and collection of all terms involving R into a "source 
term," b'P, results in the following equation for 1P (for 
s«e3>0): 

apI^a'sI's+a'vP^b'p 

where 

°'s=H 

M**-*(-£-).H<*-<£).] 
+ KRP~Y pcijl 

(1M) 

(19/J) 

(190 

The values of R and (6i?/3z) at an integration point (i.e., at a 
face) are found by linear interpolation of the nodal point 
values or, at the top and bottom plates, by linear extrapolation 
from interior nodal values. 

For a diffuse top surface, at temperature TT, the boundary 
condition for the surface intensity /j-for radiation into the 
medium, s'«e3<0, is 

s' »e3>0 s'-e-,<0 
(20) 

The terms on the left-hand side of equation (20) represent 
reflected and emitted radiation from the T surface, which con
stitute the total radiation into the medium. The last equality 
defines the intensity through the gray-surface approximation. 
A similar equation at the bottom surface relates the intensities 
into the medium (s'-e3 >0) to the bottom surface temperature 
and to intensities incident on the bottom. 

Solution Method. For fixed nodal values of R and upward 
intensities at the bottom surface, I'P values are found for a 
given / by application of equation (19,4) to each interior node, 
starting at the bottom and sweeping upward. This is repeated 
for each / for which s'»e3 >0 . Equation (17) provides the inci
dent fluxes onto the top surface, from which equation (20) 
gives the downward intensities. Equations similar to equation 
(19/1), but with as rather than aN' equal to zero, are then 
solved for the downward intensities and incident fluxes on the 
lower surface. The lower surface boundary condition yields 
the upward boundary intensities to complete one cycle. 

If the nodal values of R are fixed, one cycle yields the 
desired result if eB = er=l.O. Several cycles will be required 
for reflective boundaries. 

The determination of R is, of course, part of the solution 
procedure. The simplest "explicit" method is to obtain the in
tensities for an assumed R in the manner just described, to 
substitute these into equation (13/1) and thus obtain new R 
values from equation (16). This cycle is repeated until con
vergence is achieved. Convergence was deemed satisfactory 
when the change, between successive updates of R, in net heat 
flux at both surfaces was less than 0.001 percent. 

Results. When a fine grid (see below) was used, the non-
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Fig. 4 Results of computational experiments to determine the rate at 
which the error in heat transfer from the surface decreases with grid 
refinement. The slope of 2:1 on the figure denotes quadratic con
vergence. 
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Table 1 Comparison of finite volume results for uniform 
grid of four control volumes and eight angles with "exact" 
results (Heaslet and Warming, 1965); K* = KD 

q- = q/o(T\~T\) 
K* 

0.0 
0.1 
0.5 
1.0 
2.0 

Coarse grid finite 
volume results 

1.0000 
0.9125 
0.6964 
0.5469 
0.3865 

Exact 
results 

1.0000 
0.9157 
0.7040 
0.5532 
0.3900 

Percent 
error 

0.0 
0.3 
1.1 
1.1 
0.9 

CPU, 
s 

0.1 
0.2 
0.3 
0.4 
0.4 

dimensional heat transfer, q* = q/a(Tg-T^), obtained using 
the finite volume method agreed to within 1 in the fourth 
significant figure with the predictions reported by Heaslet and 
Warming (1965). The gas temperature, and temperature jump 
at the boundary, were also predicted correctly. 

Even for a coarse grid (see Fig. 3) of four uniform control 
volumes in the z direction and with polar angle 6 divided into 
eight equal intervals, the finite volume method predicts the 
correct heat transfer to within about 1 percent, for a wide 
range of optical depths, as shown in Table 1. The CPU time 
required was less than 0.5 s on a MicroVax II computer. 

Having established that the finite volume method does yield 
• the correct results as the grid is refined, it is of major interest 
to establish how quickly the accuracy improves with grid 
refinement. For K* = KD of 1.0, the heat transfer was obtained 
using Nz = 64 uniform control volumes and N1 =N° = 96 equal 
angle intervals. To study error reduction with iVz, q* was 
recalculated on a sequence of grids of size (Nz x 96), Nz = 2, 
4, . . . , 64. The results in Fig. 4 indicate the q* is obtained to 
within 0.1 percent with Nz = 2, and for 7V,,>4 the error 
becomes proportional to (Nz)~

2 (i.e., quadratic convergence). 

Journal of Heat Transfer MAY 1990, Vol. 112/419 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



To study error reduction with angular refinement, q* was 
calculated for grids of (64 x7V*), /V» = 2, 4, 6, . . . , 96. The 
error decreases from about 10 percent for N° = 2, and for 
/V >4 , and decreases roughly as (JV8)"2. 

Another issue of major interest is the number of updates of 
R required to obtain convergence. For black surfaces, and for 
a change of q* at the surfaces of less than 0.001 percent be
tween R updates, the number of iterations required by the ex
plicit method is plotted against K* = KD in Fig. 5. As K*—0, the 
correct solution is obtained without iteration because the in
tensities become independent of R. The number rises sharply 
with K* but convergence is satisfactory for K * < 4 . 0 , which in
cludes the range of interest for many practical applications. 
The number of iterations increases sharply with K* for 
K * £ 4 . 0 . A similar behavior, of increasingly difficult con
vergence with increasing K*, has been encountered in the use of 
the discrete ordinates method (Viskanta and Mengiic, 1987). 
The next section addresses this issue. 

Implicit Solution for Strongly Participating Medium. For 
applications that involve strongly participating media ( K * > 4 
for a plane layer), the explicit update of R becomes unsatisfac
tory. This section describes a method that enhances con
vergence for large K*. The method is, for simplicity, presented 
in the context of the present one-dimensional problem, but the 
derivation is kept sufficiently general to include nonisotropic 
scattering. 

To re-introduce nonisotropic scattering, R in equation 
(19Q is replaced by R', and the nodal values of R are split as 
follows: 

scatter ing, emil t ing 
B absorbing medium al Tg 

R I _ Kph, P + °P Ig, P , °P ,fl 
Kp Kp - + - (I>p-Ia,P)=Rp + RP (21) 

For isotropic scattering, R = 0. Expressing the integration 
point values of i?}and {dR'/dz)f,f=s and n, in equation (19C) 
in terms of nodal point values using linear interpolation, 
substituting the resultant ^expression into equation (19A), 
and dividing by a'P, yields an equation for I'P of the form 

o's 
I'P=-± Ps+-^ I{l-ApRp+A{Rs+A>iRN + B'p (22) 

Up Up 

where terms involving R1 have been grouped into B'P. 
Multiplication of equation (22) by a/, summation over all co', 
and division of the resulting equation by 47r yields an equation 
of the form 

J a , p - ApRP+AsRs+ANRN+BF (23) 

For the special case of isotropic scattering and radiative 
equilibrium, RP = Ia P (from equation (16)) so that equation 
(23) becomes 

Apl„ =AJ„ (24) 

which is an implicit equation for Ia P=Ibi P that is simply 
solved by application of the Thomas (or tridiagonal) 
algorithm. This replaces the "explicit" update of R described 
in the previous section. It is also easily shown that, as K*-*OO, 
equation (24) becomes the discrete representation of the diffu
sion approximation of radiation heat transfer. For large K*, 
therefore, the first solution for / P will yield nearly the cor
rect I„t P =RP values, which, used in the bj, term in equation 
(19^4), will yield nearly converged values of / / , so that very 
few cycles will lead to the converged result. 

Figure 5 shows the number of cycles required by this im
plicit method to obtain surface heat transfers that changed less 
than 0.001 percent between 7?-update cycles. The maximum 
number of cycles is required for K* « 20. For K* —0 and K* -~ oo, 
the converged results are obtained in one solution cycle. 

Although the method has not yet been applied to problems 
involving nonisotropic scattering and radiative nonequi-
librium, it is interesting to speculate how the implicit method 
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Fig. 6 Schematic of a rectangular cavity with isothermal walls with a 
Cartesian computational grid. Part B shows details related to determina
tion of the integration point intensities for those intensities that are 
directed upward and to the right. 

could be used to accelerate convergence. Splitting R in equa
tion (23) into its Ia and Ib components results in an equation 
of the form 

Ap'a.p-As i 0 4- AaaJ 

-Aflbt P +A"N
bIbi N+Aflb< s + BP (25) 

where the first superscript on the coefficients refers to the 
equation and the second to the variable it multiplies (either a 
for the variable Ia or b for the variable Ib). 

The thermal energy equation has diffusion and convection 
terms that are linear in T, and a source term given by equation 
(145) that contains Ia and Ib = oT*/ir. If radiation dominates 
the internal energy balance, it is appropriate to linearize the 
discrete energy equation in the form 

•Ap Ib,p-As Ibs+ANIbN + AP
ttIap + Bp (26) 

Equation (25) and (26) can be efficiently solved for Ia> P and 
4 P (e.g., use a (2x2) block tridiagonal solver). If radiation 
only weakly affects the medium temperature, it would be more 
appropriate to linearize the equations such that T instead of Ib 

appears as the dependent variable in equations (25) and (26). 
In either case, iteration is required to converge to the solution 
of the equations in which some terms involve T and others T4. 

Two-Dimensional Exchange in Rectangular Enclosures 

Problem Description. The finite volume method will now 
be applied to a more complex class of problems that involve 
two-dimensional (2D) radiative heat transfer in rectangular 
enclosures with isothermal, diffusely reflecting, gray walls. 
The enclosed medium is also assumed to be gray, and to scat
ter isotropically. Figure 6(A) shows a typical enclosure. The 
objective is to predict radiative heat transfer at the bound
aries, and the medium temperature under the assumption of 
radiative equilibrium. To test the finite volume method, 
several benchmark problems will be solved. To simplify nota
tion in the development that follows, the (xu x2, x3) coor
dinates will be used interchangeably with (x, y, z). 

Discretization. Space is divided into control volumes of 
unit depth in the z direction and with boundaries defined by 
the solid lines in Fig. 6(A). Nodes, also called grid points, are 
located centrally in each interior volume as well as on the 
boundary. Each control volume face is divided into two panels 
with an integration point, such as 1,2, 3, in Fig. 6(B), located 
at the center of each panel. 

The angular orientation of intensity is defined by a polar 
angle 6, measured from the x3=z axis, and the azimuthal 
angle 4>, that lies in the (x, y) plane measured from the x axis. 
The solid angle co' is defined by the range 0™<0<0y, 
4>1<(j><(j)'l. All results shown are for N^ equal increments of 8 
in the range 0 < 6 < ir/2 and for N* equal increments in <j> in the 
range 0 < <j> < 27r, where, for simplicity, TV'* was always chosen 
to be a multiple of 4. 
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To apply the general equations of section 2 to the grid 
system just described, some details must be decided. The cen
tral ray within w', i.e., the one along s', is defined by (dm, 4>"), 
where each angle lies in the middle of its range (e.g., 
(j>"=((j)1 + 4>p)/2). The path length S' is taken as the distance 
from the integration point to the point where the - s, that 
passes through the integration point intersects the closest 
member of the set of surface that join the.grid points. For ex
ample, in Fig. 6(B), for integration point/= 1 

S' = Sxy/sm6m 

where S^y is the projection of S1 onto the x-y plane. 
Intensities at uu u2, etc. in Fig. 6(B) must be related to the 

nodal intensities by interpolation functions. This step requires 
great care. Pul could, for example, be found by linear inter
polation between 1^ and / / , but this would cause Ijj to appear 
in the / / equation. This is undesirable because the equation 
for I'pcan no longer be solved by marching, and because such 
dependence of "downstream" intensities is inconsistent with 
the transportive properties of the differential equation for in
tensity. A better alternative is to find Iul by extrapolation 
using PPand Ps , but applying this practice at each integration 
point results in a computational molecule that connects Ip 
with as many as six upstream nodal intensities. While this is 
fairly easily accommodated, a simpler approach was used for 
the present application. When (for s' upward and to the right) 
an interpolation point lies on a solid line in Fig. 6(B), linear in
terpolation between nodes was used. When it lies on a broken 
line, the interpolation value was taken as the value at the 
nearest "upstream" node on the line. According to this 
scheme Pui and Pu4 would be both approximated by I'P for 
(s'«ey)>0,y= 1, 2.Pu2 and 7j3 would both be found by a linear 
interpolation involving PPand Pw. 

If linear interpolation or extrapolation were used to find all 
interpolation-point values, the solution error should decrease 
quadratically with mesh refinement, as for the one-
dimensional problem, but it is well known (from experience in 
approximating fluid advection) that "wiggles" in the solution 
can occur. The interpolation practice adopted here is less like
ly to admit wiggles, but it is expected that errors due to spatial 
discretization will decrease with grid refinement at a rate that 
is between a linear and quadratic. These are features that will 
be examined when the benchmark problems are solved. 

Solution Procedure. For intensities in those s' directions 
that are upward to the right, the discrete equation for J^has 
the form 

aPIP — Offlff^ asIs + aswIsw + bp (27) 

Given the boundary values of/ along the left and bottom sur
faces in Fig. 6(A), nodal values of PP are found by direct 
substitution into equation (27), sweeping the domain in the 
positive x and y directions. With new incident intensities on 
the right boundary known, boundary conditions are applied to 
update the intensities leaving this surface, and an equation 
similar to equation (27) establishes nodal values for s' in the 
range (s-e,)<0 and (s>e2)>0. Repeating this for all four sec
tors leads to a new PP solution, for a given RP distribution. RP 
is then explicitly updated by calculating IaP = RP from equa
tion (13A). 

For simplicity, the coefficients of equation (27) were 
recalculated each time the set of intensities associated with a 
particular «' was updated. The run times for the problems 
solved could be dramatically reducted by storing coefficients 
or even by using simple, computationally inexpensive approx
imations to the exponential terms. The intensities were stored 
in a four dimensional matrix, also for simplicity. For isotropic 
scattering, it is only necessary to store the complete /^values at 
boundary nodes so that four-dimensional storage is not 
required. 

Fig. 7 Nondimensional heat transfer on the wall of a square cavity con
taining an emitting gas at uniform temperature Tg and with zero wall 
temperature for an optically thick case (KL = 10.0) 
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0.0 O.I 0.2 0.3 0.4 0.5 0.6 

Fig. 8 Nondimensional heat transfer on the wall of a square cavity con
taining an emitting gas at uniform temperature Tg and with zero wall 
temperature for an optically thin case (KL =0.1) 

Comparison With One-Dimensional Solutions. The two-
dimensional solution was applied first to the one-dimensional 
problem described in the last section, for a range of surface 
emissivities. As the grid was refined, the two-dimensional 
model converged to the same result as the one-dimensional 
model. 

Problem 1: Black Enclosure With Emitting Medium. 
The first benchmark problem is the prediction of surface heat 
transfer in a square enclosure (Lx=Ly =L) with cold walls (at 
0 K), which contains a gas at uniform temperature, Tg. The 
gas does not scatter {a3 = 0) but does emit and absorb {K ̂ 0). 
With the gas temperature known, the value of R in equation 
(10) is prescribed. 

The local heat flux calculated to fall on the lower wall is 
plotted in Figs. 7 and 8 for the cases of strongly emitting 
medium (XX =10) and weakly emitting medium (KL — 0.1), 
respectively. The "exact" solution was obtained by analytical
ly integrating the radiation transfer equation for a given angle 
to the point of interest on the wall from the "upstream" wall, 
and then numerically integrating over all angles to find the 
local heat transfer. The present finite volume model could be 
made to agree with these exact results to any desired tolerance 
by refining the spatial and angular grids. 

The SA discrete ordinates solution by Fiveland (1984) to this 
problem, using a (20x20) uniform spatial grid and with 
twelve quadrature points for the angular integrations are 
shown on Fig. 7 for KL= 10. Truelove (1987) was able to im
prove Fiveland's discrete ordinates solution by changing the 
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X * = X / L X y* = y/L y 

Fig. 9 Nondimensional heat transfer on the bottom, and centerline 
temperature distribution, in a square cavity with one heated wall enclos
ing a scattering gas with <rsL = 1.0 

2 3 4 5 6 I 2 3 IO 30 

Fig. 10 Reduction in the error in local heat transfer at the center of the 
heated cavity wall with angle refinement (left side) and spatial refine
ment (right side) 

quadrature points. Comparisons are made here with Fivelands 
solution, because the quadrature he used was not tuned to this 
particular class of problem. The present finite volume solu
tions for 20 uniform control volumes in each direction, 
(A^x Ny) = (20x20), and with a uniform angular discretiza
tion of (iV* xJV*) = (1x4) and (2 x 8) are also shown in Fig. 7, 
and they give reasonable agreement with the exact solution. 
Reducing the spatial grid to (8 x 8) but using an expanding 
mesh that doubles the size of each successive control volume 
moving from the corners to the centerlines (Fx=Fy =2.0 in 
Fig. 7), and using a uniform (1x8) angular discretization, 
results in excellent agreement with the exact solution. The 
solution time for (20 x 20) x (2 x 8) problem was 15 s on a 
MicroVax II computer. 

Similar results appear in Fig. 8 for the KL — 0.1 case. The 
finite volume results obtained using all the coarse grids shown 
in Figs. 7 and 8 predict a total heat transfer on the bottom, 
which agrees with the exact values to within 0.8 percent. 

The results for this sample problem illustrate that the finite 
volume method converges to the exact solution as the angular 
and spatial grids are refined, and that predictions of good ac
curacy can be obtained on quite coarse grids. 

Problem 2: Two-Dimensional Heat Transfer in an 
Enclosure With One Hot Wall. The second two-dimensional 
problem involves radiative exchange in rectangular enclosures 
with the left, top, and right wall temperatures set to Tc and the 
bottom wall set a higher temperature Th. The medium scatters 
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Fig. 11 Nondimensional heat transfer on the bottom, and centerline 
temperature distribution, in a 5:1 aspect ratio cavity enclosing a scatter
ing gas with asLy = 1.0 

isotropically and is assumed to be in radiative equilibrium. 
The objective is to predict the heat transfer that leaves the bot
tom surface as well as the temperature of the medium. Careful 
solutions to this problem have been reported by Crosbie and 
Schrenker (1984) for a range of cavity aspect ratios and scat
tering coefficients. Comparisons with finite volume predic
tions are presented here for three cases. 

The "exact" (Crosbie and Schrenker, 1984) dimensionless 
local heat transfer q* leaving the hot wall and temperature 
distribution along a vertical line in the center of a square 
enclosure are plotted as solid lines in Fig. 9 for a medium with 
<fL = 1.0. Application of the finite volume method with a very 
fine mesh (Nx x Ny) x (JV x N*) = (31 x 31) x (5 x 24) is shown 
to give almost exact agreement (local heat fluxes agree to well 
within 0.1 percent). Use of a coarse (8 x 8) x (2 x 12) grid, such 
as would be of more practical interest, also yields excellent ac
curacy, with an average heat transfer q* that is only 0.1 per
cent too high. To obtain a solution on this grid, in which the 
absolute value of the heat transfer on all walls changed by less 
than 0.05 percent between i?-updated cycles, required eight 
cycles and 32 s on a MicroVax II computer. 

As previously discussed, it is important to know how quick
ly the solution error decreases with grid refinement. To per
form this evaluation, the error in the local heat transfer at the 
center of the hot wall (x/Z, = 0.5) was examined. Retaining 
(32 x 32) uniform control volumes, fixing A/* at 24, and vary
ing A/*, Fig. 10 shows that the error diminishes quadratically 
with A/6. Similarly, for N9 fixed at 5, increasing A/* results in a 
quadratic decrease in error. For a fine angular grid (5 x 24) 
and with refinement of a uniform spatial grid, the error is seen 
in Fig. 10 to decrease somewhere between linear and quadratic 
with increasing Nx=Ny. These results are in agreement with 
the expectations that were previously discussed. 

For an enclosure with an aspect ratio of Lx/Ly = 5, the "ex
act solution" of Crosbie and Schrenker (1984) and a fine-grid 
(61 X 25) x (7 x 32) finite volume solution are plotted in Fig. 11 
for a6Ly = 1.0. The finite volume predictions of heat flux agree 
with the exact values to within 0.2 percent, and the 
temperature is also closely predicted. Figure 11 also shows that 
a much coarser grid (10 x 5) x (3x20), where the control 
volumes widths in the x direction expand by a factor of 1.5 
moving from the outer walls toward the center (Fx=l.5), 
yields virtually identical results, with an average heat transfer 
(q*) just 0.2 percent below the fine grid prediction. The 
prediction on the (10 x 5) x (3 x 20) grid required five i?-update 
cycles and 17.6 s to achieve a total absolute value of heat 
transfer on the boundaries that changed less than 0.05 percent 
between cycles. 

The last test problem described in this paper has been spe
cifically chosen to demonstrate that, as mentioned earlier, 
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Fig. 12 Nondimensional heat transfer on the bottom, and centerline 
temperature distribution, in a 1:10 aspect ratio cavity enclosing a scat
tering gas with asLy = 1.0 

profile wiggles can occur under adverse conditions. Results for 
a cavity with 0sLy = 1.0 and Ly/Lx = 10 are compared to the 
predictions of Crosbie and Schrenker in Fig. 12. Calculations 
on a fine (31 x 61) x (5x24) grid, with uniform control 
volumes in the x direction and with volumes in the y direction 
that increase by expansion factor of Fy = 1.05, yielded local 
heat transfer predictions that are in excellent agreement with 
Crosbie and Schrenker (Fig. 12). The predicted centerline 
temperature near the bottom wall (right side of Fig. 12) is also 
very accurate but, when the aspect ratio of the control 
volumes become large in the center to top of the cavity, the 
predicted temperatures oscillate (or wiggle) slightly about the 
profile of Crosbie and Schrenker. This "wiggle" is a conse
quence of the assumed linear profile of I' between nodes in 
Fig. 6(B), and is analogous to the wiggles that are often 
tolerated when a linear profile between nodes is used in the ap
proximation of the advective transport terms in fluid flows. 
Such wiggles can be overcome (Roache, 1972) at the expense 
of accuracy by adopting a simple "upwind" approximation, 
or by using a more elaborate discretization. 

Figure 12 also shows predictions using a coarse 
(6 x 10) x (2 x 12) mesh that has uniform spacing in the x direc
tion and expands rapidly (F,, = 1.5) in the y direction away 
from the heated wall. This grid yields good temperature 
predictions, and heat transfer rates that are within 0.3 percent 
of exact values. 

Summary and Discussion 

A new finite volume method has been proposed for the 
prediction of radiative heat transfer that can be implemented 
on nonorthogonal grids of the type employed to predict com
plex fluid flows. The theory is advanced for an absorbing-
emitting and scattering gray medium in an enclosure with gray 
diffuse walls, but extensions to a broad bandwidth model and 
to include walls with other reflective properties are straightfor
ward. For strongly participating media, the method captures 
the diffusion approximation to the radiant heat transfer equa
tions. The method ensures that the intensity in a given direc
tion, as well as the net radiative heat transfer, satisfy the 
global conservation constraints. The approximations of the 

solid-angle integrals also prevent any occurrence of the "ray 
effects" encountered in discrete ordinate methods (Viskanta, 
1987). The method also appears to be the first that shares the 
philosophy of, and can use the same nonorthogonal boundary 
fitted mesh as, modern methods for computing fluid flows 
and that also converges with grid refinement to the exact solu
tion of the radiation transport equation. 

The authors are indebted to anonymous reviewers for 
pointing out that it may be undesirable for a radiation grid to 
be congruent with the fluid flow grid since the need for grid 
refinement may occur in different regions. Such situations are 
already encountered when the internal energy equation is 
solved over extensive regions of the flow in which the 
temperature is nearly constant, but in these regions a fine grid 
is needed to compute the fluid flow. It is common practice in 
such cases to use the same grid for both the fluid flow and heat 
transfer for the sake of simplicity. Similarly, for fluid flow 
and radiation different grids could certainly be used, but at the 
expense of complexity. Even if different grids were used, it is 
still desirable to use a philosophically consistent method. 

The method has been demonstrated for a one-dimensional 
problem, and several simple two-dimensional problems, for 
which benchmark solutions and other approximate solutions 
are available. The method is shown to yield good accuracy on 
coarse grids, and errors due to the discrete representations of 
the continuous equations reduce rapidly with grid refinement. 
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The Differential-Discrete-Ordinate 
Method for Solutions of the 
Equation of Radiative Transfer 
This paper introduces a powerful but simple methodology for solving the general 
equation of radiative transfer for scattering and/or. absorbing one-dimensional 
systems. Existing methods, usually designed to handle specific boundary and energy 
equilibrium conditions, either provide crude estimates or involve intricate 
mathematical analysis coupled with numerical techniques. In contrast, the present 
scheme, which uses a discrete-ordinate technique to reduce the integro-differential 
equation to a system of ordinary differential equations, utilizes readily available 
software routines to solve the resulting set of coupled first-order ordinary differen
tial equations as a two-point boundary value problem. The advantage of this ap
proach is that the user is freed from having to understand complicated mathematical 
analysis and perform extensive computer programming. Additionally, the software 
used is state of the art, which is less prone to numerical instabilities and inaccuracies. 
Any degree of scattering anisotropy and albedo can be incorporated along with dif
ferent conditions of energy equilibrium or specified temperature distributions and 
boundary conditions. Examples are presented where the radiative transfer is com
puted by using different quadratures such as Gaussian, Lobatto, Fiveland, 
Chebyshev, and Newton-Cotes. Comparison with benchmark cases shows that in a 
highly forward scattering medium Gaussian quadrature provides the most accurate 
and stable solutions. 

Introduction 

The transport of thermal radiation is an important 
mechanism of energy transport in numerous engineering ap
plications. The constituent medium in the majority of these 
systems actively participates in the radiative transfer due to the 
scattering, absorption, and emission of radiation. Examples 
are abundant, notably combustion systems such as furnaces 
containing fly ash, coal particles, and soot agglomerates, 
spray combustors such as rocket and diesel engines and tur
bine combustors, packed-bed and fluidized-bed combustors, 
and large-scale fires. Others include catalytic reactors, 
microsphere cryogenic insulations, lightweight fibrous insula
tions, particulate solar collectors, and liquid-droplet radiators 
used in space applications. Other instances where the par
ticipation of particulates is also important is in atmospheres 
and large bodies of water. 

Current literature has a multitude of methods for solving 
the equation of radiative transfer, as documented in several 
reviews by Viskanta (1966, 1982, 1984), Menguc and Viskanta 
(1983), Viskanta and Menguc (1987), Vortmeyer (1978), and 
Sarofim and Hottel (1978), and in standard texts (Ozisik, 
1973). Existing techniques for solving radiative transfer for 
scattering-absorbing systems employ either simple and crude 
approximations or complex mathematical analysis coupled 
with numerical techniques to obtain the radiative heat fluxes 
and temperature distributions. Some examples of the first 
kind are two-flux methods (Viskanta, 1966, 1982, 1984; 
Viskanta and Menguc, 1987; Menguc, 1987; Menguc and 
Viskanta, 1983; Ozisik, 1973; Brewster and Tien, 1984), 
whereas the refined and sophisticated ones are quadrature 
methods (Viskanta, 1966, 1982, 1984; Viskanta and Menguc, 
1987; Menguc and Viskanta, 1983; Fiveland, 1987, Ozisik, 
1973; Love and Grosh, 1965), spherical harmonics (Viskanta, 
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1966, 1982, 1984; Viskanta and Menguc, 1987; Menguc and 
Viskanta, 1983; Ozisik, 1973), the FN method (Menguc and 
Viskanta, 1983; Siewert, 1978; Kumar and Felske, 1986), and 
others. The refined methods require complicated 
mathematical manipulations to reduce the equations to a form 
that can be solved by numerical methods. These usually re
quire extensive computer programming effort by the user. In 
addition, each solution methodology is specific for a geometry 
of the system, the boundary conditions, and the medium 
energy equilibrium considerations. 

The methodology proposed here uses the quadrature 
scheme of the discrete-ordinates method (Love and Grosh, 
1965) to reduce the radiative transfer equation to a set of dif
ferential equations. A previous effort by Anderson et al. 
(1973), who considered a radiation-conduction problem for a 
nonscattering medium, solved these equations directly by the 
method of successive approximations. Fiveland (1987) used a 
finite difference scheme for isotropically and linearly 
anisotropically scattering cold media. The present scheme re
quires the user to be familiar only with simple mathematics to 
set up the equations and utilizes sophisticated, but readily 
available, software to solve the resultant system of equations. 
Commercial software is usually extensively tested for 
numerical accuracy and stability. This frees the user from 
tedious programming and having to understand complicated 
mathematical formulations. Another important advantage is 
that once formulated any variations in boundary conditions 
and energy coupling considerations can be incorporated with 
little effort. The present scheme is so named in order to 
distinguish it from the conventional discrete ordinates 
methodology, which converts the system of ordinary differen
tial equations into algebraic ones (Love and Grosh, 1965; Hsia 
and Love, 1967). Hsia and Love (1967) converted the linear 
ordinary equations obtained from the quadrature scheme to a 
complicated system involving eigenvalues and linear algebraic 
equations for eigenfunctions for media with isothermal and 
quadratic temperature profiles. 
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Fig. 1 Coordinate geometry for one-dimensional planar system 

Methodology for One-Dimensional Systems 

To illustrate the method a plane-parallel gray slab, shown in 
Fig. 1, is considered. One-dimensional geometry is a good ap
proximation for many physical situations, such as those aris
ing in energy transport through insulations, atmospheres, and 
large furnaces. It is also a building block for the analysis for 
other geometries. 

Equation of Transfer. The equation of transfer for a one-
dimensional medium is expressed by the following (Ozisjk, 
1973): 

dl(y, a, 4>) 

dy 

+ — — I(y,ix',4>')^(iJ.',<j)'—fi,(l))dij,'d<j)' 
4ir Jft' = — i J * '=o 

(1) 

where lis the intensity, /x = cos 9, 6 is the polar angle measured 
from the y axis, <j> is the azimuthal angle, aa and as are the ab

sorption and scattering coefficients, and $ is the scattering 
phase function, which can be represented as 

*0*',4>'-M.<M= ^anP„(n0),- a0 = l (2) 

where P„ are Legendre polynomials, a„ are coefficients of ex
pansion of phase function, N is the degree of anisotropy of 
scattering, and /i0 is the cosine of the angle between directions 
(n', 4>') and (/x, </>). Since the azimuthal angle 4> does not ex
plicitly appea'r in the equation of transfer, the dependence of 
intensity on <j> is introduced only by the azimuthally dependent 
imposed boundary conditions. For azimuthally independent 
boundary conditions the intensity in the medium is a function 
of y and n only and the phase function is simplified to 

*(>'-/*)= J} a„P„(n)P„(n'), an= 1 (3) 

It has been shown (Kumar and Felske, 1986) that for 
azimuthally dependent cases where the boundary conditions 
can be expanded as a Fourier series in the variable <t>, the inten
sity I(y, ix, </>) can also be similarly expanded, and that the 
resulting equations are similar to those corresponding to the 
azimuthally independent case. It is for this reason that the 
analysis for the azimuthally independent case is considered in 
depth in the following development. However, for com
pleteness, results for the azimuthally dependent case of col-
limated incident radiation are also presented. 

The first step in the method to analyze the azimuthally in
dependent equation of transfer is to replace the integral over 
JX' in equation (1) by a quadrature. If fi,'s are the quadrature 
points between - 1 and + 1 corresponding to a 2M-order 
quadrature, and w,'s are the corresponding weights, the above 
equation is reduced to the following system of ordinary dif
ferential equations: 

dl(y) 
dy 

JVJ 

+ "T £ WjIjiyWinj-Hi), i=-M,...,M, /V0 (4) 

where It(y) =I(y, /*,-). The order 2M of the quadrature con
tains an even number of points to avoid the value JX = 0, which 
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has no distinct boundary condition at the two edges of the 
plane parallel slab. For the sake of simplicity ;'= — M, 
. . . , -1, corresponds to the negative n and / = 1, . . . , M, 
to the positive. Also the jt's are so ordered that — /*,• = /*_,-. 
The above constitutes a 2Mth-order system of ordinary dif
ferential equations. It is a two-point boundary-value where 
2M boundary conditions are specified. Equation (4) can be 
rewritten in the matrix form as 

- ^ - = [ A ] I + B (5) 
dy 

where 

A^-LI-OJV + ^-WJUH-HJ)], B,=— aaIb(T(y)) (6a) 
flj \- Z -1 ilj 

Some numerical methods may need the Jacobian of the right 
side of the differential equation, equation (5), and it is 

'.-£[£]-*. 
Boundary Conditions. The boundary conditions at the 

reflecting boundaries are expressed as 

I(0, + li,4>)=Z0(+ii, <f>)+Icd(ij.-nc)d(<t>-<t>c) 

+ ps
0I(0,-H,<f>) + Pdo [ [ ' W, -li',<t>')<t>'dlx'd4>', 

% J/t' =0 J(fr =0 

/x>0, 

I(L, - ju<£) = ZL( - ix,<t>) + ps
L(L, + n,<j>) 

+ PL—[ [' HL, +p',<t>')n'dn'd<t>', M>0 (7) 
7T J/i '=0 J * '=0 

where 8 is the Dirac delta function, ps and pd are specular and 
diffuse reflectivities at the boundaries, and Z0 and ZL are the 
imposed intensity distributions at they = 0 and y=L surfaces, 
respectively, that can be expanded as Fourier series in 4>. The 
Icb(jx — nc)8(4> — <j>c) term corresponds to an imposed col-
limated flux at the y = 0 boundary. For known temperatures at 
diffuse boundaries 

Z0( + n,4>) = e0 , ZL(-/t, <j>)=eL , ,u>0 (8) 
7T 7T 

where T0 and TL are the temperatures of y = Q and y = L, 
respectively, and e is the emissivity of the surfaces. 

The corresponding azimuthally independent boundary con
ditions can be cast in a form that is compatible with the 
discretized equation of transfer yielding 

7+ ,(0) = Z0( + N) + -^-b(n -H) + p$I _,(()) 

M 

y = i 

M 

I_i(L)=ZL(-N)+piI+i(L)+2pi £ WjI+j(L)pJt 

i=l M (9) 

The boundary conditions are thus on / , 0 = 0) for all / where 
lij is positive, i.e., for i=l, . . . , M, and Ij(y = L), 

j — —M, . . . , - 1, for which /*• is negative. If the boundaries 
are black the reflectivities can be set to zero. 

Medium Temperature Conditions. Different energy 
and/or temperature conditions can apply to the particulate 
medium for different operating conditions. The commonly en

countered ones include (i) the case when the emission from 
the medium can be neglected, such as during the propagation 
of lasers through a cold medium, (ii) the case of an isothermal 
medium, such as in atmospheric radiative transfer, (///) the 
medium in radiative equilibrium, such as in soot layers, and 
(iv) the case where the radiative energy is in equilibrium with 
other modes of energy transport, such as in furnaces and 
packed-bed combustors. All these conditions can be handled 
by the present method as indicated in the following. 

The cases of the cold medium (/) and the isothermal 
medium (ii) are the simplest since the radiative transfer is un
coupled from external influences and can be solved on its own. 
Equation (4) needs no further simplification since the 
h(T(y)) term is specified a priori and the resulting equation 
is a system of differential equations for the unknown /,. For 
the case of radiative equilibrium (Hi) the following condition 
holds: 

0=V-q(y)=4waaIb(T(y))-2Traa\_iI(y,n)dix (10) 

yielding 

I f 1 1 M 

h(T(y))=—\ I(y, ix)dn=— Y, WjljW (11) 
Z J - l L -M 

Substituting the above expression into equation (4) yields a 
system of equations in which the only unknowns are the / , , 
and can be solved as a system of coupled first-order differen
tial equations. 

If the radiative energy is coupled with other modes of 
energy transfer (iv) the equation of radiative transfer is cou
pled to the energy equation via the temperature term Ib (T(y)) 
and can be solved simultaneously. This is achieved by ap
pending the system of first-order ordinary differential equa
tions of radiative transfer to the differential energy and 
momentum equations and solving the resultant system of 
equations simultaneously; see Kumar et al. (1988) and Kumar 
and Tien (1989). 

Numerical Quadratures. The present methodology is 
capable of accommodating different types of quadrature 
scheme, such as Gaussian, Loba t to , Chebyshev, 
Newton-Cotes (Kopal, 1961), and Fiveland (Fiveland, 1987). 
The quadrature schemes are used to approximate an integral 
of the form 

\\xn)dp=EwS(pj) (12) 

where w/s are the weight coefficients corresponding to the n 
discrete points fij. The differences between the various 
quadrature schemes lie in the values of w/s and /*/s. Consider 
f(n) to be a polynomial of degree m, having m + 1 coefficients. 
For Gaussian quadrature, which considers the 2n weights and 
points to be arbitrary, the maximum value of m for which 
equation (12) is exact is m = 2n - 1. In the Lobatto quadrature 
scheme, the boundary points of \t,— -1 and \x= 1 are fixed, 
thus reducing the degree of the polynomial to m=2n-3. In 
radiative transfer, fixing these points can be advantageous 
since the intensities in the forward and the backward direction 
need evaluation. In both the Chebyshev and Fiveland 
quadrature schemes, the n weights are held fixed to a value of 
2/n. Therefore, for exact evaluation of the integral, the max
imum degree of the polynomial is further reduced to m = n - 1. 
For the Chebyshev scheme, the discrete points are determined 
by solving the set of equations 

- 7 - ^ " i = ( ' , ' * ' * ' = 1 , 2 , 3 , . . . , « (13) 

n J=l J - I 

This set of equations has real roots for \<n<l and n = 9, 
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Table 1 Coefficients of the phase functions I and II: PF I—refractive in
dex m = 2.20 + /1.12, and size parameter <* = 1.0; PF II—refractive index 
m = 1.50-1-/0.10 and size parameter a = 8.0 

<*0 

fll 

a 2 

a 3 

fl4 

as 

16 

PFI 

1.000000 

0.643833 

0.554231 

0.103545 

0.010498 

0.000563 

0.000019 

<*o 

a\ 

a2 

a3 

a4 

as 

as 

ai 

"s 

a9 

a io 

an 

a12 

PFII 

1.000000 

2.602844 

3.904987 

4.951962 

5.827835 

6.449251 

6.857353 

6.986990 

6.876321 

6.564448 

6.083206 

5.466910 

4.874364 

a n 

a 14 

a is 

"16 

a n 

"18 

a19 

a 20 

"21 

a 22 

a 23 

a 24 

a25 

4.202631 

3.417068 

2.441223 

1.375775 

0.580278 

0.240728 

0.058807 

0.013133 

0.002492 

0.000410 

0.000060 

0.000008 

0.000001 

higher than which this scheme cannot exist (Salzer, 1947). In 
general, any scheme with equally weighted ordinates has a 
maximum value of n, corresponding to real roots, beyond 
which no increase in accuracy is achieved (Kopal, 1961). The 
points in the Fiveland scheme are obtained from the set of 
equations (13), by matching the moments over the half range 
[0, 1], i.e., equation (13) with integration limits from 0 to 1. 
Since the roots of these equations are found numerically, the 
existence of complex roots is ignored. The Newton-Cotes 
scheme fixes the n equally spaced points between the two 
boundaries and then determines the corresponding weights. 

The solution of the radiative transfer in one-dimensional 
systems involves evaluating the full range moment of intensity 
in the equation of transfer and the half range for the forward 
and backward heat fluxes. Any quadrature (Gaussian, Lobat-
to, Chebyshev, Newton-Cotes, or Fiveland) may be selected 
since the methodology is extremely general. The user must use 
a few different quadratures and orders to ascertain which is 
most suited for the particular problem at hand. Results using 
different quadratures are presented for a few cases in the 
following sections. 

Method of Solution. After selecting an appropriate 
quadrature the system of 2M first-order ordinary differential 
equations specified by equation (4) along with the appropriate 
energy equilibrium condition and boundary conditions are 
solved by using commercial software available as a standard 
feature on most mainframe computers. Two such software 
libraries are the IMSL1 and the NAG2 mathematical 
subroutine libraries written in FORTRAN. Subroutines 
DVCPR from the IMSL library and D02HAF from NAG are , 
used to solve the two-point boundary value problem. 
Subroutine DVCPR, which employs the method of finite dif
ferences (Pereyra, 1978), is preferred since it is faster and is 

'IMSL, 2500 ParkWest Tower One, 2500 City West Blvd., Houston, TX 
77042. 

Numerical Algorithms Group, 1131 Warren Ave., Downers Grove, IL 
60615. 

not too sensitive to the initial guess provided. The initial guess 
is provided by assuming exponentially decaying intensities 
characteristic of nonscattering media with the same boundary 
conditions. The results in this study were obtained by im
plementing the numerical algorithm in double precision FOR
TRAN on a VAX 11/8650 operating under the Berkeley 
UNIX operating system. The subroutine DVCPR from the 
IMSL library was used throughout. The software allows for 
nonuniform grid size and thus can handle rapid variations 
near the boundaries. 

Numerical Results. To check the performance and ac
curacy of the present method with published studies, a scatter
ing medium composed of spherical particles is selected. Two 
types of particle are considered, I: a=1.0, w = 2.20-1-/1.12, 
and II: a = 8.0, m= 1.50 + /0.10. The coefficients of the cor
responding phase functions, which range from semidiffuse to 
highly forward scattering, are listed in Table 1. These scatter
ing phase functions have also been used by Mengiic and 
Viskanta (1983) who evaluated the radiative transfer through a 
one-dimensional geometry for nonreflecting and nonemitting 
boundaries, and by Kumar and Felske (1986) for collimated 
incident flux. 

Tables 2, 3,4, and 5 compare the dimensionless fluxes Q, 
defined as 

G ( T ) = - ^ - , T=\ {aa + as)dy (14) 
•K10 J O 

evaluated at the two boundaries T = 0 and T = rL, to the results 
from other methods (Mengiic and Viskanta, 1983; Kumar and 
Felske, 1986). The medium emissivity is neglected and the 
y = 0 boundary is irradiated with diffuse intensity I0 of unit 
strength. Benchmark cases correspond to those by the F9 
method. 

All the different quadrature schemes give good results for 
Phase Function I, which is expressible as a polynomial of sixth 
order and is semidiffuse in nature. The results obtained from 
the present method by using different quadratures are 
presented in Table 2. The results of the same case by other 
methods are presented by Mengiic and Viskanta (1983). It 
should be noted that for this phase function the Fiveland 
scheme provides highest accuracy. 

Table 3 shows that significant deviations from the exact 
results are observed for most quadratures when either the scat
tering is peaked in the forward direction, as specified by Phase 
Function II, or when the optical thickness is large. Physically 
unrealistic results are also obtained for some case; Gaussian 
quadrature seems to be an exception. For T L = 0 . 1 all three 
schemes provide reasonably accurate results. This is due to the 
fact that for small path lengths, the uniformity of the intensity 
due to boundary conditions at r = 0 is distorted by a small ex
tent giving rise to a polynomial in fi of a low degree, m < n - 1. 
However, at TL = 10.0 the highly forward in-scattering term 
distorts the intensity to high-degree polynomial. It is seen that 
the Fiveland scheme yields totally unrealistic fluxes, whereas 
the Gaussian and Lobatto schemes provide accurate results. It 
should also be noted that at TL = 10.0, Ls gives unrealistic 
values whereas G8 provides accurate results. 

As observed from Tables 2 and 3, the error reduces to about 
0.1 percent for Gaussian quadrature as the number of 
quadrature points is increased to 20, and to approximately 
0.01 percent at a quadrature of 32. It is noted that the error 
monotonically reduces as the quadrature is increased. By 
noting the change in the solution as the quadrature 2M in
creases the rate of convergence is easily inferred, and therefore 
the order of quadrature corresponding to the desired accuracy 
is obtained. For most practical purposes 2M=20 is sufficient 
since the corresponding relative error is approximately 0.1 per
cent. Even at 10 quadrature points the error is less than 1.0 
percent on the average, which is attractive since the time taken 
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Table 2 Dimensionless radiative fluxes at boundaries by various 
methods for phase function PF I, TL = 1.0, u = 0.8 

Quadratures 

G 

Nc 

Fv 

L 

a 
Quadratures 

0 

Nc 

Fv 

2M = 4 

Q(0) QftO 

0.77537 0.46260 

0.74405 0.43889 

0.75807 0.45459 

0.79473 0.47515 

0.74926 0.44949 

2M = 12 

Q(0) QI.1L.) 

0.76206 0.45671 

0.75506 0.45365 

0.76054 0.45582 

2iM = 6 

Q(0) Qfe) 

Ii
ii

i 
ii

ii
i 

2iW = 16 

Q(0) Q f e ) • 

0.76140 0.45634 

0.73817 0.44429 

2M = 8 

Q(0) Qfe) 

0.76390 0.45757 

0.75789 0.45485 

0.76062 0.45609 

0.76498 ft45799 

m = 2 0 

Q(0) Q f e ) 

0.76110 0.45617 

2M = 10 

Q(0) Q & ) 

0.76271 0.45704 

0.76616 0.45833 

0.76057 0.45595 

0176324 0.45729 

Fg-Benchmark 

Q(0) Qfe) 

0.76057 0.45588 

G = Gaussian, Fv = Fiveland, L = Lobatto, Nc = Newton-Cotes, Ch = Chebychev 

Table 3 Dimensionless radiative fluxes at boundaries by various 
methods for different optical thickness, phase function II, M = 0.8 

Methods 

Two-Flux 

SS 

M2 

Spherical Harmonics 

F, 

Fs 

P9 9 term P.F. 

Discrete Ordinates* 

Approx. Pi 7 . 

Full P P . 

Ft/ -Method 

F g -Benchmark 

DDO IM -Quadrature 

G, 

Fvt 

Gio 

Ll0 

On 

f v 1 2 

ou 

G 3 2 

Dimensionless Radiative Flux 

T t = 0 . 1 

Q(0) Qfe) 

0.99404 0.95483 

0.99481 0.96076 

0.99718 0.95797 

0.98761 0.94865 

0.98440 0.94557 

0.98885 0.95020 

0.98713 0.94860 

0.98797 0.94946 

0.99293 0.95838 

0.98692 0.94856 

1.00161 0.97275 

0.98450 0.97535 

1.00287 1.00081 

0.99503 0.95633 

0.98547 0.95924 

0.99821 0.96125 

0.99186 0.95316 

0.98679 0.96580 

0.98934 0.95073 

0.98835 0.94980 

0.98749 0.94904 

iL = 2.0 

Q(0) Q(iL) 

0.94302 0.39844 

0.94603 0.45057 

0.97187 0.42409 

0.93699 0.41826 

0.93345 0.41779 

0.92660 0.43072 

0.92482 0.42836 

0.92574 0.43048 

0.93336 0.43903 

0.92523 0.43029 

0.93277 0.52564 

0.89394 0.89882 

0.86074 0.85693 

0.92987 0.43277 

0.91532 0.62132 

0.93344 0.45203 

0.92763 0.43094 

0.91288 0.65661 

0.92639 0.43063 

0.92592 0.43052 

0.92549 0.43042 

1L = 10.0 

Q(0) Q ( t J 

0.93222 0.01019 

0.93224 0.01883 

0.96570 0.01377 

0.93336 0.01747 

0.92971 0.01740 

0.91464 0.02456 

0.91356 0.02370 

0.91380 0.02455 

0.92011 0.02216 

0.91332 0.02454 

0.91189 0.06115 

0.44998 2.14062 

0.45128 1.52133 

0.91775 0.02501 

0.86178 0.38196 

0.91979 0.03166 

0.91565 0.02458 

0.85771 0.26588 

0.91443 0.02456 

0.91397 0.02456 

0.91355 0.02455 

SS = Schuster-Schwarzchild, M2 = Modified Two-Flux, G = Gaussian, Fv = Fiveland, L = Lobatto 

•Quadrature not specified (Mengiic and Viskanta, 1983) 

is extremely small. Figure 2 shows the time taken versus in
creasing quadrature for Phase Function II by using the present 
scheme. The difference in time taken between different 
quadrature schemes is probably due to different convergence 
rates. 

Table 4 examines the effect of the different quadratures on 
the present method, as the albedo to approaches zero (no scat
tering) and unity (no absorption). For the case OJ-*0, the inten
sity at any point is uniform and hence a zero-degree 
polynomial. Therefore, for this case all methods provide 
reasonably accurate results. For a nonabsorbing medium, 
«—l, the Fiveland and the Newton-Cotes quadratures yield 
unrealistic fluxes when used with the present numerical 
scheme. However, it can be observed that the Gaussian and 
Lobatto quadratures consistently gives better results than 
others. Moreover, the Gaussian scheme for 2M=32 gives the 

Table 4 Dimensionless radiative fluxes at boundaries by various 
methods for limiting cases of u>—0 and u—1, phase function II, rL =2.0 

Quadratures 

Fvio 

Li0 

Nc io 

Gio 

Gyi 

Exact 

Quadratures 

Fvta 

£io 

Ncl0 

Gi0 

Gyi 

(0=0.01 

Q(0) OSiO 

0.99973 0.06186 

1.00905 0.06170 

1.01714 0.06303 

1.00725 0.06164 

1.00052 0.06164 

0=0.99 

Q(0) QI.1L) 

0.77336 1.16942 

0.81645 0.82492 

-0.61450 6.66016 

0.81547 0.77849 

0.81190 0.77311 

o>=0.001 

Q(0) Q(ti) 

0.99997 0.06033 

1.00928 0.06043 

1.01738 0.06073 

1.00749 0.06040 

1.00075 0.06040 

0=0.999 

Q(0) Q( t t ) 

0.76002 1.20840 

0.80577 0.85196 

-0.79475 7.05223 

0.80527 0.80323 

0.80166 0.79768 

0=0.0001 

Q(0) Qfe ) 

1.00000 0.06018 

1.00931 0.06030 

1.01741 0.06050 

1.00752 0.06028 

1.00078 0.06028 

0=0.9999 

Q(0) QI.1L) 

0.75863 1.21240 

0.80465 0.85474 

-0.81409 7.09320 

0.80421 0.80577 

0.80060 0.80020 

co=0 

Q(0) Q(1L) 

l.OOOOO 0.06016 

1.0O931 0.06029 

1.01741 0.06048 

1.00752 0.06026 

1.00078 0.06027 

1.00000 0.06027 

0=1.0 

Q(0) QI.1L) 

0.75847 1.21284 

0.80453 0.85505 

-0.81625 7.09777 

0.80409 0.80606 

0.80048 0.800J8 

G = Gaussian, Fv - Fiveland, L = Lobatto, Nc = Newton-Cotes 

Table 5 Dimensionless radiative fluxes at boundaries compared with 
exact results for collimated incidence, phase function I, w = 0.5, TL = 1.0, 
MC = 0.0 

P0 PL Po" f>£ 

0.0 0.3 0.0 0.0 

0.0 0.6 0.0 0.0 

0.3 0.0 0.0 0.0 

0.6 0.0 0.0 0.0 

0.0 0.0 0.0 0.3 

0.0 0.0 0.0 0.6 

Method 

DDOm 

DD016 

DDO 20 

DDO 32 

^ 9 

DDOw 

DD016 

DDOw 

DDOyi 

Fv 

DDOm 

DDOi6 

DDOw 

DDOyi 

F? 

DDO w 

DD016 

DDOw 

DDO}2 

F9 

DDO io 

DD016 

DDO 20 

DDO 32 

^ 9 

DDOm 

DDOl6 

DDO 20 

D D O 32 

?9 

q(.0)l<c)k: <?(tL)"c^c 

0.86313 0.28735 
0.86368 0.28717 
0.86381 0.28712 
0.86395 0.28707 
0.86404 0.28704 

0.81432 0.16934 
0.81489 0.16919 
0.81503 0.16915 
0.8I5I8 0.16911 
0.81527 0.16908 

0.93436 0.40699 
0.93479 0.40683 
0.93489 0.40679 
0.93500 0.40675 
0.93508 0.40672 

0.96101 0.41603 
0.96129 0.41586 
0.96135 0.41582 
0.96143 0.41577 
0.96148 0.41573 

0.86892 0.28792 

0.86954 0.28819 

0.86969 0.28825 

0.86986 0.28832 

0.86996 0.28836 

0.82519 0.16916 

0.82597 0.17004 

0.82616 0.17024 

0.82637 0.17047 

0.82650 0.17061 

most accurate result since the fluxes at both boundaries are 
identical, thereby satisfying conservation of energy in a 
nonabsorbing medium. 

Table 5 is a comparison with the exact results presented by 
Kumar and Felske (1986) for the case of collimated incidence 
at ^ c = 0.8 with scattering albedo to = 0.5 and slab optical 
thickness TL = \.Q> for a variety of surface reflectivities. The 
phase function is PF I and the quadrature is Gaussian. It is 
seen that the results of the present approach compare very well 
with the benchmark cases obtained by the F9 method. The 
details of the calculations are presented by Kumar et al. 
(1988). Since the medium is planar, the results hold for any 
value of 4>c. 
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Time vs. Quadrature 
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15 

—1— 
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Fig. 2 Time taken for present method, phase function II 

Conclusions 

The resutls of this method agree well with benchmark cases 
available in the literature when appropriate quadrature is 
selected. For highly forward scattering media, the Gaussian 
quadrature scheme yields the most stable and accurate results 
when compared to those of the Fiveland, Lobatto, and 
Newton-Cotes schemes. The merits of the present 
methodology are summarized as follows: (1) It contains no 
complicated mathematics that the user needs to understand; 
(2) the programming effort is negligible; (3) any degree of scat
tering anisotropy can be considered; (4) it can incorporate the 
most general boundary conditions; (5) azimuthally asym
metric boundary conditions can be reduced to a form that is 
tractable by this technique; (6) the computational times are 
reasonably small; and (7) the method can handle any form of 
energy equilibrium condition within the medium and may be 
coupled to the full energy equation. In addition, since the 
solution is obtained numerically, variations of the absorption 
and scattering coefficients with position and temperature and 
of reflectivities with angles can be easily incorporated. Thus 
this simple scheme retains the generality of the equation of 

radiative transfer in contrast with the other methods, which 
are limited to the treatment of only some of the conditions 
mentioned before. 
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A General Correlation for Pool Film 
Boiling Heat Transfer From a 
Horizontal Cylinder to Subcooled 
Liquid: Part 1—A Theoretical Pool 
Film Boiling Heat Transfer Model 
Including Radiation Contributions 
and Its Analytical Solution 
A rigorous numerical solution of a theoretical model based on laminar boundary 
layer theory for pool film boiling heat transfer from a horizontal cylinder including 
the contributions of liquid subcooling and radiation from the cylinder was obtained. 
The numerical solution predicted accurately the experimental results of pool film 
boiling heat transfer from a horizontal cylinder in water with high radiation 
emissivity for a wide range of liquid subcooling in the range of nondimensional 
cylinder diameters around 1.3, where the numerical solution was applicable to the 
pool film boiling heat transfer from a cylinder with negligible radiation emissivity. 
An approximate analytical solution for the theoretical model was also derived. It 
was given by the sum of the pool film boiling heat transfer coefficient if there were 
no radiation and the radiation heat transfer coefficient for parallel plates multiplied 
by a nondimensional radiation parameter similar to the expression for saturated 
pool film boiling given by Bromley. The approximate analytical solution agreed well 
with the rigorous numerical solution for various liquids of widely different physical 
properties under wide ranges of conditions. 

1 Introduction 
The first systematic theoretical and experimental studies of 

saturated film boiling heat transfer were made by Bromley 
(1950). Using a simple theoretical model, he presented a cor
relation for saturated film boiling heat transfer from a 
horizontal cylinder in a pool of liquid including the radiation 
contribution from the cylinder. Breen and Westwater (1962) 
carried out a series of film boiling experiments on large-
diameter cylinders and pointed out that the Bromley correla
tion was applicable to a limited range of cylinder diameters. 
They presented a semi-empirical equation of saturated film 
boiling heat transfer for a wide range of diameters. Siviour 
and Ede (1970) performed experiments of subcooled film boil
ing on a horizontal cylinder in water at atmospheric pressure 
and presented a semi-empirical correlation for subcooled film 
boiling heat transfer by combining the correlation of saturated 
film boiling heat transfer with that of natural convection heat 
transfer in the liquid phase. 

On the other hand, there are some works on theoretical 
analysis according to the laminar boundary layer theory for 
saturated and subcooled film boiling heat transfer. Koh (1962) 
presented a solution of saturated film boiling heat transfer 
from a vertical plate. Sparrow and Cess (1962) carried out an 
analysis on subcooled film boiling heat transfer from a vertical 
plate by supposing the tangential velocities of vapor and liquid 
to be zero at the vapor-liquid interface. Nishikawa and Ito 
(1966) and Nishikawa et al. (1976) performed a theoretical 
analysis for subcooled film boiling heat transfer from a ver-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division August 1, 
1988; revision received July 20, 1989. Keywords: Boiling, Natural Convection, 
Radiation Interactions. 

tical plate and a horizontal cylinder introducing continuities of 
velocity and shear stress at the vapor-liquid interface without 
such a supposition. In the theoretical analyses mentioned 
above, the effect of radiation from a plate or a cylinder was 
not taken into account. Siviour and Ede (1970) reported in 
their paper that the theoretical values did not agree with their 
experimental results for saturated and subcooled film boiling 
heat transfer from horizontal cylinders. 

The applicability of these theoretical solutions to real film 
boiling has not been studied experimentally in a long time. 
Recently, the authors (Sakurai et al., 1984, 1986) performed 
systematic experiments on saturated and subcooled film boil
ing from platinum horizontal cylinders with very low emissivi
ty in a pool of water for wide ranges of system pressure, water 
subcooling, cylinder diameter, and surface superheat. They 
first found that their experimental data for a nondimensional 
cylinder diameter around 1.3 agreed well with the theoretical 
solution obtained by Nishikawa et al. (1976) for wide ranges 
of surface superheat, liquid subcooling, and system pressure 
and also found that, for higher or lower values of the non-
dimensional diameter, the experimental value gradually 
became higher than the theoretical value. They presented a 
correlation for subcooled pool film boiling heat transfer for 
water based on the theoretical solution and the experimental 
results, and pointed out that a major mechanism of pool film 
boiling heat transfer for large subcooling is liquid flow in
duced by rising vapor at the vapor-liquid interface (Sakurai et 
al., 1984). 

The purpose of the present work is to develop a general cor
relation of pool film boiling heat transfer from a horizontal 
cylinder, including the contributions of liquid subcooling and 
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Too 

Fig. 1 Physical model and coordinates 

radiation from the cylinder under wide ranges of conditions 
for various kinds of liquid. These liquids include those with 
low latent heats such as cryogens and freons, and those with 
Prandtl numbers far higher or lower than unity such as 
alcohols and liquid metals, respectively. In this first part of the 
work, a rigorous numerical solution of the theoretical model 
based on the laminar boundary layer theory for pool film boil
ing heat transfer from a horizontal cylinder including the ef
fects of liquid subcooling and radiation from the cylinder is 
derived, and the applicability of the solution is confirmed by 
comparing it with the experimental data. Then, an approx
imate analytical solution that can describe the rigorous solu
tion with good accuracy is also derived. 

In a subsequent paper, the general correlation is derived by 
modifying this analytical solution slightly to agree better with 
the authors' new experimental results of saturated and sub-
cooled pool film boiling heat transfer from horizontal 
cylinders of various nondimensional diameters in various 
liquids of widely different physical properties. 

2 Rigorous Solution of Theoretical Pool Film Boiling 
Model With Radiation Effects 

2.1 Physical Model. The physical model and coordinates 
are shown schematically in Fig. 1. It is assumed that the vapor 
forms a continuous film over the surface of the isothermal 
horizontal cylinder and that there exists a smooth vapor-liq
uid interface and laminar boundary layers of vapor and liq
uid. At the vapor liquid interface, the temperature is at its 
saturation value Ts, while the bulk of liquid is at a lower 
temperature Tm. Radiation from the cylinder to the vapor-
liquid interface is postulated to be absorbed in a negligibly 
small thickness of liquid. 

2.2 Basic Equation. The conservation laws for mass, 
momentum, and energy, separately applied to both vapor and 
liquid layers, are 

du„ 
PuK—+Pvvv-ay 

-j^ (p0u„) + -j- (PVVV)=Q 

g s i n ( ^ ) ( ^ - p „ ) + A ( ^ ) 
dy Y " dy 

( dTv dTv\ d / , dT„\ dT„ 

3 

(1) 

(2) 

(3) 

(4) 

N o m e n c l a t u r e 

A = nondimensional quantity 
in equations (70) ~ (73) 

B = nondimensional quantity 
in equations (70) ~ (73) 

C = nondimensional quantity 
in equations (70) ~ (73) 

C„! = nondimensional quantity, 
equation (60) 

Cvl = nondimensional quantity, 
equation (61) 

C/ = nondimensional quantity, 
equation (62) 

cp = specific heat capacity, 
J/(kgK) 
diameter of cylinder 
heater, m 

D 

D' = D[g(p]-pv)/oY/2 = ncm 
dimensional diameter of 
cylinder heater 

E = nondimensional quantity 
in equations (70)~(73) 

F = nondimensional quantity 
in equation (75) 

/ = nondimensional quantity, 
equation (58) 

/ „ , / ; = nondimensional velocity 
functions, equation (17) 

Gr„ = g(pl-Pv)Dy{pvv
1
v) = 

Grashof number 
Grvx = g(.p,-pv)x

i/(pvvl) = 
Grashof number 

g = acceleration due to grav
ity, m/s2 

h = heat transfer coefficient, 
W/(m2K) 

hco = heat transfer coefficient 
if there were no radia
tion, W/(m2K) 

hr = radiation heat transfer 
coefficient for parallel 
plates, W/(m2K) 

J = radiation parameter 
K = modification factor in 

equation (74) 
Ks = nondimensional quantity, 

equation (39) 
k = thermal conductivity, 

W/(mK) 
L = latent heat of vaporiza

tion, J/kg 
V = L + 0.5cp„ATsat= latent 

heat plus sensible heat 
content of vapor, J/kg 

M = nondimensional quantity 
in equation (71) 

M* = modified M in equation 
(73) 

Mx = nondimensional quantity 
in equation (70) 

Mu, Mf = nondimensional quan
tities, equation (19) 

Nv, N/ = nondimensional quan
tities, equation (20) 

mv, m, = nondimensional quan
tities, equation (59) 

Nu„ = average Nusselt number 
for cylinder 

Nu„x = average Nusselt number 
for vertical surface 

Pr = Prandtl number 
q = heat flux, W/m2 

qco = heat flux if there were no 
radiation, W/m2 

qx = local heat flux from ver
tical plate without radia
tion contribution, W/m2 

qx = average heat flux from 
vertical plate without 
radiation contribution, 
W/m2 

qrc = heat flux due to radiation 
from cylinder, W/m2 
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P/"r 
du/ 

~dx~ 

did, 
+ PiVt-r- =gsm 

dy (•f)("* ~Pi^+ T^i^i 
d 

dy y 

PicPi 
dT, dT, dT,\ d 

dx ' dy) dy\'dyJ 
} 

(5) 

(6) 

The boundary conditions are 

/ duu\ ( du,\ 

(7'I1),= (7',), = 7'J 

y = 0; uu = vv=0, Tv = T„ 

y-~<x>; M , - . 0 , T, — Tx 

(10) 

(11) 

(12) 

(13) 

In pool film boiling heat transfer from a horizontal 
cylinder, the radiation contribution from the cylinder cannot 
be ignored generally, especially not for the cylinder of high 
radiation emissivity, because the cylinder surface temperature 
needed to realize stable film boiling on the cylinder is high. 
However, the theoretical pool film boiling heat transfer model 
based on laminar boundary layer theory has not yet been 
solved, as far as we know, without ignoring the radiation ef
fect. Here the solution of the theoretical model with radiation 
effect is derived by the following method. 

2.3 Similarity Transformation. It is assumed that the 
radiation heat flux from the horizontal cylinder qrc in equa
tion (10) is approximately given by a certain function of X 

described later so that the similarity transformation can be ap
plied to the problem. 

A similarity transformation such as that devised by 
Nishikawa et al. (1976) that considers the temperature-
dependent variation in thermophysical properties of liquid 
and vapor is applied to this problem. 

Stream functions ^ru and Ir, satisfying the following rela
tions are introduced: 

d*„ d*„ 

(7) 

(8) 

(9) 

UV 

U,-

Pv 

Pis 

Pi 

dy 

a*, 
dy 

Pv dx 

p,s a*/ 
Pi dx 

(14) 

(15) 

where the subscript 5 denotes the physical properties at the 
saturation temperature. Next, new independent and depend
ent variables are introduced as 

Vv=Nv dy, 
r Jo o„. 

^ M ^ V l L d y (16) 

fv(Vv) = 
x n 

MV4>(X) ' 

T„-T. 

fl(Vi) = 
* i 

M,4>(X) 

AT, 
tf/(i?/) = 

T,-T„ 
ATmh 

(17) 

(18) 

where X=x/r. Furthermore, the constants M and N are 
chosen to be 

Mv = "vs[g(Pi„ - Pvs)r
3 /(.vlsPvs)]

1M, 

M, = vls[g(pla>-Pls)r
3/tfsp,s)]

l/* (19) 

(20) 

On the other hand, </> and 7 are assigned to satisfy approx
imately the following relations as functions of X: 

Qrp 

R 
Rs 

r 

Sc 

Scr 

Scs 

Sc* 

Sp 

Spr 

Sps 

T 
U 

u 

V 

= heat flux due to radiation 
for parallel plate, W/m2 

= [P^u/(P//^/)]' /2 

= nondimensional quantity, 
equation (39) 

= radius of cylinder heater, 
m 

= cp,A Tsub /L' = nondimen
sional subcooling 

= cplATsvh/L = nondimen
sional subcooling 

= nondimensional subcool
ing, equation (38) 

= modified Sc, equation 
(74) 

= cpuATmt/(L'Piv) = nondi
mensional superheat 

= cp„A7;at/(LPr„) = nondi
mensional superheat 

= nondimensional 
superheat, equation (38) 

= temperature, K 
= nondimensional quantity, 

equation (67) 
= x component velocity, 

m/s 
= nondimensional quantity, 

equation (67) 

V 

Wu W2 

w 

X 

X 

y 

z 

a 

13 

7 

ATsM 

ATsub 

= y component velocity, 
m/s 

= nondimensional quantity 
in equation (67) 

= mass flux density, 
kg/(m2 s) 

= x/r = nondimensional 
angle measured from 
bottom of horizontal 
cylinder 

= coordinate along the 
heater surface, m 

= coordinate normal to the 
heater surface, m 

= coordinate measuring 
distance normal to the 
heater surface from 
vapor-liquid interface, m 

= absorptivity of liquid 
(taken to be unity in this 
paper) 

= thickness of laminar liq
uid layer, m 

= function of X, equation 
(23) 

= heater surface superheat, 
K 

= liquid subcooling, K 

5 = 

«w = 
f = 

fi = 

V = 

e = 

jl = 

V — 

p = 
a = 

as — 

4, = 

¥ = 

Subscripts 
i = 
/ = 
r = 
5 = 
v = 

w = 
00 = 

thickness of laminar 
vapor layer, m 
emissivity 
0/8 
a root of equation (65) 
given by equation (66) 
nondimensional similarity 
variable, equation (16) 
nondimensional 
temperature, equation 
(18) 
viscosity, kg/(m s) 
kinematic viscosity, m2 /s 
density, kg/m3 

surface tension, N/m 
Stefan-Bolzmann 
constant 
function of X, equation 
(23) 
stream function 

vapor-liquid interface 
liquid 
radiation 
saturation 
vapor 
wall 
bulk 
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dd> dy 
4>y3 = sin X, <j>y2 - ^ - + <fe2y - ~ = 2 sin X, 

1 d<5> 
= 3 (21) 

7 dX 

The following functions $ and 7 that satisfy the first and third 
equations, and the second equation at X— w/2, are assumed to 
satisfy equation (21) approximately: 

0(^)=T4( smwiX'dX'^ (22) 

y(X)=sinmX/4>m (23) 

The fundamental equations (1) to (6) are transformed into the 
four ordinary differential equations 

[J^r] -vr.)>+v.r.+ {{p'™-p)/p]» 

L (ok)„. "J 

l(.Pi«.-p)/p)l 

6'„\ + 3 P r , „ — S S - f j i ^ Q (25) 
(pk) 

vs *~pvs 

[ ^ fl\ -2(//)2 + 3////"+ 
t ( P / » - p ) / p ) 

— = 0 (26) 

L (ok),. 'J 
+ 3Pr Is ' 

V •ffi!=o (27) 
(pk)is J cph 

where the primes denote differentiation with respect to 1). The 
boundary conditions expressed by equations (7) to (9) are 
transformed into 

Wi)i=KsRs(fv)i (28) 

(fl),=KHfth (29) 
<//'),-=tf3i?s(/»'),• (30) 

It is assumed that the radiation heat flux from a horizontal 
cylinder qrc in equation (10) is approximately given by the 
function of angle X 

qrc{X)=qrpy(X)/y (31) 

where qrp is the radiation heat flux for parallel plates 

1 f 
qTCdX= 

\/e„ + Ua-l 

and 7 is the average value given by 

in- T*\ 

7 
7T JO 

7 (A") =0.6122 

(32) 

(33) 

The values of 7 ( X ) / 7 for each angle from the bottom of the 
horizontal cylinder are tabulated in Table 1. As shown in the 
table, the qrc is about 25 percent higher than qrp at X= 0 and it 
gradually decreases with the increase in X to about 75 percent 
of that at A=5ir /6 . Considering that the radiation contribu
tion averaged over the cylinder surface is of major concern 
here, the total film boiling heat transfer coefficient including 
the radiation contribution will be obtained with this 
approximation. 

Then the boundary condition, equation (10), is transformed 
into 

X 

r(X)/r 

0 

1.24 

Table 1 

71/6 

1.22 

Angular variation of y{X)ly 

71/3 

1.17 

71/2 

1.08 

271/3 

0.95 

S J T / 6 

0.75 

11 71/12 

0.59 

71 

0 

sp, = -wyoi)i + 
1 - QrpD 

KSRSPTIS 
(e;/e'v),sc,+ 2LNvyp„(0l), 

(34) 

and equations (11) to (13) are transformed into 

(0„),=O, (0,), = 1 (35) 

/„(0)=/;(0) = 0, 0„(O)=1 (36) 

l im/ /= Iim0/=O (37) 

The nondimensional parameters in the listed equations above 

r AT Q, K'pvsLJkA sat 
SPs= LPr„ 

SCs^
 CP*AT^ (38) 

= 0(24) R,m\J£!±L\M , * . - [ - (P/QQ-P)/Pi w 

i(P(o»-p)/Plb 
(39) 

2.4 Heat Transfer Equation. The film boiling heat 
transfer coefficient averaged over the cylinder surface, in
cluding radiation contribution, is given by the following non-
dimensional equation: 

Nu = 
hD 

= -21 /4
T(Gr„. 4^(0) ( P * ) t 

-0.728(Gr r a)1 / 4^(0)-

(p*)„ 

(pk)vw 

<P*), 
(40) 

where the nondimensional temperature gradient 6„(0) at the 
cylinder surface is numerically obtained by solving the or
dinary differential equations described above with the use of 
an iteration method. 

2.5 Comparison Between the Theoretical Solution and Ex
perimental Results for Horizontal Cylinders With Large 
Radiation Emissivity. The authors' newly obtained pool film 
boiling heat transfer data from a horizontal platinum cylinder 
in various liquids for wide ranges of liquid subcooling, surface 
superheat, system pressure, and cylinder diameter are com
pared with the theoretical solutions in detail in part 2 of this 
work. As the authors have already pointed out in their discus
sion of the results of their water experiment (Sakurai et al., 
1986), the saturated and subcooled film boiling heat transfer 
coefficients for a horizontal platinum cylinder of nondimen
sional diameter around 1.3 (the radiation emissivity of which 
is negligibly small) agree well with the theoretical solution in a 
comparatively lower superheat region even for various liquids 
and, for higher superheat and for higher or lower values of the 
nondimensional diameter, the heat transfer coefficients 
gradually become higher than the theoretical values. 

To verify the applicability of the theoretical solution in
cluding the radiation effect obtained here, the theoretical solu
tion is compared with the experimental results obtained by 
using horizontal cylinders of nondimensional diameter around 
1.3 with very low and very high radiation emissivities in water. 

The authors' experimental results for the pool film boiling 
heat transfer coefficients from 3 and 4-mm-dia horizontal 
platinum cylinders (nondimensional diameters 1.25 and 2 and 
radiation emissivity around 0.12) in water at pressures of 294 
kPa and 1960 kPa, respectively, are shown against surface 
superheat in Figs. 2 and 3 with the liquid subcooling as a 
parameter. The theoretical values including the radiation ef
fect are shown in each figure for comparison. The experimen
tal data agree very well with these theoretical values. The 
theoretical values if there were no radiation are also shown in 
these figures. These values are almost in agreement with the 
theoretical values including radiation contribution because of 
the low emissivity of the platinum. It is confirmed that sub-
cooled pool film boiling heat transfer coefficients including 
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Fig. 2 Comparison of theoretical values including and not including 
radiation contribution with the authors' data on 3-mm-dia horizontal 
platinum cylinder (D' = 1.25) in water at a pressure of 294 kPa 
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Fig. 3 Comparison of theoretical values including and not including 
radiation contribution with the authors' data on 4-mm-dia horizontal 
platinum cylinder (D' =2.0) in water at a pressure of 1960 kPa 

little radiation effect (namely, convection contribution) in 
water for D' —1.3 are predicted well by the theoretical model 
based on laminar boundary layer theory in a comparatively 
wide surface superheat region. However, it should be noted 
that the theoretical solution for the boundary condition of 
zero tangential vapor and liquid velocities instead of equations 
(8) and (9) at the vapor-liquid interface, neglecting the flow 
induced by the action of shear forces similar to that supposed 
by Sparrow and Cess (1962) in their analysis of film boiling 
heat transfer from a vertical plate, cannot at all predict the ex
perimental results for subcooled conditions, though it predicts 
well the results for saturated conditions as shown in these 
figures. This means that the liquid flow caused by the action 
of the shear forces at the vapor-liquid interface performs an 
important role for subcooled film boiling heat transfer in com
parison with free convection in the liquid phase. 

The experimental results, including a large radiation con
tribution for D' = 1.3 obtained by Siviour and Ede (1970), 
whose experimental conditions are almost the same except for 
the large radiation emissivity of the horizontal cylinder, are 
shown in Figs. 4 and 5. These figures show their data of pool 
film boiling heat flux versus subcooling for water on 3.2 and 
6.4-mm-dia horizontal cylinders (nondimensional diameters 
1.28 and 2.6) with a radiation emissivity of 0.75 and the 
cylinder surface superheat as a parameter. These data are for 
surface superheats of 444, 611, and 779 K, and for water sub-
coolings ranging from 0 to 80 K at atmospheric pressure. The 
theoretical pool film boiling heat fluxes q, including radiation 
contributions numerically derived from the theoretical model 
obtained here, are shown in these figures for comparison. The 
theoretical values, including the radiation contributions, are 
seen to be in good agreement with the experimental results. 

The theoretical pool film boiling heat fluxes qco for no 
radiation contribution are also shown in these figures. The dif

ference between q and qco at a certain surface superheat 
becomes smaller with the increase in the liquid subcooling and 
becomes larger with the increase in the surface superheat. The 
difference at A7'sat = 779 K for A7sub = 80 K in Fig. 5, as a 
typical example, corresponds to about 29 percent of the radia
tion heat flux qrp given by equation (32). The convective heat 
flux qc (qc = q — qrp) becomes lower than qco by about 71 per
cent of the radiation heat flux, because of vapor film thickness 
due to the radiation heat transfer. 

It was postulated to derive the theoretical solution including 
the radiation contribution that radiation heat transfer from 
the cylinder to the vapor-liquid interface would be absorbed 
in a negligibly small distance in the liquid and then produce 
vapor. If some part of the radiation is assumed to penetrate in
to the liquid, the difference between q and qco at the same 
Arsat and ATsub will increase up to near qrp depending on the 
increase of the penetration ratio. Judging from the fact that 
the theoretical solution agreed well with the experimental 
results as shown in Figs. 4 and 5, the postulation for the 
theoretical model is considered to be reasonable. 

3 Analytical Solution of Theoretical Pool Film Boiling 
Model With Radiation Effects 

Rigorous solution of the theoretical model can only be ob
tained numerically. In this section, it is intended to derive an 
approximate analytical solution of the theoretical model, 
which is necessary as a basic equation for a general correlation 
for pool film boiling heat transfer. 

The pool film boiling heat transfer coefficient h under 
saturated and subcooled conditions is expressed by the equa
tion, similar to the expression for saturated pool film boiling 
heat transfer given by Bromley (1950), 

h = hco+Jhr (41) 
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horizontal cylinder (D' = 2.6, i„ = 0.75) in water at atmospheric pressure 

K--
r 4 _ T L 

l/e„ + l / a - l AT,a 

(42) 

where hco is the pool film boiling heat transfer coefficient if 
there were no radiation including an effect of liquid subcool-
ing, J is a radiation parameter, and hr is a radiation heat 
transfer coefficient for parallel plates. 

3.1 Pool Film Boiling Heat Transfer Coefficient Without 
Radiation Contribution. To derive the analytical solution of 
the theoretical model for the pool film boiling heat transfer 
coefficient without a radiation contribution, the pool film 
boiling heat transfer coefficient from a vertical plate of 
uniform temperature is considered first, and then the result 
for a vertical plate is transformed to that for a horizontal 
cylinder by using a result for Hermann's transformation. 

The following assumptions are made in the theoretical pool 
film boiling model based on laminar boundary layer theory to 
obtain the approximate analytical solution in a simple form. 

The resultant analytical solution will be modified by compar
ing it with the rigorous solution. 

1 As shown in Fig. 6, a laminar liquid sublayer is supposed 
to exist outside the vapor boundary layer, and outside the 
liquid layer, the liquid is supposed to be stagnant and at a con
stant bulk temperature Tx. 

2 The thermophysical properties of vapor and liquid are 
supposed to be constant at the values for 0.5(TW + Ts) and 
r s - 0 . 5 A r s u b , respectively. 

3 Inertia forces and convective energy transports of vapor 
and liquid, and body force in the liquid are neglected to get the 
temperature and velocity distributions. Body force in the 
liquid may be negligible because a major contribution to the 
pool film boiling heat transfer for large subcooling is liquid 
flow induced by the action of the shear forces at the vapor-
liquid interface. The convective energy transports will be 
evaluated approximately by integral forms of energy balance 
equations for vapor and liquid layers described later. 

For the vapor boundary layer, momentum and energy con
servation, respectively, take the form 

g(p,-Pv)+liv^~=Q (43) 
dy2 

k ^ kv dy2 

For the liquid boundary layer 

d2u, 

= 0 

N 

k, 

dz2 

d2T, 

= 0 

=o 
The boundary conditions are as follows: 

{a) At the plate interface (y = 0) 

w„=0, TV = T„ 

(b) At the vapor-liquid interface (y = 8, z = 0) 

«» = "/ TV = T, = TS, 
duv I du, 

I1" ~^T . =/*' dy b>=6 dz 

(c) At the outer end of the liquid layer {z = (3) 

«, = 0, T, = TX 

z=o 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 
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The velocity distributions for both layers are 

g(Pi-Pv) 2 , 8(Pi-Pu)&[/ N 
1\>.V 2/x„ L\ ntt 

I 1/4 

-f)/(f" 
g{pl-pv)& Pl/Pv 

-)}> (50) 

2/i, n,/nv+fi/5 

The temperature distributions are 

Tv = Tw-(y/&) (Tw-Ts) 

T, = Ts-(z/f3)(Ts-Ta) 

The integral forms of the energy balance equations for both 
boundary layers are 

(51) 

(52) 

(53) 

d [* kv(Ty, — Ts) ki{Ts — Taa) 

k,(Ts~Tx) 

(54) 

(55) 

By combining equations (50) and (52) with equation (54), and 
equations (51) and (53) with equation (55), one obtains 

«f 

where 

dx ' 5f 

f=H,/n„, f=/3/6 

mv = ( /+ 4 f ) / ( / + 0 , m, = / f 2 / ( /+ f) 
cui = 12iiuk„(r„,- Ts)/{L'gpv(p,~pv)! 

C„2 = 12/x„A:1J(r i-roo)/(JL'gp1 ,(p,-p„)l 

C, = 6n,ki/[gcplpi(p,-pv)} 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

The only solution that satisfies equations (56) and (57) 
simultaneously and has practical meaning at x=0 is f=f( 
(independent of x; j3 and 5 take the same functional forms of 
x). Integration of equations (56) and (57) leads to 

x 

and 

3 ( 7 + 4 ^ , 

4Q (/•+$-,) il 
x 3/tf 

(63) 

(64) 

(65) 

(66) 

(67) 

Equations (63) and (64) give 

fCvi fi -fC^\ - 4C,f, - / C , = 0 

The root of equation (65) appropriate for this problem is 

^ = U+V+Cv2/(3Cvl) 

where 

U=(Wi+yfW2), V={Wx-4w2) 

Wy=(Cv2/3Cvl)
3+2Cv2Cl/(3fCtl) + Cl/(2Cvl) 

W2 = [-4C2
v2/(27fCvl) + 2Cv2/3 - 64C,/(27/2)] [Cf /(fC3

vl) j 
+ {C,/(2C„,))2 + (C,/C l ,1)[C^/(3C„1))3 

The local heat flux qxatx=x] is given as 

qx=kv(Tw-Ts)/5 (68) 

From equation (64) 

8 = xj / 4 [ (4/3)Q(/+f 1 ) / ( / ' f i ) ) 1 

The heat flux averaged from x = 0 to x = xt is 

4 kv(Tw-Ts) 

xx Jo "" 3 5 

The pool film boiling heat transfer from a vertical plate 
averaged from x = 0 to x = xx is expressed by the nondimen-
sional equation 

Qx--
1 r*i 

A:, Jo 
^r fx = (69) 

Nu„ 
QxX\ 

kv(Tw 

4 

• r , ) 

_4*j_ 
38 

.3/4 /si -i 1/4 

= 0.793A/y4 (70) 
3 ' L 4 C , a + f i ) -

The pool film boiling heat transfer from a horizontal cylinder 
is approximately related to that from a vertical plate by using a 
result for Hermann's transformation (Nishikawa and Ito, 
1966) 

hC0D 3 ( D \ 3 A t 

_££_ = 41 / 4 .0 .728NuuJ ) 
k.. 4 V x, / 

Nu„ = = 0.612M1/4 

L'=L + 0.5cpvATsM, 

Sc = cplATB, 

(71) 

The nondimensional parameters in equations (70) and (71) are 

Mx = [Gr„xPr„L'/(cpl)Arsat)][i<V{ 1 

+ E/(SpPr,)}]/(RPrlSp)2 

M = {GivPrvL'/(cpvATsJ}[E3/{l 

+ E/(SpPrl))]/(RPi,Sp)2 

E= (A + OlB)m + (A - C / B ) m + (l/3)Sc 

A = (l/27)5'c3 + (l/3)R2SpPi,Sc + (l/4)R2Sp2Prj 

B = (-4/27)Sc2 + (2/3)SpPr,Sc- (32/27)SpPv ,R2 

+ (l/4)Sp2Prj + (2/21)Sc3/R2 

C=(l/2)R2SpPr, 

R = lpv/*v/(pli*l)]
i/2 

' sub/^ ' . Sp = cpvATsat/(L'Prv) 

For saturated pool film boiling heat transfer (Sc = 0) 
without radiation effects, equation (71) reduces to 

Nu„ = 0.612[{0.5 + 2E/($pPr , )} /{ l 

+ E/(SpPr,) )]1/4[Gr„Pr„Z//(cp!,A7;at)]"4 (72) 

where E= (A + OlE)m + (A-OfB)m, A={\/4)R2Sp2Pr2, 
B= -(32/27)SpPrlR

2 + (l/4)Sp2Prj, and C=(l/2)R2SpPr,. 
Bromley (1950) derived the solutions of saturated film boil

ing heat transfer for two extreme cases based on a simple one-
phase film boiling model. These two solutions are the third 
term of equation (72) multiplied by a constant of 0.512 if the 
saturated liquid is assumed to be stagnant, and by a constant 
of 0.724 if it is assumed to move freely with vapor. On the 
basis of his experimental results, he proposed a correlation of 
saturated film boiling heat transfer for no radiation effect. 
This is the third term of equation (72) with the mean value of 
these constants, 0.62. It is understood that the authors' cor
relation for the saturation condition given by equation (72) is 
Bromley's correlation multiplied by a new term (the second 
term of equation (72)) as a result of more general treatment at 
the vapor-liquid interface. If the liquid viscosity approaches 
infinity or,zero, which corresponds to the conditions that the 
saturated liquid is stagnant or move freely with the vapor at 
the vapor-liquid interface, the value of the combined first and 
second terms of equation (72) becomes 0.515 or 0.728, respec
tively. These values agree with those of Bromley, though slight 
differences exist. 

The pool film boiling heat transfer coefficients for no radia
tion contribution, hco, obtained from the approximate 
analytical solution, equation (71), for various liquids of widely 
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different physical properties, are compared with those from 
the rigorous numerical solution of the theoretical model for no 
radiation effect. For the liquids whose Prandtl numbers are 
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Fig. 9 Values of hco for Freon-113 from the analytical solution, equa
tion (73), compared with the rigorous solution 

around unity, such as water, liquid nitrogen, and liquid argon, 
the values of hco obtained from this approximate analytical 
solution are in good agreement with those from the rigorous 
numerical solution within -10 to 3 percent error under 
saturated and subcooled conditions. This means that the 
several assumptions made on the derivation of the approx
imate analytical solution do not cause a serious error for the 
liquids with the Prandtl numbers around unity. 

However, for liquids with higher Prandtl numbers, such as 
freons and alcohols, the approximate values calculated from 
equation (71) become lower than the values of the rigorous 
solution with the increase in subcooling, though they are 
almost in agreement under the saturated condition. In the case 
of iso-propanol under atmospheric pressure for instance, the 
heat transfer coefficients derived from the analytical solution 
for Arsub = 50 K are about 20 percent lower than those from 
the rigorous one. On the contrary, for the liquids whose 
Prandtl numbers are far lower than unity such as liquid 
metals, the approximate values calculated from equation (71) 
under subcooled condition are higher than the values derived 
from the rigorous solution, though they are almost in agree
ment under the saturated condition. In the case of sodium 
under atmospheric pressure for instance, the appxoximate 
values from equation (71) for Arsub = 50 K at around 
Arsat = 1000 K are about 2 times higher than those from the 
rigorous solution. 

The analytical solution of the theoretical model for no 
radiation contribution was derived under the supposition that 
the thermal boundary layer thickness in the liquid was equal to 
that of the velocity boundary layer as mentioned before. This 
supposition probably is the major cause of the abovemen-
tioned error of the analytical solution for the subcooled 
liquids whose Prandtl numbers are far higher or lower than 
unity and it will be valid only for liquids whose Prandtl 
numbers are around unity. To make the approximate 
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analytical solution agree with the rigorous numerical solution 
for various liquids under a wide range of conditions, equation 
(71) was modified to 

Nuv = 0.6l2M*0-25 (73) 

where M* is given by the same expression as M except that the 
modified subcooling parameter Sc* is used instead of Sc as 

Sc*=KSc (74) 

where K =[0.93Pr?-22 + 3.0exp(-100.0SpPr,Sc-°s)] 
[0.45 x l 0 5 P r , S c / ( l + 0.45 X 105Pr,Sc)]. For liquids other 
than liquid metals, .fif becomes simpler as 

Jf=0.93PrS)-22 

This modification was performed by first choosing the func
tional form of K as functions of nondimensional parameters 
appeared in the analytical solution of hc0, and by least square 
fitting the coefficient and exponent of each parameter. In 
Figs. 7 to 11, the values of hco obtained from equation (73) 
and the values from rigorous numerical solution are shown for 
comparison against the cylinder surface superheat with the 
liquid subcooling as a parameter for various liquids of widely 
different physical properties, such as iso-propanol, which has 
a large Prandtl number, and liquid sodium, which has a very 
low Prandtl number. They are in good agreement with each 
other within - 1 0 to +5 percent error as shown in these 
figures. As for the liquid metals, not only the values for liquid 
sodium but also for other liquid metals such as potassium, 
rubidium, and cesium are in good agreement with the values 
from the rigorous numerical solution. 

3.2 Radiation Parameter. Referring to equation (41), the 
radiation parameter J can be obtained from the difference of 
two theoretical pool film boiling heat transfer coefficients 
given as the rigorous numerical solutions of the theoretical 
model with and without a radiation effect at the same cylinder 

surface superheat. Relations between J and surface superheat 
Arsat were obtained with liquid subcooling ATsub as a 
parameter for water, ethanol, iso-propanol, Freon-113, 
Freon-11, liquid nitrogen, liquid argon, liquid helium, and 
liquid sodium for wide ranges of pressure, subcooling, and 
cylinder surface superheat. Typical results of J versus Arsat 

curve for the platinum cylinders with negligibly small emissivi-
ty are shown in Figs. 12 and 13 for water and liquid nitrogen, 
respectively. Typical J versus ATSM curves for the cylinders 
made of alloys such as stainless steel and nichrome, whose 
emissivities at around 1000 K are about 0.75, are shown in 
Figs. 14 and 15 for water and sodium. The value of J is higher 
for lower subcooling and it becomes higher with the increase 
in heater surface superheat. Higher system pressure and higher 
emissivity of the heater surface material result in a higher 
value of J for each heater surface superheat at a certain 
subcooling. 

It is assumed that J is a function of hco/hr and the non-
dimensional quantities appeared in the analytical solution of 
hc0. The following radiation parameter equation is obtained to 
express the values of / for various kinds of liquid under wide 
ranges of pressure, surface superheat, liquid subcooling, and 
radiation emissivity: 

J=F+ (l-F)/(l + 1.4hC0/hr) (75) 

where 

F=. 

[l-0.25exp(-0.nSpr)]exp(-0.64R-0-60PrrOA5Sp~onSc1
r
A) 

for F > 0.19 

F=0.19 foiF<0A9 

Spr = cpvATsat/(LPrv), Scr = cplATsub/L 

It was confirmed that the radiation parameters for large and 
very small emissivities obtained for the various liquids and for 
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Fig. 14 Radiation parameter J for a cylinder of cw = 0.75 in water 
against surface superheat with liquid subcooling as a parameter 

Fig. 13 Radiation parameter J for platinum cylinder in liquid nitrogen 
against surface superheat with liquid subcooling as a parameter 
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Fig. 15 Radiation parameter J for a cylinder of ew = 0.75 in liquid 
sodium against surface superheat with liquid subcooling as a parameter 

wide ranges of pressure, subcooling, and cylinder surface 
superheat are expressed within 20 percent error by equation 
(75), except for high subcooling and low surface superheat for 
liquid sodium. The values of J obtained from equation (75) 
are shown in Figs. 12 to 15 for comparison as typical exam
ples. 

Bromley (1950) performed a qualitative study on the effect 
of radiation and presented the simple radiation parameter 
equation for saturated pool film boiling 

J= J_r * 1 
4 Ll + 2.6hm/h,l 

(76) 

Lubin (1969) analyzed the film boiling from a vertical plate 
and presented an analytical solution including a radiation ef
fect, which substantiated Bromley's qualitative solution. The 
values of J obtained from equation (76) are shown in Figs. 12 
to 15 for comparison with the authors' values. Although 
Bromley derived the radiation parameter qualitatively based 
on the assumption that the temperature distribution in the 
vapor layer is linear and hc0 is inversely proportional to the 
vapor film thickness, the authors' values for various liquids 
under saturation conditions almost agree with the values given 
by equation (76) at comparatively lower surface superheats as . 
shown in these figures. The authors' values of / become 
gradually larger than the values given by equation (76) with 
the increase in the surface superheat. These increasing rates 
from the latter values depend on kinds of liquid; they are 
higher for liquids with lower latent heats, such as alcohols, 
freons, and cryogenic liquids, than those for the liquids with 
higher latent heats, such as water and liquid sodium. At 1500 
K of the surface superheat, for instance, the authors' values of 

J are about 10 and 26 percent higher than those from equation 
(76) for water and for liquid nitrogen, respectively. 

Siviour and Ede (1970), and Hamill and Baumeister (1967) 
assumed that Bromley's equation for the radiation parameter 
for saturated film boiling is applicable to that in subcooled 
film boiling. However, the results of this theoretical radiation 
parameter study do not support this assumption. The dif
ference between q and qcg (i.e., Jqrp), for AT^ =779 K and 
ATsu,, = 80 K on the graph of q versus ATsab shown in Fig. 5, 
corresponds to 0.29qrp. That is, J is 0.29. This value also can 
be evaluated from the J versus A!T8at curve shown in Fig. 12. If 
the value of J is evaluated by using equation (76) given by 
Bromley, the value becomes about 0.76, which corresponds to 
2.6 times of the value given by the authors. This value will 
cause overestimation of the total heat flux for pool film boil
ing by about 12 percent at the conditions mentioned above. 

3.3 Comparison Between the Analytical Solution With 
Radiation Effect and the Rigorous Solution. The approx
imate analytical solution of the theoretical model with radia
tion effect thus obtained is given by equation (41) combined 
with equations (42), (73), and (75). Pool film boiling heat 
transfer coefficients including a radiation contribution that 
are calculated from the approximate analytical solution are 
compared with the rigorous numerical solutions in Fig. 16 for 
several kinds of liquids. The emissivity of the cylinder was 
chosen to be 0.75 in this comparison. As shown in this figure, 
these two coefficients agree with each other within 7 percent 
error. It was confirmed that the pool film boiling heat transfer 
coefficients obtained from the rigorous numerical solutions 
for various liquids of widely different physical properties are 
predicted with good accuracy by the analytical solutions. 
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Fig. 16 Pool film boiling heat transfer coefficients including radiation 
effects for various liquids under subcooled conditions calculated from 
the analytical solution compared with the rigorous solutions 

4 Conclusions 

A rigorous numerical solution of the theoretical model for 
pool film boiling heat transfer from a horizontal cylinder 
based on laminar boundary layer theory, including the con
tributions of liquid subcooling and radiation from the 
cylinder, was derived. It was confirmed that the rigorous solu
tion predicted well the experimental results of pool film boil
ing heat transfer from a horizontal cylinder with high radia
tion emissivity for a wide range of water subcooling for non-
dimensional cylinder diameters around 1.3. There the ex

perimental data of saturated and subcooled pool film boiling 
heat transfer from the cylinder with negligible radiation 
emissivity in water agreed well with the values derived from 
the same theoretical model but excluding radiation contribu
tion for a wide range of the cylinder surface superheat. 

An approximate analytical solution of the theoretical model 
was derived as the sum of the pool film boiling heat transfer 
coefficient if there were no radiation hco and the radiation 
heat transfer coefficient for parallel plates hr, the latter first 
multiplied by the nondimensional radiation parameter J. The 
approximate analytical solution accorded very well with the 
rigorous numerical solution of the theoretical model for 
various kinds of liquids including both those with low latent 
heat and those with the Prandtl number far higher or lower 
than unity. 
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A General Correlation for Pool Film 
Boiling Heat Transfer From a 
Horizontal Cylinder to Subcooled 
Liquid: Part 2—Experimental Data 
for Various Liquids and Its 
Correlation 
Experimental data of pool film boiling heat transfer from horizontal cylinders in 
various liquids such as water, ethanol, isopropanol, Freon-113, Freon-11, liquid 
nitrogen, and liquid argon for wide ranges of system pressure, liquid subcooling, 
surface superheat and cylinder diameter are reported. These experimental data are 
compared with a rigorous numerical solution and an approximate analytical solu
tion derived from a theoretical model based on laminar boundary layer theory for 
pool film boiling heat transfer from horizontal cylinders including the effects of liq
uid subcooling and radiation from the cylinder. A new correlation was developed by 
slightly modifying the approximate analytical solution to agree better with the ex
perimental data. The values calculated from the correlation agree with the authors' 
data within ± 10 percent, and also with other researchers' data for various liquids 
including those with large radiation effects, though these other data were obtained 
mainly under saturated conditions at atmospheric pressure. 

1 Introduction 

Even though many experimental data of saturated pool film 
boiling heat transfer from horizontal cylinders for various 
conditions have been reported, there are few data for the sub
cooled case. The effect of liquid subcooling on pool film boil
ing heat transfer from a cylinder has been studied only under 
limited conditions, such as in water at atmospheric pressure, 
by a few investigators (Tachibana and Fukui, 1961; Siviour 
and Ede, 1970). 

The authors (Sakurai et al., 1982, 1984, 1986) carried out, 
for the first time, systematic experiments concerned with the 
saturated and subcooled film boiling on a horizontal cylinder 
in a pool of water for wide ranges of experimental conditions. 
They presented a correlation for pool film boiling heat 
transfer from a horizontal cylinder in water by modifying an 
approximate solution of a theoretical pool film boiling model 
in light of the experimental data. 

The purposes of this work are: first, to obtain the ex
perimental data of pool film boiling heat transfer from a 
horizontal cylinder in various liquids of widely different 
physical properties for wide ranges of surface superheat, liq
uid subcooling, system pressure, and cylinder diameter; sec
ond, to compare the data with the values derived from the 
rigorous numerical and approximate analytical solutions of 
the theoretical model based on laminar boundary layer theory 
for pool film boiling heat transfer from a horizontal cylinder 
including the effects of liquid subcooling and the radiation 
from the cylinder previously reported (Sakurai et al., 1990); 
and third, to derive a new correlation applicable to various 
kinds of liquids by slightly modifying the approximate 
analytical solution to agree better with the experimental data 
for various liquids. 
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2 Apparatus and Method 

2.1 Pool Boiling Apparatus. The apparatus used for the 
experiments in water, ethanol, iso-propanol, Freon-113, and 
Freon-11 is shown schematically in Fig. 1. It mainly consists of 
a boiling vessel and a liquid feed tank. The boiling vessel (1) is 
a cylindrical stainless steel pressure vessel of 20 cm i.d. and 60 
cm height capable of operating up to 5 MPa. The vessel has 
two sight ports and is equipped with a pressure transducer and 
a sheathed 1-mm-dia CA thermocouple that is used to measure 
the bulk liquid temperature. A cylinder test heater (2) is 
horizontally supported in the vessel. The vessel is connected 
via a valve to a liquid feed tank (8), which is used to adjust the 
liquid level in the boiling vessel to realize good film boilmg 
conditions, to be described later. 

Another apparatus used for the experiments in liquid 
nitrogen and liquid argon is shown in Fig. 2. The boiling vessel 
(1) is a vacuum-insulated cylindrical pressure vessel of 20 cm 
i.d. and 70 cm height capable of working up to 3.5 MPa. The 
vessel has two sight ports (5) and is equipped with a sheathed 
1-mm-dia CC thermocouple that is used to measure the bulk 
liquid temperature. The vessel is connected via a valve to a 
liquid feed tank (7). The system pressure in the boiling vessel is 
automatically controlled within ± 1 kPa of a desired value by 
a pressure control system consisting of a pressure transducer 
(P.T.), a pressure controller (10), and a control valve (9). 

2.2 Test Heater. Platinum cylinder test heaters 0.3, 0.5, 
0.7, 1.2, 2, 3, 4, 5, and 6 mm in diameter were bent to a TJ-
shape consisting of horizontal and vertical heater sections as 
shown in Figs. 1 and 2. Two fine 30-/mi-dia platinum wires 
were spot welded at around 20 mm from each end of the 
horizontal heater section. The effective lengths of the heaters 
between the potential taps on which film boiling heat transfer 
was measured were about 50 mm. 

Each heater was annealed and its electrical resistance versus 
temperature relation was calibrated in liquid nitrogen, water, 
and glycerin baths before using it in the experiment. The 
calibration accuracy was estimated to be within ±0.5 K. 
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Boiling Vessel 

2 Test Heater 

3 Potential Taps 

4 Electrodes 

5 Rupture Disk 8 Liquid Feed Tank 

6 Sheathed Heater ( P T ) Pressure Transducer 

7 N2 Gas ( jCJ Thermocouple 

Fig. 1 Schematic of pool boiling apparatus tor water, alcohols, and 

Freons 

2.3 Experimental Method and Procedure. A film boiling 
state was realized as follows: At first, the cylinder test heater 
was heated by direct current up to well above the minimum 
film boiling temperature in the vapor above the saturated 
liquid at a preselected pressure (the saturation pressure for a 
desired bulk liquid temperature) in the vessel, and then it was 
immersed by raising the liquid level to about 20 to 40 mm, 
depending on the kind of liquid, above the horizontal heater 
axis. Thereafter the system pressure was set to a desired value 
to realize a subcooled condition. Nitrogen gas was the 
pressurizing gas in the subcooled experiments for non-
cryogenic liquids, and helium gas for cryogenic liquids. After 
this pressure setting, the cylinder surface temperature was also 
set to a desired value by adjusting heater current. In many 
cases, film boiling heat transfer coefficients were measured by 
gradually decreasing the heating current from the initial value 
to that for the minimum film boiling point. However, at 
higher subcooled condition, the liquid temperature at the level 
of the test cylinder axis was constant for a while and then 
began to increase during the experiment; it was impossible to 
measure for a constant liquid subcooling the heat transfer 
coefficients on a large diameter cylinder for a wide range of 
surface superheats in one experimental run. The experimental 

1 Boiling Vessel 
CCryostadt) 

2 Test Heater 

3 Potential Taps 

A Electrodes 

5 Sight Port 

7 LN2 Peed Tank (M) Pressure Transducer 

3 Pressure Relief (re) Thermocouple 

9 Control Valve @ PI 100 ft Resistance Thermometer 

10 Pressure Controller (LT) Liquid Level Transducer 

1 1 He gas ^ G ) Pressure Gauge 

6 Sheathed Heater 12 Vacuum Pump 

Fig. 2 Schematic of experimental apparatus for liquid nitrogen and 

liquid argon 

data for the highly subcooled liquid were obtained by per
forming several runs for successive short ranges of surface 
superheat. 

The test heater temperature was measured by resistance 
thermometry. A double bridge circuit including the test heater 
as a branch was first balanced at the bulk liquid temperature. 
The output voltages of the bridge circuit together with the 
voltage drops across the potential taps of the heater and across 
a standard resistance were amplified and passed to the analog-
to-digital converters of a digital computer. The average 
temperature of the heater was calculated with the aid of the 
previously calibrated resistance-temperature relation. The 
heater surface temperature was calculated from the measured 
average temperature and heat generation rate by solving the 
conduction equation in the heater. 

The experimental error was estimated to be ± 1 K in the 
heater surface temperature and ± 2 percent in the heat flux 
based on the following facts: Platinum cylinders of high purity 
(99.99 percent) were used and their electrical resistance versus 

N o m e n c l a t u r e 

D = 

D' = 

g = 

Gr„ = 

h = 

h,n = 

specific heat capacity, 
J/(kg K) 
diameter of cylinder heater, 
m 
D[g(Pl-pv)/o]y2 = non-
dimensional diameter of 
cylinder heater 
departing bubble diameter, 
m 
acceleration due to gravity, 
m/s2 

g(Pi -pv)D
3/(pvv

2
v) = Gra$-

hof number 
pool film boiling heat 
transfer coefficient, 
W/(m2K) 
pool film boiling heat 
transfer coefficient if there 
were no radiation, 
W/(m2K) 

hr = radiation heat transfer 
coefficient, W/(m2K) 

J = radiation parameter 
K = nondimensional quantity as 

a function of D', equation 
(4) 

k = thermal conductivity, 
W/(m K) 

L = latent heat of vaporization, 
J/kg 

L' = L + 0.5 cpvATs?t= latent 
heat plus sensible heat con
tent of vapor, J/kg 

M* = nondimensional quantity, 
see Part 1 of this paper 

Nu = Nusselt number 
Pr = Prandtl number 

ATsat = heater surface superheat, K 

Arsub = liquid subcooling, K 
X = wavelength of vapor-liquid 

interfacial oscillation, m 
Xc = 2ir[a/[g{pl-Pv)}]y2 = cnt-

ical wavelength of Taylor 
instability for horizontal 
plate, m 

Xm = 27rV3[<T/(g(j0/-p1,))]1/2 = 
most dangerous wavelength 
of Taylor instability for 
horizontal plate, m 

ix = viscosity, kg/(s m) 
v = kinematic viscosity, m2 /s 
p = density, kg/m3 

CT = surface tension, N/m 

Subscripts 
/ = liquid 
v = vapor 
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Water 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Ethanol 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Iso-propanol 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Freon-113 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Freon-11 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Liquid nitrogen 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Liquid argon 
Cylinder diameter 
System pressure 
Liquid subcooling 
Maximum superheat 

Table 1 

0.3, 0.5, 0.7, 1,2, 2.0, 3.0, 4.0 mm 
101.3 kPa-1960kPa 
0 K-40 K 
700 K 

1.2, 2.0, 4.0 mm 
101.3 kPa 
0 K-50 K 
600 K 

1.2, 2.0, 4.0 mm 
53.3 kPa, 101.3 kPa 
0 K-50 K 
600 K 

0.7, 1.2, 3.0 mm 
101.3 kPa-406.2kPa 
0 K-50 K 
400 K 

0.7, 1.2, 3.0 mm 
101.3 kPa-783.0kPa 
0 K-50 K 
400 K 

0.3, 0.7, 1.2, 3.0, 6.0 mm 
101.3 kPa-1836kPa 
0 K-30 K 
700 K 

1.2, 3.0 mm 
101.3 kPa-1833 kPa 
0 K-37 K 
700 K 

temperature relations were carefully calibrated within ±0.5 K 
error. For the accurate measurement of film boiling heat 
transfer, it was required that the temperature be uniform on 
the horizontal test cylinder before the simultaneous collapse of 
vapor film on the cylinder at the minimum film boiling point. 
These conditions were achieved by adjusting the liquid level so 
as to leave some hot part of the vertical heater section above 
the liquid level. A high-speed video camera system (200 
frames/s with a rotary shutter exposure of 1/2000 s) by which 
the dynamic behavior of the vapor-liquid interface in film 
boiling was observed for each experimental run, was also used 
to assure the simultaneous collapse (within one frame) of the 
vapor film at the minimum film boiling point, because the 
simultaneous collapse was realized only for the cylinder with a 
uniform temperature distribution along its axis. The 
reproducibility of the data was excellent; all the data for the 
same experimental conditions, even for cylinders made of 
other pure materials such as gold, with each other within the 
estimated experimental error. 

3 Results and Discussion 

3.1 Experimental Condition for Each Liquid. Ex
periments of pool film boiling on horizontal cylinders were 
performed in several kinds of liquid such as water, ethanol, 
iso-propanol, Freon-113, Freon-11, liquid nitrogen, and liquid 
argon for wide ranges of cylinder diameter, system pressure, 
liquid subcooling, and cylinder surface superheat. Experimen
tal conditions for each liquid are tabulated in Table 1. 

3.2 Comparison of Experimental Data With the Rigorous 
Numerical Solution. Experimental results of pool film boil
ing heat transfer coefficients for various liquids under the 
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Fig. 3 Film boiling heat transfer coefficients for 1.2-mm-dia cylinder 
(D' -0.48) in water at atmospheric pressure 
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Pressure 1 0 1.3 kPa 

Cylinder Diameter 2 mm 
( D' = 0-8 ) 
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500 
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Fig. 4 Film boiling heat transfer coefficients for 2.0-mm-dia cylinder 
(D =0.8) in water at atmospheric pressure 

wide ranges of conditions shown in Table 1 were compared 
with the theoretical values derived from the rigorous solution 
(obtainable only numerically by a digital computer) of the 
theoretical pool film boiling heat transfer model based on 
laminar boundary layer theory including the effects of liquid 
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( D'= 1-4 6 ) 
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Eqs . (1 ) , (3 )and ( 4 - b ) 
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Fig. 5 Film boiling heat transfer coefficients for 3.0-mm-dia cylinder 
(D' = 1.46) in water at pressure of 1960 kPa 
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Fig. 6 Film boiling heat transfer coefficients for 0.3-mm-dia cylinder 
(D'=0.56) in liquid nitrogen at pressure of 1836 kPa 

subcooling and radiation from the horizontal cylinder de
scribed previously (Sakurai et al., 1990). Comparison of the 
typical experimental data for various liquids such as water, 
ethanol, Freon-11, liquid nitrogen, and liquid argon are 
shown in Figs. 3 to 13. 

Nitrogen 

Pressure 1 8 3 6 • kPa 

Cylinder Diameter 1-2 mm 
( D'=2.3 ) 

ATsub 
0 K 
9 4 K 

1 8-4 K 
3 1.5 K 

Eqs . ( 1 ) , ( 3 )and ( 4 - b ) 

Rigorous Numerical Solution 

500 
ATsat 

1000 
( K ) 

Fig. 7 Film boiling heat transfer coefficients for 1.2-mm-dia cylinder 
(D' = 2.3) in liquid nitrogen at pressure of 1836 kPa 
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Fig. 8 Film boiling heat transfer coefficients for 3.0-mm-dia cylinder 
(D' = 5.5) in liquid nitrogen at pressure of 1836 kPa 

As shown in Figs. 5,7, 12, and 13, the experimental data of 
saturated and subcooled film boiling heat transfer from the 
horizontal cylinders of nondimensional diameter around 1.3 
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Fig. 9 Film boiling heat transfer coefficients for 6.0-mmdia cylinder 
(D' = 11.0) in liquid nitrogen at pressure of 1836 kPa 
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Fig. 11 Film boiling heat transfer coefficients for 4-mm-dia cylinder 
(0 ' = 2.6) in ethanol at atmospheric pressure 
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Fig. 10 Film boiling heat transfer coefficients for 1.2-mm-dia cylinder 
(D =0.78) in ethanol at atmospheric pressure 

for water, liquid nitrogen, Freon-ll, and liquid argon almost 
agree with the theoretical value in the lower superheat region 
comparatively near the minimum film boiling heat flux where 
the disturbance of the vapor-liquid interface induced by the 
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Fig. 12 Film boiling heat transfer coefficients for 1.2-mm-dia cylinder 
(D' = 1.4) in Freon-11 at a pressure of 783 kPa 
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Fig. 13 Film boiling heat transfer coefficients for 1.2-mm-dia cylinder 
(D' -2.2) in liquid argon at a pressure of 1833 kPa 
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Fig. 14 Saturated and subcooled film boiling heat transfer in liquid 
nitrogen for several nondimensional cylinder diameters plotted on log 
Nu r versus log M* graph 
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growth and the detachment of vapor bubbles on the horizontal 
heater caused by Taylor instability is very small because of low 
heat flux. The region where the experimental data almost 
agree with the theoretical values is widest when the nondimen
sional diameter is around 1.3 for each liquid, but its width 
largely depends on the kind of liquid; it is wider for water and 
Freon-11, and narrower for liquid nitrogen, ethanol, and 
liquid argon, as shown in these figures. On the other hand, as 
shown in Figs. 3, 4, 6, 8, 9, 10, and 11, as the nondimensional 
diameter increases or decreases from around 1.3, this region 
becomes shorter and the difference between the experimental 
results and the theoretical value becomes larger than that for 
D' = 1.3 at the same superheat. Furthermore, the region 
becomes wider with an increase in liquid subcooling and 
system pressure. 

With careful eyes, we can see in Figs. 5 and 12 that some 
part of the experimental data under subcooled condition for 
D' around 1.3 is slightly lower than the theoretical values. Pic
tures of the film boiling phenomena corresponding to these 
data taken with a high-speed video camera show that, in 
saturated and low subcooled film boiling, both the diameter 
and the frequency of detaching vapor bubbles on the top of 
the cylinder decrease with a decrease in cylinder surface 
superheat (Sakurai et al., 1984). Therefore, the supposition of 
a smooth and continuous vapor-liquid interface for the 
theoretical model appears to be valid for low surface 
superheat. However, for a high subcooled condition, vapor 
bubbles of somewhat large size do not detach but sit on the top 
of the cylinder and the bubbles become smaller with a decrease 
in the surface superheat. The bubble behavior on the top of 
the cylinder may have an effect upon the subcooled film boil
ing heat transfer, making it sometimes larger and sometimes 
lower than the theoretical values. 

3.3. Comparison of Experimental Data With the Analytical 
Solution. The following analytical solution of the theoretical 

Fig. 15 Saturated and subcooled film boiling heat transfer in water for 
several nondimensional cylinder diameters plotted on log Nuv versus 
log M* graph 

model based on laminar boundary layer theory for the pool 
film boiling heat transfer coefficient h from a horizontal 
cylinder including the contributions of liquid subcooling and 
radiation from the cylinder was presented earlier (Sakurai et 
al., 1990): 

h = hco + Jhr (1) 
where hc0 is the pool film boiling heat transfer coefficient if 
there were no radiation, expressed as 

Nuv = hcoD/kv = 0.612M*0-25 (2) 
J and hr represent the radiation parameter and radiation heat 
transfer coefficient for parallel plates, respectively. 

The experimental data were plotted in the form of log Nu„ 
versus log M* to investigate the relation between the data and 
the analytical solution for the various liquids. The value of hc0 
in Nu„ is obtained by subtracting the value of Jhr from the ex
perimental data of h, referring to equation (1), though the 
radiation contribution in pool film boiling heat transfer here 
obtained by using a platinum cylinder heater is almost 
negligibly small. 

Figures 14 and 15 show typical data for liquid nitrogen and 
water, respectively, on the graph together with the theoretical 
curve given by equation (2), which is a straight line with a gra
dient of 0.25. The data shown are for several groups of non-
dimensional diameter D', about 0.3, 1.3, 5.6, and 11.0 for 
nitrogen and about 0.13, 0.5, and 1.3 for water, chosen from 
the data for the wide ranges of experimental conditions shown 
in Table 1. The experimental data under the condition of one 
system pressure and one cylinder diameter for the tested 
ranges of liquid subcooling and surface superheat are ex-

446/Vol. 112, MAY 1990 Transactions of the ASME 

Downloaded 15 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



| g j 2 p f i ^ 

F l u i d 

o Water 
O ElhanoS 

. • I so 'P ropano l 
a Freon-113 
• Freon-11 
A N i t rogen 
* Argon 

Diam. 

3 mm 
2 m m 
2 mm 
1.2mm 
1-2mm 
1-2mm 
] . 2 m m 

E q . { 3 ) , K = 
— — E q . ( 2 ) 

Pressure 

101-3-19G0kPa 
1DV3kPa 

53-3-10t-3kPa 
1 0 t 3 - 4 0 6 2 k P a 
101-3-783 kPa 
l01.3-582.4kPO 
101-3-299-3kPa 

i T s u b 

0 -40 K 
D-54 K 
0-50 K 
0-50 K 
0-50 K 

0-155K 
0 K 

0 -54 

D' 

1-2-1-46 
1-3 
1-25 
1-2-1-46 
1-1-1-38 
1-24-1-43 
1.23-1-4 

i i mill I L_ 

1.0 

10J io5 
10" 10' 

Fig. 16 Saturated and subcooled film boiling heat transfer in various li
quids for nondimensional cylinder diameters around 1.3 plotted on log 
Nuv versus log M* graph 

pressed with the same symbol in these figures. As shown in the 
columns for Group 2 and Group 3 in the table in Fig. 14, the 
value of D' depends not only on the cylinder diameter but also 
on the system pressure. It is possible to have a single value of 
D' for different combinations of cylinder diameter and system 
pressure. It seems that the experimental data for each group of 
D' can be expressed with a single curve on this graph. The ex
perimental data curve for D' — 1.3 in each figure lies nearest to 
the theoretical curve given by equation (2). 

As D' varies from around 1.3, the experimental data curve 
for each D' moves upward almost parallel to that for 
D' = 1.3. As shown in Fig. 14, the gradient of the curve at a 
value of M* for D' =0.3 increases from 0.18 to 0.21 with the 
increase in M* from 200 to 105, that for D' - 5.6 from 0.23 to 
0.24 with M* from 106 to 108, and that for D' = 11.0 from 
0.24 to 0.25 with the increase in M* from 2 x 107 to 1010. 

Experimental data for water, ethanol, iso-propanol, 
Freon-113, Freon-11, liquid nitrogen, and liquid argon for the 
cylinders of D' = 1.3 are shown in Fig. 16 on the graph of log 
NUt, versus log M* with the theoretical curve given by equation 
(2). All the data for D' —1.3 exist in the vicinity of a single 
curve. The gradient of the curve gradually increases from 0.21 
to 0.24 with the increase in the value of M* from 104 to 108. 
The curve intersects the theoretical curve when M* approx
imately equals 5 x 105. The value of Nu„ for M* higher than 
that of the intersection point is slightly lower than the 
theoretical value, and it is slightly higher than the theoretical 
value when M* is lower than the intersection point. 

These figures show that all the data belonging to each group 
of D' were fitted very well with a single curve on the log Nu„ 
versus log M* graph, even though the data are obtained for 
various liquids of widely different physical properties under 
wide ranges of experimental conditions. Namely, the pool film 
boiling heat transfer data are well arranged with the non-
dimensional diameter as a parameter independent of the 
system pressure, liquid subcooling, and kind of liquid. 

The curves fitted to the data for the values of D' in these 
figures are expressed by the following equation: 

Nu„/(1 + 2/Nu„) = KM*°-2S (3) 

The value of K varies depending on the value of D'. The 
values of K for the values of D' in the figures are 0.76 for 
£>'=0.13, 0.69 for Z>'=0.3, 0.64 for £>'=0.5, 0.54 for 
D' = 1.3, 0.64 for /? ' =5.6, and 0.75 fori? ' = 11.0. The curves 
given by equation (3) with these values of K are shown in Figs. 
14, 15, and 16. 

The Nusselt number can be interpreted to be the ratio of 
cylinder diameter to average vapor film thickness if the radial 
temperature distribution in the vapor film is linear. The 
similarity transformation used to derive the theoretical equa
tion, equation (2), will become less appropriate as the ratio of 
vapor film thickness to the cylinder diameter increases. It can 
be considered that the variation of the gradient with the 
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Fig. 17 Values of K derived from the authors' data of saturated and 
subcooled film boiling heat transfer from horizontal cylinders of various 
nondimensional diameters, and fitted curves tor these values 

decrease in M* mentioned above is due to this effect and the 
term of (1 +2/Nu„) in equation (3) expresses the effect. 

It is expected that, if it becomes possible to derive the 
numerical solution for the previously reported fundamental 
equations for laminar film boiling heat transfer (Sakurai et 
al., 1990) without making any approximation such as the 
similarity transformation, equation (3) with AT=0.54, 
representing the experimental data for Z>' = 1.3, which is 
slightly higher or lower than equation (2) depending on the 
value of M* as shown in Fig. 16, will quantitatively agree with 
the solution. 

3.4 Derivation of a General Correlation. The value of K 
for each D' is determined by fitting equation (3) to a graph of 
log Nu„ versus M* for a series of saturated and subcooled ex
perimental data for a single value of D'. The values of A' thus 
obtained for water, ethanol, iso-propanol, Freon-113, 
Freon-11, liquid nitrogen, and liquid argon (the experimental 
conditions for which were already shown in Table 1) are 
shown against the value of D' in Fig. 17. They are expressed 
well by the following equations: 

K(D') = 0.415D'0-25 forD'>6.6 (4a) 

K(D') = 2.W'/(1 + 3.0D') for 1.25<Z>'<6.6 (4b) 

K(D') = 0.75/(1 +0.28£>') for 0.14<Z>' < 1.25 (4c) 
The curves representing the new correlation obtained here, 
consisting of equations (4a), (4b), and (4c), are shown in the 
figure. It is seen that the curves are in good agreement, within 
± 10 percent, with the values of K derived from experimental 
data for various liquids for wide ranges of surface superheat, 
system pressure, liquid subcooling, and nondimensional 
diameter. These equations can be approximately replaced by a 
single equation 

(5) #(£>') = 0.57-0.041(log10Z)') + 0.19(log10Z>')2 

for the whole range of D'. The curve representing equation (5) 
is also shown in Fig. 17. 

As shown in Fig. 17, the value of K depends on D' and is 
minimal at D' around 1.3. It is presumed that the disturbance 
of the vapor-liquid interface induced by growth and release of 

• vapor bubbles on the top of the cylinder may affect the film 
boiling heat transfer and make the value of K dependent on 
£>'. This disturbance depending on D' can be explained 
qualitatively as mentioned below by supposing that the dis
turbance is proportional to the ratio d/\m, where d is the 
diameter of a bubble departing from the vapor-liquid inter
face and Xm is the most dangerous wavelength of the vapor-
liquid interface. 

The authors have observed the dynamic behavior of vapor 
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bubbles and of the vapor-liquid interface on the top of the 
cylinder in the low surface superheat region under saturated 
conditions. First, the most dangerous wavelength Xm for large 
D' is near that of a horizontal plate; it decreases with a 
decrease in D' due to the effect of surface tension in the 
transverse direction of the horizontal cylinder on Taylor in
stability. Second, the diameter of the departing vapor bubble 
is also affected by surface tension and decreases with a 
decrease in D'. Third, the departing frequency / i s almost in
dependent of D'. They also presented the expressions for Xm, 
d, and / (Sakurai et al., 1984). 

According to their expressions,'the ratio d/\m is given by 
0.18 [l+7.4xlO^(p//p„)I-15]Z>"/3(l + 0.85/.D'). though this 
expression was confirmed at low superheat near the minimum 
film boiling point. This ratio is minimal for D' at D' = 1.7 and 
increases as D' increases from 1.7. 

Although this consideration is based on a simple assump
tion and experimental facts for limited conditions, it seems 
that K depends on the value of D' and takes on a minimum 
value at a certain value of D' because X,„ and d, which par
ticipate in the disturbance of the vapor-liquid interface on the 
top of the cylinder, depend on the value of D' in their special 
ways as a result of the different restrictions on X,„ and d, 
respectively, by the horizontal cylinder. 

In the region of D' >6.6, the heat transfer coefficient hco 
given by equation (3) with K given by equation (4a) becomes 
almost independent of the cylinder diameter when the value of 
Nu„ is sufficiently large that the denominator, (1 + 2/Nu„), on 
the left-hand side of equation (3) can be regarded as unity. 
Breen and Westwater (1962) pointed out that saturated film 
boiling heat transfer coefficients for large horizontal cylinder 
diameters were independent of the diameter. Using Xc as a 
characteristic length instead of the cylinder diameter, equation 
(3) with K given by equation (4a) can be approximately ex
pressed by the diameter-independent form 

(Nuv)D=Xc =0.415(2TT)1/4 [ ( M % = X C ] ' 

= 0.66[(M%=X J0-25 (6) 

where Xc is the critical wavelength of Taylor instability. 
The curves given by equations (4a) and (4b) intersect with 

each other at D' = 6.6, which corresponds to a point where the 
half perimeter of the cylinder almost agrees with the most 
dangerous wavelength of the Taylor instability (xD/2 = X,„, 
therefore, D' = 2TTV3.D/X„, = 4V3). In the case of D' >6.6, the 
half perimeter of the cylinder is sufficiently wide to induce an 
unstable wave in a transverse direction of the cylinder. It is 
assumed that the unstable wave becomes dominant and the in
crease in the disturbance due to this unstable wave will in
crease the value of K and make the heat transfer coefficient no 
longer dependent o n C . The unstable wave pattern in the 
transverse direction seems to be similar to that caused by the 
Helmholz instability at the vapor-liquid interface on a vertical 
plate. Hsu and Westwater (1960) showed the wavelength data, 
which were close to the Taylor instability wavelength. The 
local film boiling heat transfer coefficient on a vertical plate 
also becomes constant for the distance from the leading edge 
longer than the wavelength as observed by Bui and Dhir 
(1985). 

3.5 Comparison of Experimental Data With General Cor
relation. Typical experimental data for the film boiling heat 
transfer coefficient from horizontal cylinders with widely dif
ferent nondimensional diameters in water, liquid nitrogen, 
ethanol, Freon-11, and liquid argon, previously shown in Figs. 
3 to 12, are compared with the corresponding values 
calculated from the correlation consisting of equations (1), 
(3), and (4) in these figures, respectively. The values from the 
correlation agree within ±10 percent with the experimental 
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Fig. 18 Other investigators' data of film boiling heat transfer compared 
with the general correlation 

data, in spite of widely different experimental conditions for 
various liquids. 

The values of K against D' derived from the experimental 
data for film boiling heat transfer from horizontal cylinders of 
other workers (Siviour and Ede, 1970; Bromley, 1950; Ban-
chero et al., 1955; Breen and Westwater, 1962; Weil, 1952; 
Frederking et al., 1966; Zeng and Lee, 1987) including those 
with a large radiation contribution from cylinders such as 
Nimonic 75 alloy (Siviour and Ede, 1970) and carbon 
(Bromley, 1950) are shown in Fig. 18. These data, except for 
the data for water at subcoolings ranging from 0 to 80 K from 
Siviour and Ede, are obtained under saturation conditions for 
various liquids such as water, oxygen, iso-propanol, n-
pentane, ethanol, Freon-113, liquid nitrogen, and liquid 
helium and for a range of cylinder diameters from 0.005 to 
48.1 mm. Each experimental condition is shown in a table in 
the figure. The curves representing the values of K given by 
equations (4a), (4b), (4c), and equation (5) are also shown in 
the figure for comparison. They are seen to give a satisfactory 
fit for the values of K obtained from other researchers' data 
including those for liquid helium. This means that this new 
correlation will also be applicable to pool film boiling heat 
transfer for liquid helium. The values of K for liquid helium 
under saturated conditions in the range of D' <0.14, which is 
outside the application range of equation (4c), become higher 
than that given by equation (4c), in contrast with the range of 
D' >6.6, where the values of AT given by equation (4a) become 
higher than that given by equation (4b). These values of A" for 
D' <0.14 agree well with the curve representing equation (5) 
as shown in the figure and are well expressed by the following 
equation: 

K(D') = 0.44D' -0.25 forZ>'<0.14 (4d) 
The curve expressed by equation (4d) is shown in Figs. 17 and 
18. Although the correlation for D' <0.14 is for academic in
terest rather than for practical applications, it seems that 
many reliable experimental data are necessary for various 
liquids to corroborate the correlation for the D' region. The 
correlation is dealt with in another work concerning film boil
ing heat transfer from horizontal cylinders of various D' in liq
uid helium for various system pressures up to near the critical 
one (Shiotsu et al., 1990). 

3.6 Comparison Between Other Researchers' Correlations 
and the General Correlation. Other correlations such as that 
of Siviour and Ede (1970) for a subcooled condition; and 
those of Bromley (1950) and Breen and Westwater (1962) for 
saturated conditions are compared with the general correla
tion obtained here: The values calculated from each correla
tion are plotted in the form of A"=Nu„/((l +2/Nu„)M*0-25) 
versus log D' for several typical cases around the authors' and 
others' experimental conditions for various liquids shown in 
Table 1 and in Fig. 18, and compared with the curve derived 
from equation (4). 

Figure 19 shows the values obtained from Siviour and Ede's 
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Fig. 20 Values derived from Bromley's correlation under saturated 
conditions compared with the general correlation 

correlation for nondimensional cylinder diameters from 0,1 to 
30 in water at pressures of 101.3 and 2000 kPa, in iso-
propanol at 101.3 kPa, in nitrogen at 2000 kPa, and in 
Freon-113 at 101.3 kPa, and for the ranges of surface 
superheat and liquid subcooling from 100 to 700 K and from 0 
to 40 K, respectively. As shown in the figure, the values of 
their correlation at a constant D' vary significantly on this 
graph depending on the kind of liquid and system pressure; 
the maximum deviation from the general correlation is far 
more than ±10 percent, which is that of our experimental 
results for various liquids as mentioned above. 

Figure 20 shows the values obtained from the Bromley cor
relation for nondimensional cylinder diameters from 0.1 to 30 
in water at pressures of 101.3 and 2000 kPa, in Freon-113 at 
101.3 kPa, in iso-propanol at 101.3 kPa, in liquid nitrogen at 
101.3 and 2000 kPa, and in liquid helium at 101.3 kPa, and 
for the range of surface superheats from 100 to 700 K. The 
values other than those for liquid helium are around ± 10 per
cent of the general correlation for the limited range of D' 
from about 0.6 to 15, except for the liquid helium case where 
the values are far lower than those derived from the general 
correlation. 

Figure 21 shows the values obtained from Breen and 
Westwater's correlation for nondimensional cylinder 
diameters from 0.06 to 30 in water at pressures of 101.3 and 
2000 kPa, in Freon-113 at 101.3 kPa, in iso-propanol at 101.3 
kPa, in liquid nitrogen at 101.3 and 2000 kPa, and in liquid 
helium at 101.3 kPa, and for the range of surface superheat 
from 100 to 700 K. The values for D' < 1 become significantly 
higher than the general correlation with the decrease in D' and 
arrive at more than double the correlation at the lowest D' 
here compared. The values for D' > 1, except those for liquid 
helium, are similar in the dependence of D' to that for the 
general correlation, though the maximum deviations from the 
general correlation for most of the cases are about 20 percent. 
The value for liquid helium for a constant D' on this graph in-

Fig. 21 Values derived from Breen and Westwater's correlation under 
saturated conditions compared with the general correlation 

creases with the increase in surface superheat; the variation 
range becomes wider and the average value of the range 
becomes significantly higher than the general correlation with 
the increase in D'. This is because the modified latent heat ex
pressed by L' =L(1 + Q34cpvATsat/L)2, which is valid only for 
cpvATsat/L up to about 3.0 (Bromley, 1952), was used in their 
correlation. 

4 Conclusions 

Pool film boiling heat transfer coefficients on horizontal 
cylinders were experimentally obtained for several kinds of 
liquid such as water, ethanol, iso-propanol, Freon-113, 
Freon-11, liquid nitrogen, and liquid argon for wide ranges of 
cylinder diameter, system pressure, liquid subcooling, and 
cylinder surface superheat. 

The experimental data of saturated and subcooled film boil
ing heat transfer from horizontal cylinders with nondimen
sional diameters around 1.3 almost agree with the rigorous 
numerical solution of the theoretical model based on laminar 
boundary layer theory in the lower superheat region com
paratively near the minimum film boiling heat flux. The 
region where the experimental data almost agree with the 
theoretical values is widest when the nondimensional diameter 
is around 1.3 for each liquid, but its width largely depends on 
the kind of liquid; it is wider for water and Freon-11, and nar
rower for liquid nitrogen, ethanol, and liquid argon. As the 
nondimensional diameter increases or decreases from around 
1.3, this region becomes shorter and the difference between 
the experimental result and the theoretical value becomes 
larger than that for D' = 1.3 at the same superheat. Further
more, the region becomes wider with an increase in liquid sub
cooling and system pressure. In the region of D'>6.6, the 
film boiling heat transfer under saturated and subcooled con
ditions becomes almost independent of the cylinder diameter. 

A new correlation of pool film boiling heat transfer from a 
horizontal cylinder including the effects of nondimensional 
diameter, liquid subcooling, and radiation from the cylinder 
was developed by modifying the approximate analytical solu
tion of the theoretical model based on laminar boundary layer 
theory to agree better with the experimental data of pool film 
boiling heat transfer for various liquids of widely different 
physical properties under wide ranges of experimental 
conditions. 

The values of heat transfer coefficient calculated from the 
correlation agreed with the authors' data within ± 10 percent, 
and also with many other researchers' data for various liquids, 
including those with a large radiation effect, though these 
others' data were obtained mainly under saturated condition 
at atmospheric pressure. 

It was confirmed that the correlation generally expresses the 
film boiling heat transfer coefficient on a horizontal cylinder 
in various kinds of liquid, including the effect of radiation 
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from the cylinder for wide ranges of surface superheat, liquid 
subcooling, system pressure, and nondimensional diameter. 
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E R R A T A 

In the paper "Natural Convection Along Slender Vertical Cylinders With Variable Surface Heat Flux," by 
J. J. Heckel, T. S. Chen, and B. F. Armaly, JOURNAL OF HEAT TRANSFER, Vol. 111, pp. 1108-1111, November 
1989, the caption for Table 3 should read as follows: 

Table 3 The Nû , (Gr£/5)"1/5 results for power law variation of the surface heat flux 
To obtain the NuL Grf" l /s results, the numbers listed in Table 3 should be divided by the factor 5 , /5. The 

authors would like to thank Prof. B. Grandjean of Laval University, Quebec, Canada for bringing this 
typographical error to their attention. 
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Nucleate Boiling With High Gravity 
and Large Subcooling 
Measurements of the heater surface temperature are presented for pool boiling of 
distilled -water in an accelerating system with various subcoolings and levels of heat 
flux. The ranges of the experimental variables are: heat flux between 0.19 MW/m2 

and 1.5 MW/m2, accelerations normal to the flat heating surface from 1 to 100 
times earth gravity, and liquid subcoolings between 0 K and 89 K. Increasing sub-
cooling first produces an increase and then a decrease in wall superheat, with the 
eventual cessation of nucleate boiling for certain combinations of conditions. The 
increase in wall superheat is particularly enhanced at Wg, reaching a maximum 
value of 9 K at 1.05 MW/m2 with 60 K subcooling. This type of behavior is at
tributed to the interactions between the fluid temperature distribution in the im
mediate vicinity of the heater surface as it is influenced by natural convection, the 
activation of nucleation sites, and the influence of increased buoyancy on the heat 
transfer associated with each departing bubble. 

Introduction 
Nucleate pool boiling is a complex phenomenon that has 

been actively studied over the years. The large number of 
variables involved and the interactions among the elements 
constituting the process are responsible for its complexity. The 
following variables have been studied up to this point: (a) the 
thermodynamic and transport properties of the fluid, (b) the 
thermal and surface properties of the heating surface, in
cluding the microgeometry, (c) the temperature of the heating 
surface and its distribution in the liquid, (d) the 
macrogeometry of the heating surface-container combination, 
(e) the body force field and orientation relative to the heating 
surface, (/) the history of the surface. 

Experimental measurements are presented here showing the 
combined effects of system acceleration and subcooling on the 
nucleate boiling driving potential, the heater surface 
superheat, as a means of disclosing some of the interactions 
taking place and consequently improving the understanding of 
the process. The heater surface configuration selected is sim
ple and well defined: a flat horizontal surface. 

Literature Survey 

Influence of Increased Acceleration. Based on various 
measurements, opinions as to the influence of increased ac
celeration on nucleate pool boiling have ranged from little to 
large. Merte and Clark (1963) varied the gravity fields over the 
range of lg to 21g, and their results show a considerable in
crease in heat transfer with nonboiling convection and low 
heat flux boiling. At higher heat fluxes the trend was reversed, 
similar to the observations of Costello and Tuthill (1961). The 
change from enhancement of the heat transfer at lower levels 
of heat flux to a degradation at higher levels produces a 
"crossover" in the boiling curve, also observed by Gray and 
Marto (1968). 

Beckman and Merte (1965) studied the influence of ac
celeration on the pool boiling of water up to lOOg. Using high
speed photography, they observed bubble formation and 
growth and obtained data on bubble parameters such as 
growth rate, maximum and departure sizes, departure fre
quencies, and contact angle. The high-speed motion pictures 
taken at 3000 to 15,000 frame/s showed remarkable dynamic 
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behavior of the bubbles. Early bubble growth rates are found 
to be essentially constant and independent of acceleration. In
creasing acceleration decreased the number of active nuclea
tion sites, but increased the bubble departure frequency. 

Judd and Merte (1970) studied the effects of acceleration 
and subcooling on nucleate pool boiling of R-113 up to lOOg. 
The test surface was a transparent, electrically conducting 
glass plate coated with tin oxide. This work demonstrated that 
increasing acceleration and or/subcooling at constant heat 
flux enhanced the contribution of natural convection, 
significantly reducing the contribution of nucleate boiling for 
a constant imposed heat flux. The temperature of the heating 
surface and the temperature distribution in the adjacent liquid 
were measured. High-speed photography was used to deter
mine the active nucleation site density, the average population 
density, the bubble departure frequency, and the maximum 
bubble diameter. 

Gray and Marto (1968) obtained flow boiling heat transfer 
coefficients with water in a cylindrical test boiler rotating 
about its vertical axis. Accelerations up to 200g were applied, 
and the heat transfer coefficients increased with increasing ac
celeration at the lower heat flux and decreased at the higher 
levels of heat flux, producing the crossover effect referred to 
earlier. However, in a later work by Marto and Gray (1971) 
with a similar system in which the acceleration and heat flux 
levels were increased further, no such crossover was observed. 

Eschweiler et al. (1967) demonstrated that boiling was sup
pressed when acceleration was applied. Water was boiled in a 
small cylinder rotating about its own axis placed vertically 
with accelerations between 11 and 1280g. Increasing accelera
tion produced a gradual decrease of slopes in the plot of heat 
flux versus heater surface superheat, and eventually the slope 
corresponding to nonboiling natural convection was reached 
at 620g. 

Koerner (1970) also observed a delay in the onset of boiling 
with increased acceleration. The test apparatus was similar to 
that of Eschweiler, with a condenser at the rotating axis. Using 
water as a test fluid, his experiments covered the range from 
50 to lOOOg. In these results, the slope of the nucleate boiling 
curve during subcooled boiling was reduced as the acceleration 
was increased, similar to the results of Eschweiler et al. (1967). 

Influence of Subcooling. Liquid subcooling ATsab is 
defined here as the temperature difference between the satura
tion temperature corresponding to the pressure at the heating 
surface and the bulk liquid temperature in the vicinity of the 
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heating surface. This bulk temperature depends on the 
temperature distribution in the liquid. With pool boiling this 
in turn depends on the combination of the system pressure, 
heat flux, liquid depth above the heating surface, the degree of 
stirring by the rising bubbles, system geometry and accelera
tion, and the temperature of the returning condensate. 

Early investigations of the influence of subcooling on pool 
boiling were reported by Gunther and Kreith (1949). Boiling 
water bubbles were photographed under subcooled conditions 
at atmospheric pressure in the absence of forced convection. 
The important characteristics of the bubbles were their small 
size, large numbers, and rapid collapse. Some bubbles col
lapsed at the heating surface while others departed from the 
solid surface and collapsed in the surrounding liquid. It was 
reported that the decrease in liquid temperature also caused a 
decrease in bubble life and an increase in the bubble popula
tion, although this latter finding was not observed in the ex
periments of Dew (1948), who found rather that the increase 
in subcooling decreased the bubble population. Gunther and 
Kreith (1949) further observed that: (a) A given increase in 
surface superheat resulted in a correspondingly larger increase 
in heat flux with subcooling than with a saturated liquid, {b) 
the peak heat flux increased by a large amount with subcool
ing, (c) the boiling data were correlated better using the heater 
surface superheat T„ — TsM as the driving potential. 

In a work by Bergles and Rohsenow (1964) dealing primari
ly with forced-convection surface boiling, measurements of 
pool boiling of subcooled water on a horizontal cylinder show 
that increases in subcooling have a significant influence on 
nucleate boiling, shifting the boiling curve to higher wall 
superheats as the liquid subcooling was increased at constant 
heat flux and system pressure. This appears to be contradic
tory to the findings of Duke and Schrock (1961), who used a 
flat horizontal heating surface, and Grassman and Hauser 
(1964), who used a wire heating surface. 

The work of Merte and Clark (1961) for pool boiling at high 
acceleration also included some results with low subcooling. 
At the lower levels of heat flux, increasing subcooling caused 
the wall superheat to increase and then to decrease. A plot of 
wall superheat versus liquid subcooling thus exhibited a max
imum. The same trend was observed at higher levels of heat 
flux and acceleration except that wall temperature increases 
with subcooling did not reach a maximum, owing to the in
ability to increase the subcooling further. 

Fand and Keswani (1974) describe measurements of the ef
fect of subcooling on nucleate pool boiling heat transfer from 
a horizontal stainless steel cylinder to water at atmospheric 
pressure. At constant heat flux the heating surface 
temperature increased and then decreased as the bulk 
temperature of the fluid was reduced. This functional relation
ship had a maximum, which depended on the heat flux: With 
increasing heat flux, this maximum shifted to lower bulk fluid 
temperatures. The authors state that the boiling model pro
posed by Engelberg-Forster and Greif (1959) is substantiated 

by their experiments. Further they state that the observed ef
fect of subcooling is within the commonly experienced scatter 
of boiling data, and that in spite of the measured influence of 
subcooling on boiling, it is of little significance. Shiotsu and 
Sakurai (1974) pointed out that when plotted on a log q" ver
sus log T diagram, the data of Fand and Keswani (1974) had a 
slope of less than 1 at large subcoolings, and therefore must 
have been in a regime of heat transfer where a transition from 
natural convection to developed nucleate boiling was taking 
place. This region of the boiling curve is known to be strongly 
influenced by subcooling. Bergles (1974) stated that the trends 
of Fand and Keswani (1974) are in general agreement with his 
work (1964) discussed earlier and that a "crossover 
mechanism" was responsible, and opined that the void 
volume in the vicinity of the heating surface is large with low 
subcoolings, so that the induced circulation is reduced as sub
cooling increases. The larger local induced circulation 
associated with low subcoolings would then reduce the wall 
temperature at constant heat flux, and the fully established 
boiling curve therefore would shift to the left as subcooling 
was reduced. It was further opined that this type of behavior 
would not be observed on horizontal flat heating surfaces. As 
will be demonstrated below, this is not the case. 

Description of the Experimental Apparatus 

A centrifuge, shown in Fig. 1, capable of handling a test 
vessel of 50 kg with a maximum of 1000 times standard 
gravitational acceleration, was used, and is described in detail 
by Ulucakli (1987). The test vessel installed to study nucleate 
pool boiling of water with high subcooling is shown in Fig. 2. 
The center of gravity is located so that the vector sum of the 
centrifugal and gravitational accelerations is normal to the 
heating surface at all times. The vessel contains the main 
heater, guard heaters, temperature measurement probes, a 
heat exchanger to provide subcooling, a condenser, and a 
water depth control tube above the heating surface. All parts 
were fabricated from stainless steel, types 316 and 304. 

The heater is machined from a 0.05 percent tellurium cop
per cylinder and provides a heating surface 2.54 cm (1 in.) in 
diameter. A circular stainless steel foil (type 347) 0.1 mm 
(0.004 in.) thick and 10.2 cm (4 in.) in diameter was vacuum 
brazed to the copper cylinder at this end for the actual heating 
surface. The other end of the copper cylinder was drilled and 
reamed to insert cartridge heaters. Three radial holes 0.5 mm 
(0.021 in.) in diameter and 1.3 cm (0.5 in.) deep were drilled in 
the narrow end to insert calibrated sheathed chromel-
constantan thermocouples, which were used to compute the 
heat flux and to determine the heating surface temperature by 
extrapolation. These thermocouples were located at the 
following nominal distances from the boiling surface: 1 mm 
(0.039 in.); 7.6 mm (0.298 in.); 13.7 mm (0.538 in.). The main 
heater is surrounded with four guard heaters, radiation 

Nomenclature 

a = acceleration 
a/g = nondimensional acceleration 

D = heating surface diameter 
g = acceleration due to the 

earth's gravitational field 
h = nonboiling natural convec

tion heat transfer coefficient 
k = thermal conductivity of the 

liquid 
NuD = Nusselt number based on 

the heating surface 
diameter = hD/k 

Pw = pressure at the heating 
surface 

q" = heat flux 
R = distance between the heating 

surface and the vertical axis 
of rotation 

RaD = Rayleigh number based on 
the heating surface diameter 
= figD1(Tw-Tb)/av 

Tb = bulk temperature of the 
liquid 

ŝat, w = saturation temperature at 
the heating surface 

Tw = heating surface temperature 
A^sub = "Quid 

subcooling = 7^, w - Tb 
ATsal = wall superheat = T„ — TsaU w 

w = angular speed of the 
centrifuge 

a = thermal diffusivity of liquid 
/3 = volumetric thermal expan

sion of liquid 
v = kinematic viscosity of liquid 
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1. Pulley, 2. Kerosene Balh, 3. Mercury Commutators, 
4. Upper Main Bearing, 5. Pressure Transducer, 

6, Cross-Arm, 7. Cooling Water to Heat Exchangers, 
8. Lower Main Bearing, 9. Copper Brushes, 10. Rotating 
Fiuid Coupling, 11, Mercury Commutator tor AC Power, 

12. Magnetic Pick-up . 

Fig. 1 Drawing of the centrifuge 

shields, and insulation to minimize heat losses, as shown in 
Fig. 2. 

The hydrostatic pressure at the test surface due to the 2.54 
cm (1 in.) liquid depth increased as the acceleration increased 
from a/g = 1 to a/g = 100. To maintain a constant pressure at 
the heating surface at all acceleration levels, the system 
pressure above the liquid was reduced correspondingly, begin
ning from initial pressurization of the test vessel at a/g = 1 
with helium, which has the lowest solubility in water among all 
gases. A lecture bottle and miniature pressure regulator were 
mounted on the central part of the centrifuge vertical shaft 
and connected to the test vessel via a solenoid valve and flexi
ble tubing to pressurize the test vessel under rotation, while the 
pressure inside the test vessel was measured and controlled us
ing a strain gage type transducer located vertically at the center 
of rotation, so that centrifugal forces did not influence its out
put. A large-scale precision pressure gage was connected when 
the system was stationary, for calibration purposes. 

The heat rejection system consists of the following com
ponents: two heat exchangers within the test vessel functioning 
as a subcooling coil and a condensing coil, a rotating union to 
transfer the cooling water to and from the rotating system, 
flowmeters for monitoring the volume flow rate through the 
heat exchangers, needle valves to control the flow rate, and a 
filter to remove particulates in the cooling water supply. 

The temperature measurement system consists of the three 
heating surface thermocouples, three liquid thermocouples, 
three differential thermocouples for guard heater control, the 
reference and constant temperature baths, and the mercury 
commutators for connecting the rotating system to a precision 
potentiometer with a minimum of induced electrical noise. 

Experimental Procedures 

Procedure. All tests were conducted in the steady state. 
The independent variables were acceleration, liquid subcool
ing, and heat flux. The tests were conducted in the sequence of 
accelerations of 1, 10, and lOOg, while the heat flux levels were 
varied between 0.19 and 1.26 MW/m2. The relatively large 
lower level of the heat flux was necessary to produce boiling as 
subcooling or acceleration are increased. As later tests 
showed, the increased nonboiling natural convection 

1. Cover Plate, 2. Condensing Heat Exchanger, 
3. Liquid Temperature Probes, 4. Liquid Depth Control 

Tube, 5. Subcooling Heat Exchanger, 6. Copper 
Cylinder, 7. Upper Cylindrical Guard Heater, 8. Lower 
Cylindrical Guard Heater, 9. Bottom Ring Guard Heater, 
10. Support Bolts, 11. Support Plate, 12. Bottom Disc 

Guard Heater, 13. Cartridge Heaters, 14. Radiation Shields 

Fig. 2 Test vessel schematic 

associated with increased acceleration and subcooling can sup
press the boiling process. The upper level of heat flux was 
determined by the approximate critical heat flux at earth 
gravity. The liquid subcooling was varied between zero and a 
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Fig. 3 Superheat versus subcooling results at a/g = 1 
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Fig. 4 Heat flux versus wall superheat at a/g = 1 

maximum of 84 K, determined by the available volume flow 
rate and temperature of the cooling water and the 
characteristics of the subcooling coil. 

During operation at a given acceleration level, the heat flux 
was maintained constant while subcooling was varied. The 
heat flux was then changed to a new level and subcooling 
varied again. At constant heat flux and acceleration, each test 
was initiated at or near the saturated state and ended at or near 
the saturated state. Except for the highest level of heat flux 
used, lAJhich exceeded the normal lg critical heat flux, all 
elevated acceleration tests started with a lg anchor point at the 
saturated state and ended with a lg anchor point at the 
saturated state, which then served as reproducibility checks. It 

must be noted that due to the increased hydrostatic pressure at 
the test surface and increased natural convection, the so-called 
lOg and lOOg saturated data include a certain unavoidable 
amount of subcooling. 

Experiments. Before every test, the test vessel was filled 
with distilled and deionized water to a depth of 2.54 cm (1 in.). 
It had been demonstrated that with water the pool boiling pro
cess was no longer influenced by the depth when it was more 
than 2.54 cm (1 in.). Dissolved gases were removed by 
vigorous boiling and venting over a 3-h period. The electrical 
resistivity of the water was used as a measure of its purity, 
with a minimum of 2 M Q-cm existing at the beginning of each 
test. 

After obtaining data at the saturated liquid state, the cool
ing water flow rate through the cooling coil was increased, 
depending on the degree of liquid subcooling desired. Data 
were taken when the temperatures again reached steady state. 
The cooling coil flow rate was then increased for another level 
of subcooling. At a certain flow rate it was not possible to in
crease the subcooling further, and the cooling coil water was 
then reduced and time allowed to reach the saturated state 
again, prior to halting the test. 

To determine possible hysteresis effects with subcooled boil
ing, the procedure described above was modified for the lOg 
test series. After reaching the maximum subcooling, the cool
ing water flow rate was gradually reduced and data were also 
taken with decreasing subcooling. The saturated state was 
eventually reached under rotating conditions, and the cen
trifuge was then stopped to obtain a lg anchor point at the 
saturated state. The lOOg tests were conducted in a similar 
manner. 

Data Reduction. The three temperatures measured axially 
in the copper near the boiling surface were used to compute 
the heat flux and surface temperature. The uncertainty of the 
surface temperature is estimated to be on the order of a max
imum of ±0.7°C on an absolute basis, while on a relative 
basis during a particular test it is considerably less. The uncer
tainty of the heat flux is ±4 percent. 

The centrifugal acceleration is calculated to a reasonable ap
proximation by ct = R*w2, where a is the centrifugal accelera
tion, w is the angular speed of the centrifuge, and R is the 
radius at which the test surface is located. The radius is 1.234 
m (48.6 in.) from the vertical axis of the centrifuge. 

Experimental Results 

Tests were conducted to determine the maximum subcool
ing possible with the subcooling heat exchanger shown in Fig. 
2, and found to be about 85 K for the saturation temperature 
of 385.4 K at the test surface, independent of the level of heat 
flux and acceleration used. A practical maximum limit of 112 
K on the subcooling exists, associated with the freezing point 
of water at 0°C. This subcooling limit is indicated on each of 
the plots of heater surface superheat versus subcooling on 
Figs. 3, 5, and 7. 

Certain combinations of heat flux, subcooling, and ac
celeration were found to result in nonboiling natural convec
tion heat transfer. Nonboiling heat transfer was obvious 
whenever the heater surface temperature was below the local 
saturation temperature, but also appeared to be present even 
with significant heater surface superheat, when the 
measurements were compared with predictions of the ap
propriate natural convection correlations. The complete non
boiling convection data and their correlation for the geometry 
used here are presented by Ulucakli (1987). Evaluating the 
properties at the film temperature, defined as the average of 
the heater surface and bulk fluid temperatures, the correlation 
giving the best fit at a/g = 1 and a/g = 10 is 
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NuD=0.18(RaD)' (1) 
while a coefficient of 0.16 gives a better fit at ct/g= 100. The 
experimental data covered the Rayleigh number range of 108 

to 2x 10". With the wide range of subcooling and associated 
levels of wall-bulk A7"s experienced in the present work, the 
Rayleigh number is quite sensitive to the corresponding 
property variations, and the form of the "best" correlation re
mains open to question. For present purposes equation (1) will 
be used, with the coefficient of 0.16 to be used for a/g= 100. 

In order to demonstrate the influence of subcooling ade
quately, the measurements of heater surface superheat are 
plotted as a function of bulk subcooling with the various levels 
of heat flux as a parameter in Fig. 3 for a/g= 1, in Fig. 5 for 
a/g = 10, and in Fig. 7 for a/g = 100. Additional information 
is included on each of these, described below as appropriate. 
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Fig. 7 Superheat versus subcooling results at a/g = 100 
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The smoothed curves through these data points are then cross-
plotted in Figs. 4, 6, and 8 corresponding to the acceleration, 
in the more traditional boiling heat transfer form of heat flux 
versus heater surface superheat using bulk subcooling as the 
parameter. In so doing, the competing and opposite influences 
of subcooling on the nonboiling and boiling contributions to 
the heat transfer process become more obvious. 

Tests at a/g = l. The lowest heat flux was 0.2 MW/m2. 
One test at this heat flux, indicated by the open triangles in 
Fig. 3, was conducted by increasing the subcooling from zero 
to the maximum possible. Another, indicated by the darkened 
triangles, was conducted by decreasing the subcooling to zero 
from the initial maximum possible. A trend for hysteresis ap
pears to be present, and is intuited to be associated with the ac-
tivation/deactivation of nucleating sites as the subcooling is 
decreased or increased, since nonboiling natural convection 
demonstrates no hysteresis. The other multiple data points in
cluded in Fig. 3 attest to a reasonable degree of 
reproducibility. 
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It is noted in Fig. 3 that the heater surface superheat at first 
increases and then decreases as subcooling increases from the 
saturation state, resulting in a maximum. The increase in 
superheat with subcooling not only increases with heat flux, 
but the maximum occurs at larger levels of subcooling for 
larger levels of heat flux. At the highest heat flux used at 
a/g = 1, 1.26 MW/m2, the heater surface superheat increases 
by 8.3 K at a subcooling of 60 K. Using the development of 
Zuber (1959) the critical heat flux for saturated water at 
a/g = \ and atmospheric pressure is estimated to be 1.5 
MW/m2, somewhat above the highest level of 1.26 MW/m2, 
used here at a/g = 1. 

The relationship between heater surface superheat and bulk 
subcooling computed from equation (1) is also included in Fig. 
3 for the heat flux of 0.2 MW/m2. The near tangency with the 
data for decreasing subcooling, together with the near-zero 
heater surface superheat at this point, demonstrate that non-
boiling natural convection virtually dominates the process 
here. Another reasonable determination of the onset of 
nucleate boiling in this region can be made by incorporating 
equation (1) into the so-called Hsu-Rohsenow-Bergles model 
of nucleation, presented by Rohsenow (1985). This point is 
also indicated in Fig. 3. 

Although a conjecture at this point, it appears reasonable 
that the heater surface superheat at the highest level of heat 
flux in Fig. 3 would also have decreased further were a greater 
subcooling possible. This limitation exists because of the 
design of the internal heat exchanger, and the subcooling most 
likely could be extended were the cooling medium to be 
refrigerated. 

The smoothed data of Fig. 3 are cross-plotted in Fig. 4, and 
demonstrate that nonboiling convection dominates at the low 
levels of heat, while as heat flux increases the heater surface 
superheat increases with subcooling. As will be seen, similar 
behavior occurs at the higher acceleration levels. 

Tests at a/g = 10. The next group of tests, conducted at 
a/g= 10, is shown in Fig. 5. Initial tests revealed the extreme 
sensitivity of the subcooling level to the cooling water flow 
rate, and modifications to the apparatus were made to provide 
for fine control. The "anchor" points indicated are obtained 
for each level of heat flux for the saturated state at a/g = 1 im
mediately prior to and following each test at high acceleration, 
as a check on reproducibility and/or hysteresis effects as a 
result of subjecting the boiling system to large body forces. 
These "anchor" points were found to be repeatable. At the 
lowest heat flux level shown, the open triangles again corre
spond to increasing subcooling, while the dark triangles apply 
to decreasing subcooling, and the reproducibility and lack of 
hysteresis are evident. 

The heater surface superheat versus subcooling relationship 
for nonboiling natural convection from equation (1) is in
cluded for the two lower heat flux levels used. At 0.39 
MW/m2 the predominance of nonboiling is obvious, while at 
the heat flux of 0.63 MW/m2 the significant departure from 
the nonboiling correlation indicates the presence of nucleate 
boiling even at this large subcooling level. The computed onset 
of boiling is shown for the lowest heat flux only; the subcool
ing for the next value used, 0.63 MW/m2, falls beyond the 
freezing point of water. Figure 6 is the cross-plot of the 
smoothed data of Fig. 5, with subcooling as a parameter. 

Tests at a/g -100. It was not possible to conduct tests at 
heat flux levels below 0.3 MW/m2 with a/g =100 for any 
degree of subcooling; boiling became completely suppressed. 
The lowest heat flux used was 0.44 MW/m2, shown in Fig. 7, 
and here nucleate boiling appears to be completely suppressed 
beyond a subcooling of about 17 K. The nonboiling natural 
convection correlation, with 0.16 as the coefficient, appears to 
describe the behavior at high heater surface superheats, up to 
22 K. 

It was not possible to conduct the two anchor point tests at 
the highest levels of heat flux, 1.49 and 1.50 MW/m2, with 
saturated liquid at a/g = 1, since this is above the estimated 
critical heat flux. It is possible that beginning the boiling test 
with a saturated liquid activates the nucleating sites in a way 
that is sustained as subcooling varies, thus providing yet 
another opportunity for the so-called hysteresis to be present. 
All other testing at the higher acceleration levels except these 
two was conducted with anchor points, and may explain the 
apparent discrepancy between these two tests and the others. 

At this level of acceleration, it is noted in Fig. 7 that 
although increases in heater surface superheat with subcooling 
take place, the changes are now relatively smaller, and a broad 
plateau is present. From the prior photographic work of 
Beckman and Merte (1965) and Judd and Merte (1970) it was 
observed that the maximum departure size of the bubble 
changes relatively little beyond a/g =10, and it is possible that 
the associated stirring action induced by the departing bubbles 
becomes relatively insensitive to the degree of subcooling. In 
these two cited works, the subcoolings used were relatively 
small when compared to the present work. 

The slopes of the curves in the cross-plots of Fig. 7 
presented in Fig. 8 at the heater surface superheats below 20 K 
show the dominance of nonboiling natural convection with 
subcoolings greater than 20 K. 

Discussion 

Understanding and assessing the measurements of nucleate 
pool boiling with both large system acceleration and large sub
cooling requires that the symbols and terminology used be 
quite precise. Figures 3,5, and 7 are plots of heater surface 
superheat (T„ — Tsauw) versus bulk subcooling (Ts&Uvl — Tb). 
Tw is the heating surface temperature while rsat|W is the satura
tion temperature corresponding to the pressure at the heater 
surface. The definition of the latter is normally of no great 
consequence in research, since pressure variations owing to 
hydrostatic head changes are negligibly small. With large 
system accelerations, however, this is no longer the case; the 
liquid depth of 2.54 cm (1 in.) used here produces a 
hydrostatic pressure of 254 cm at a/g =100. In the work 
presented here the hydrostatic pressure at the heating surface 
and hence jTsatiW was maintained constant by reducing the 
pressure of the helium in the vapor space. Extensive testing 
conducted both with and without the helium produced no 
measurable differences. In effect, then, Figs. 3, 5, and 7 are 
plots of the heater surface temperature Tw versus the bulk 
temperature Tb measured nearest the heating surface as seen 
in Fig. 2. A nonboiling natural convection correlation with 
constant properties, heat flux, and a/g then results in a 
straight line for T„ versus Tb as indicated. Where the 
measurements coincide with the correlation over an extended 
degree of subcooling it can be reasonably deduced that no 
significant nucleate boiling heat transfer is taking place, even 
though a significant heater surface superheat exists. 

With a saturated liquid, the measurements of Merte and 
Clark (1961) show that the heater surface superheat increases 
with acceleration for constant high levels of heat flux, while it 
decreases for constant low levels. The latter is attributed to the 
increasing relative contribution of nonboiling convection, 
even though the liquid bulk is essentially saturated. The 
degradation of the heat transfer in the former is attributed in 
part to the action of buoyancy on the growing vapor bubbles, 
increasing the thickness of the liquid microlayer beneath the 
bubble and reducing the heat transfer per bubble. For a con
stant heat flux, then, more nucleation sites are required, 
resulting in turn in a higher surface temperature. This in
fluence of high acceleration on the microlayer is still 
somewhat speculative, and remains to be observed directly 
and described analytically. 
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As indicated by the measurements presented here, for a con
stant value of heat flux and acceleration, beginning with an in
itially saturated or near-saturated bulk liquid state, the heater 
surface superheat first increases, reaches a maximum, and 
decreases as the bulk liquid subcooling increases. The explana
tion for this behavior is as follows: As the bulk liquid subcool
ing is increased, certain active nucleating sites would tend to 
become extinguished were the heater surface superheat to be 
maintained constant, since the superheated thermal boundary 
layer thickness would be reduced. For a constant imposed heat 
flux, then, a higher heater surface superheat will be required 
either to sustain these nucleating sites or to activate others. As 
the subcooling is increased further, the increasing nonboiling 
natural convection contribution to the total heat flux begins to 
outweigh that associated with the active nucleating sites, until 
a maximum in the heater surface superheat is reached. This in
dicates that a balance in the rate of change of the effect of sub
cooling on the nonboiling and the boiling contributions to the 
total heat flux is present, and further increases in subcooling 
should then give prominence to the nonboiling natural convec
tion contributions. As the heat flux is increased to higher 
levels, the natural convection nonboiling contribution requires 
a significantly larger subcooling before it begins to over
shadow the boiling contribution, and hence the rightward shift 
in the maximum. 

The interaction between subcooling, nonboiling natural 
convection, and the nucleation remains to be described 
analytically for the case with established boiling. A credible 
prediction of the onset of nucleate boiling as subcooling is 
decreased is demonstrated here by the Hsu-Bergles-Rohsenow 
model, as described by Rohsenow (1973). A reasonable model 
of the established nucleate boiling process, however, must in
clude a description of the nucleation characteristics of the 
heater surface-fluid combination. By this is meant those at
tributes of the surface and fluid necessary to predict both the 
initial and additional activation of the nucleation sites. 

Photographic observations of the nucleation site density 
with pool boiling of R-113 under high gravity were made 
through a transparent glass heater surface by Judd and Merte 
(1970). The maximum acceleration was a/g= 100, but the 
maximum heat flux and subcooling were only 0.1 MW/m2 

and 17 K, respectively. The active site density did not change 
as subcooling was varied from saturation to 17 K and a/g 
varied from 1 to 10. The active site density decreased by 1/2 as 
a/g increased from 10 to 100 for subcoolings between 8 and 17 
K. It is surmised that this latter decrease is associated with the 
increasing role of nonboiling natural convection. Generaliza
tions of these behaviors, even with the limited ranges of heat 
flux and subcooling, must be made with caution since the glass 
surface used was quite smooth, relative to metallic surfaces 
such as that employed here. 

Conclusions 

For constant heat flux and constant acceleration, increasing 
the liquid subcooling from saturation results in an increase 
and then a decrease in heater surface superheat with nucleate 
pool boiling. 

The increase in heater surface superheat increases with heat 
flux and with acceleration. 

For certain combinations of heat flux, subcooling, and ac
celeration, nucleate boiling is suppressed completely. 

The variation in heater surface superheat is a result of the 
complex interactions between the nonboiling natural convec
tion, the activation of nucleating sites, and the heat transfer 
associated with each active nucleating site. 
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EHD Enhancement of Nucleate 
Boiling 
This paper describes: (a) an experimental investigation into the effect of an electric 
field applied to pool boiling of Freon (R114) on a finned tube and (b) a theoretical 
model of electrically enhanced nucleate boiling applicable to simple surfaces only. 
Experimental results have shown electrohydrodynamic (EHD) enhancement of heat 
transfer to be manifest in two ways: (i) elimination of boiling hysteresis, (ii) 
augmentation of nucleate boiling heat transfer coefficients by up to an order of 
magnitude. These effects were also observed in electrically enhanced boiling of 
Freon/oil mixtures. A new analytical model is described whereby EHD nucleate 
boiling data from previous studies (employing simple apparatus comprising heated 
wires with concentric cylinder electrodes) have been correlated for the first time 
using the concept of an electrical influence number. This dimensionless parameter is 
based upon the relationship between applied electric field intensity and changes in 
bubble departure diameter at a heat transfer surface. 

Introduction 

The use of electric fields to enhance convective heat transfer 
was first reported in a UK patent over seventy years ago 
(Chubb, 1916). However, this promising enhancement tech
nique has yet to find commercial application despite con
siderable fundamental research. 

One of the first quantitative studies in this field was by 
Bochirol et al. (1960), which, like many later investigations, 
was particularly concerned with the dramatic elec
trohydrodynamic (EHD) enhancement of the film boiling 
regime and consequent increase in critical heat flux. This par
ticular EHD phenomenon is due to electrical destabilization of 
the vapor film at a heat transfer surface caused by electrical 
forces acting on the vapor-liquid interface. These forces arise 
from the difference between the dielectric permittivity of the 
liquid and vapor phases and are of the type called 
"dielectrophoretic.'' 

Since 1960 many further studies of EHD enhanced film 
boiling have been carried out and these have been reviewed by 
Jones (1978), along with work on EHD enhanced condensa
tion and single-phase heat transfer. However, most of this 
research has dealt with situations inappropriate to the needs of 
heat exchanger manufacturers, not only because film boiling is 
a mode of heat transfer to be avoided under normal operation 
conditions but also because the electrode and heat transfer 
geometries used in experiments have not been applicable to 
practical evaporators. 

EHD enhancement of nucleate boiling involves the applica
tion of an intense electric field to the heat transfer surface. 
Dielectrophoretic electric forces (and possibly "elec-
trophoretic" forces, due to the presence of free charges in the 
fluid) lead to modified bubble dynamics and enhanced fluid 
convection in both phases, which in turn promote increased 
heat transfer. 

EHD heat transfer enhancement is thought to be best ap
plied to electrically insulating fluids. Practical implementation 
of EHD techniques requires the addition of electrodes and a 
high voltage source to the normal heat exchanger. Thus, large 
evaporators would appear to provide the most cost-effective 
application. Of particular interest are systems utilizing small 
temperature differences across their evaporators where EHD 
elimination of boiling hysteresis may be advantageous. Thus, 
plants such as Organic Rankine Cycle (ORC) engines, large-
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scale heat pumps, Ocean Thermal Energy Conversion (OTEC) 
plants, etc., would seem to be attractive engineering applica
tions. Indeed work is underway in Japan on the demonstration 
of a practical EHD evaporator incorporated in a commercial 
ORC plant. OTEC technology is as yet in its infancy; 
however, several successful demonstration projects have been 
realized (e.g., Ito and Seya, 1983). These units rely on a gross 
temperature difference across the ORC engine of no more 
than 30°C, giving refrigerant-side evaporating and condensing 
superheats of less than 5°C. 

The work reported here forms part of a continuing research 
program to develop full-scale shell-and-tube EHD enhanced 
condensers and evaporators. An earlier stage included op
timization of a shell-side electrode system consisting of plates 
and/or rods (Allen and Cooper, 1985). There followed an ex
perimental and theoretical investigation of EHD enhanced 
condensation heat transfer, described elsewhere by Cooper 
and Allen (1984) and Cooper (1986), in which refrigerant-side 
heat transfer enhancement by up to a factor of three was 
observed. Although the tenor of previous work by others in
dicated that condensation heat transfer would be more 
amenable to EHD enhancement, it has been found, in fact, 
that EHD techniques have even greater potential when applied 
to nucleate boiling. 

Experimental Apparatus and Procedure 

A schematic diagram of the EHD assisted boiling rig is 
shown in Fig. 1. Full details of the apparatus have been given 
elsewhere by Cooper (1986) and Allen and Cooper (1987). The 
evaporator comprised a single, horizontal, integrally finned 
("lo-fin") tube within a concentric brass shell. This was 
designed to model the operation of a tube in the bottom row 
of a shell-and-tube evaporator with EHD enhancement of 
shell-side heat transfer only. The experimental tube was 
chosen as one used commercially in large shell-and-tube 
evaporators by a major UK manufacturer. The test section of 
the tube was 514 mm in length and manufactured from brass. 
Tube fin profile and dimensions are shown in Fig. 2. The 
evaporator shell was a brass tube of 63.5-mm internal 
diameter with two 50-mm diameter sight glasses mounted at its 
mid-section to facilitate visual observation of the EHD 
phenomena (Fig. 3). The electrode system used for quan
titative investigations was made from a copper wire mesh 
cylinder of 38-mm diameter insulated from the evaporator 
shell by "Tufnol" (grade 2P/45) inserts, as shown in Fig. 4. 
Unobstructed visual observation of the experimental tube for 
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video recording of qualitative experiments was facilitated by a 
second electrode system with a conductive glass insert. 

The high voltage supply (of up to 30 kV) to the electrodes 
was provided by either one of two electrostatic generators for 
positive or negative direct current (d.c.) potentials or from a 
100-kVA high voltage transformer and regulator for alter
nating (a.c.) potentials. The electrical supply was fed into the 
EHD evaporator through a specially modified sparking plug 
in the shell wall, which made a spring-loaded contact with the 
electrode. Electrode potentials were monitored using two elec
trostatic voltmeters (calibrated to BS 358). 

The liquid Freon saturation temperature was taken as that 
of the vapor exiting the EHD boiler and was measured by 
means of a three-junction thermopile immediately adjacent to 
(but outside) the evaporator shell. Measurement of the Freon 
liquid temperature per se was precluded by the intense electric 
fields within the shell. Fortuitously, other researchers, e.g., 
Hahne and Muller (1983), have found that the most effective 
way to characterize wall-to-liquid superheat, for correlating 
pool boiling data, is to use the system saturation temperature 
Ts, measured above the liquid surface. This was the situation 
assumed to pertain in the present study. All data reported 
below correspond to a system saturation temperature of 

stress relieving 
ring 

Fig. 4 Cylindrical electrode system 

Ts = 2l.5°C, which was chosen so as to minimize heat ex
change between the apparatus and the surroundings. 

The evaporator tube-wall temperature was measured by 
means of eight copper constantan thermocouples; four were 
located circumferentially around the tube midsection and the 
remainder were positioned on one side of the tube, equidistant 
along the tube length. The thermocouple conductors (0.2-mm 
diameter with PTFE insulation) were routed through the in
side of the evaporator tube to avoid interaction with the in
tense electric fields in the shell-side fluid. Thermojunctions 
were soft soldered into holes drilled in the tubewall between 
tube fins. Local wall-to-liquid saturation superheats were 
calculated from the measured differential e.m.f.s generated 
between the thermopile and the individual tube surface ther
mojunctions concerned. Uncertainty in these measurements 
was estimated to be approximately ±0.05°C. Other 
temperatures were measured by the same means with respect 
to a thermojunction immersed in an ice/water bath at an 
estimated uncertainty of ±0.1°C. Operation of the 
temperature measurement system was tested under isothermal 
conditions with and without electric stress applied; no detect
able interference between the electric field and temperature 
measurements was found. 

The evaporator test section was heated by hot water 
pumped from a tank containing a 9-kW immersion heater, its 

A 
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c, 
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E 

FF 
* 

h 

= heat transfer surface area, 
m2 

= constants in equation (9) 
= constant in equation (1) 
= diameter, m 
= electric field strength, V/m 
= electric force on a bubble, N 
= gravitational acceleration, 

m/s2 

= heat transfer coefficient, 
W/m2K 

m, n 
Ne 
Nu 

q 
Re 
T 
V 
0 
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P 

constants in equation (1) 
electrical influence number 
Nusselt number 
heat flux, W/m2 

Reynolds number 
temperature, K 
applied electrode potential, V 
contact angle, rad 
volume, m3 

absolute permittivity, F/m 
density, kg/m3 

a = surface tension, N/m 

Subscripts 
0 = zero-field condition 
b = bubble 
E = with applied electric field 
L = liquid 
m = arithmetic mean value 
S = saturation value 
v = vapor 
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output varied by means of a three-phase "variac." Total heat 
flux through the tube wall was calculated from the heating 
water bulk temperature drop between inlet and outlet, the 
water flow rate (measured by a variable-gap flowmeter), and 
published data for the density and specific heat of water. Bulk 
inlet and outlet temperatures were measured by means of 
copper/constantan thermoj unctions. The inlet-to-outlet 
temperature drop of the order of 1-2°C was measured using 
the differential thermocouple e.m.f. between the inlet and 
outlet (by means of a digital voltmeter). Thorough mixing of 
the heating water was ensured by the use of vortex inducing 
spirals and copper gauze baffles positioned upstream of each 
thermojunction. Calculated magnitudes of total heat flux and 
heat transfer coefficients are estimated to be accurate to 
within ±5 percent and ±10-20 percent, respectively. All ex
perimental results were recorded manually. 

The use of water rather than electricity to heat the ex
perimental tube resulted in variation of wall-to-liquid Freon 
superheat along the tube as the heating water cooled. Thus, all 
experimental results are quoted with respect to an arithmetic 
mean wall-to-liquid superheat, ATm. Although not ideal for 
investigating the fundamental characteristics of EHD en
hanced boiling phenomena, this situation was certainly more 
representative of conditions in a commercial shell-and-tube 
evaporator than one using electrical heating. Tube midsection 
surface temperature was measured at the four circumferential 
thermocouple stations. ATm was then calculated from the 
arithmetic mean of temperatures at the five side-wall stations 
along the tube length assuming the circumferential 
temperature profile to be the same at all cross sections relative 
to the corresponding tube side wall temperature. 

The liquid chosen for the experimental investigation was 
R114 (dichlorotetrafluoroethylene) because of its excellent 
dielectric properties, low toxicity, and widespread commercial 
use in heat pump and Rankine Cycle plants. Several ex
periments were also conducted to investigate the effect of elec
tric stress on heat transfer to oil-contaminated R114. The oil 
used was Shell Clavus 68. This was simply mixed on a weight-
to-weight (w.w.) basis with the total charge of R114 in the rig. 
To facilitate degassing and to ensure fully mixed, isothermal, 
initial conditions, the evaporator was heated before each ex
periment by means of self-limiting (Freezeguard) heating tape 
strapped to the underside of the shell. The condenser unit (see 
Fig. 1) was cooled by water from a thermostatically regulated 
refrigeration unit. Maximum heat flux obtainable at the heat 
transfer surface was limited by the capacity of this refrigera
tion plant. Steady-state conditions were obtained through con
trol of the temperature of the heating and cooling water cir
cuits; the relatively large thermal mass of the system led to 
long settling times of up to 30 min between data recordings. 

Results 

Zero-Field Heat Transfer. The first part to the study in
volved investigation of heat transfer under zero-field condi
tions. Results for a system saturation temperature Ts of 
21.5°C graphed as mean heat transfer coefficient hm0 against 
mean wall-to-liquid superheat ATm are shown in Fig. 5. 
Results were calculated with respect to the total (developed) 
external heat transfer surface area of the experimental tube 
(0.152 m2). As the study of boiling hysteresis was of particular 
interest, experiments were conducted with both increasing and 
decreasing ATm. Boiling (or nucleation) hysteresis is manifest 
as a given threshold A T required to activate vapor generation 
at nucleation sites. Below this critical value of AT, heat 
transfer is by natural convection alone. The actual value of AT 
required to activate nucleation depends on a number of fac
tors, particularly those relating to roughness and contamina
tion of the heat transfer surface. In the present study, the lo-
fin tube was installed as received from the manufacturer, with 
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Fig. 5 Boiling hysteresis and EHD heat transfer enhancement of R114 
on a horizontal lo-fin tube with cylindrical electrode (Ts =21.5°C) 

no special treatment other than cleaning with a wire brush and 
degreasing with acetone. 

Curves A and B of Fig. 5 represent single-phase heat 
transfer with increasing ATm and nucleate boiling with 
decreasing ATm, respectively. Experiments were carried out at 
relatively low heat fluxes, between 200 W/m2 and 4000 
W/m2 . At TS = 2\.5°C a local superheat of approximately 
7.5°C was required to activate ebullition on the tube surface 
(this threshold decreased with increasing system saturation 
temperature). In engineering plants with limited driving 
temperature differentials across evaporators this may cause 
problems (e.g., at start-up of vapor recompression 
equipment). 

Effect of Electric Stress on Boiling in Pure R114. Two ma
jor EHD phenomena were observed: 

(a) EHD elimination of boiling hysteresis 
(b) EHD enhancement of nucleate boiling 

EHD elimination of hysteresis resulted from the electrical 
activation of nucleation sites. Visual observations showed that 
following zero-field superheating of the experimental tube by 
a few degrees Centigrade with heat transfer operating in the 
natural convective mode, application of a modest electrode 
potential (5-8 kV, say) resulted in immediate activation of 
ebullition. This electrical stimulation of nucleation sites ap
peared to be similar to thermal activation since sites remained 
active after removal of the activation energy source (i.e., the 
electric field). Moreover, by applying a sufficiently intense 
field (K> 10 kV) for a short duration (less than one second) it 
was possible to jump from a point on the increasing hm0 heat 
transfer hysteresis loop (curve A) to one for the same 
superheat on the decreasing hmQ curve (curve B) with a 
dramatic increase in heat transfer coefficient. The vigorous 
EHD activation of nucleation occurred over the entire heat 
transfer surface in a manner similar to that reported by Marto 
and Lepere (1982) for boiling initiation on a "High Flux" 
enhanced surface. 

Continuous application of electric stress to the superheated 
lo-fin tube produced substantial increases in nucleate boiling 
heat transfer. Curves C and D in Fig. 5 show EHD enhanced 
heat transfer for applied electrode potentials of 10 kV and 27 
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Fig. 6(a) Electric field at lo-fin tube surface 
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Fig. 6(6) Schematic of EHD bubble trapping mechanism 
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Fig. 6(c) Bubble flow paths around lo-fin tube with intense field 

kV, respectively. It should be noted that for an electrode 
potential of 27 kV ebullition was observed for all values of 
tube surface superheat. As with all EHD phenomena observed 
in the present study, a.c. electric fields and d.c. fields of either 
polarity were equally effective. It can be seen from Fig. 5 that 
EHD enhancement of refrigerant-side nucleate boiling heat 
transfer of up to an order of magnitude was achieved with the 
complete elimination of hysteresis. This is thought to be due 
largely to the heat transfer surface geometry utilized, which 
produced a highly beneficial inhomogeneous electric field. 

bubbles 

vapour, 
column 

Fig. 7 Vapor columns trapped in lo-fin tube interfin spaces at low heat 
flux and intense applied field 

With electric field strength increasing from zero, visual 
observations indicated that EHD forces modified the bubble 
dynamics of the boiling process, so that: (a) bubble departure 
diameter decreased; (b) strong electric field inhomogeneities 
at the surface of the lo-fin tube distorted and 
trapped bubbles between tube fins at high field strengths. 

The electric field on the surface of the lo-fin tube sur
rounded by a single-phase fluid is shown in Fig. 6(a) as 
calculated by a two-dimensional boundary integral analysis. 
The action of field inhomogeneities around the lo-fin tube on 
bubble growth and motion (for V>2Q kV) is illustrated 
qualitatively in Figs. 6(b) and 6(c). Dielectrophoretic forces 
tend to move matter of low permittivity (i.e., vapor) to areas 
of low field strength (i.e., to fin roots or away from the im
mediate tube vicinity). Since the vast majority of active 
nucleation sites on the lo-fin tube were at the fin roots, where 
the degree of wall-to-liquid superheat was greatest, bubbles 
generated there were trapped in the interfin spaces (Fig. 6b). 
Forced to rise by buoyancy forces, these bubbles were com
pelled to follow the circumference of the tube (Fig. 6c). It is 
suggested that the EHD forces, by keeping the bubbles close to 
the heat transfer surface, greatly increased local turbulence 
and mixing and led to the substantial EHD induced increase in 
heat transfer. This is equivalent to the mechanism by which 
some enhanced surface tubes, such as the GEWA-T tube, trap 
bubbles between tube fins by mechanical means, resulting in a 
liquid-vapor pumping action in the large re-entrant channels 
(Wanniarachchi et al., 1987; Stephan and Mitrovic, 1982). 

An interesting phenomenon was observed at low rates of 
heat transfer with an intense applied electric field; a column of 
vapor could be seen trapped on the upper part of the tube in 
each interfin space (Fig. 7). Each column would grow until 
buoyancy forces were sufficient to overcome the restraining 
EHD forces at the top of the tube and a bubble would be 
released. As a result, the lower liquid-vapor interface of each 
column would oscillate at a frequency that increased with in
creasing field strength (point X in Fig. 7). It is not clear what 
mechanism led to the high EHD enhancement of heat transfer 
in this situation since the vapor columns may have acted in a 
manner similar to the vapor blanket in film boiling. 

A permanent visual record of the phenomena described 
' above is available from the ASME Film Library (Cooper and 
Allen, 1987). 

The electrical power consumed by the EHD process was ex
tremely small. In fact, no detectable change in the electrode 
potential versus supply current characteristics for either boil
ing or isothermal conditions was observed. This observation 
has been corroborated by the work of Yokoyama et al. (1986). 
For a positive d.c. electrode potential of 25 kV (at 
Ts = 21.5°C) the current supplied to the EHD evaporator was 
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Fig. 8 EHD enhancement of boiling R114 and 10 percent (w.w) oil mix
ture on horizontal lo-fin tube with cylinder electrode (Ts = 21.5°C) 

approximately 8.8 ̂ A, representing a power input of 0.22 W. 
Such an electrode potential could induce an increase in total 
heat flux through the lo-fin tube of about 200 W for 
ATm =2.0°C, giving an "EHD amplification factor" (i.e., the 
ratio of the EHD induced increase in heat transfer to power in
put to the electric field) of the order of 103. 

EHD Enhancement of Boiling in an R114-oil Mix
ture. Most compressors in vapor recompression systems re
quire a lubricant oil, some of which, by necessity, mixes with 
the heat transfer fluid. The presence of this less volatile com
ponent leads, in general, to a degradation in the thermal per
formance of the evaporator. At the evaporator heat transfer 
surfaces, oil concentration increases as the more volatile 
refrigerant is vaporized. This leads to the formation of a bar
rier to the diffusion of refrigerant, and therefore heat energy, 
from the bulk of the fluid to the evaporator tube wall. The 
behavior of refrigerant/oil mixtures under these conditions is 
complex (e.g., foaming may occur and, at low oil concentra
tions, heat transfer may be increased marginally). 

The experimental conditions equivalent to those for the 
results of Fig. 5 were repeated with 5% w.w. Shell Clavus 68 
oil added to the R114 refrigerant charge. Almost identical 
results were obtained as for pure R114. The addition of 10% 
w.w. oil resulted in very significant heat transfer degradation 
under zero-field conditions as shown in Fig. 8. This degrada
tion was accompanied by considerable "foaming" of the 
refrigerant-oil mixture in the evaporator. Similar results have 
been reported by others (e.g., Wanniarachchi et al., 1987; 
Dougherty and Sauer, 1974; Henrici and Hess, 1971). Com
parison of Figs. 5 and 8 shows that under zero-field conditions 
for decreasing heat flux 10% w. w. oil contamination reduced 
heat transfer coefficients by at least 50 percent compared with 
the case of pure refrigerant. 

Application of electric stress resulted in the same EHD ef
fects observed in pure R114. Boiling hysteresis could be com
pletely eliminated with the brief application of an electrode 
potential of approximately 10 kV. The effect of continuous 

application of K=23.5 kV is shown in Fig. 8 (note this elec
trode potential was the maximum permissible due to the 
reduced electrical insulation properties of the oil-con
taminated Freon). 

Application of an intense electric field also resulted in a 
dramatic reduction of "foaming" in the R114/oil mixture. 

It should be noted that in the present experiments the oil 
and refrigerant had almost identical permittivities (by chance). 
Greater enhancement of heat transfer may occur with oils of 
significantly different permittivity, which could facilitate 
EHD dielectrophoretic mixing in regions of inhomogeneous 
oil concentration. 

A Model of EHD Nucleate Boiling 

EHD enhanced boiling heat transfer is an extremely com
plex process. Satisfactory correlation of zero-field boiling has 
proved difficult and the presence of the electric force field in 
addition to that due to gravity makes analysis of the EHD 
situation particularly intractable. Previous treatments of EHD 
boiling data have been concerned only with the film boiling 
regime and prediction of the increase in critical heat flux due 
to application of an electric field. Here the effect of an intense 
electric field applied across the vapor film is to produce a 
wavelike instability on the vapor-liquid interface. If the elec
tric field is of sufficient intensity, rewetting of the heat 
transfer surface occurs. Theoretical analysis of this 
phenomenon and prediction of the EHD instability 
wavelength has been carried out by a number of authors (e.g., 
Berghmans, 1976, and Jones and Hallock, 1978). Linearized 
perturbation methods were employed similar to those used to 
model EHD destabilization of condensate films (e.g., see Choi 
and Reynolds, 1965, or Lee and Choi, 1968). 

Theoretical modeling of EHD enhanced nucleate boiling 
has not been reported until recently due, in part, to: (a) lack 
of experimental data and (b) the uncertainty regarding the 
true nature of the governing EHD mechanisms. However, re
cent research in Japan and the UK has resulted in two quite 
different approaches to the modeling of EHD nucleate boiling 
data. Yokoyama et al. (1986) investigated a horizontal 
upward-facing flat heated plate in an EHD pool boiling situa
tion (working fluid Rll) and developed a method of cor
relating the experimental results based on the analysis of zero-
field flow boiling heat transfer by Chen (1963). 

The approach adopted by the present author assumes that 
the EHD induced change in nucleate boiling heat transfer 
coefficient is primarily due to the influence of the electric field 
on bubble growth and separation at the heat transfer surface. 
The basis of this approach is the zero-field model of nucleate 
boiling proposed by Rohsenow (1952), which is then modified 
to account for reduced bubble release radius in an electric 
field. The Rohsenow model utilizes bubble release radius as a 
characteristic dimension in both the Nusselt number Nu0 and 
the Reynolds number Re0 and the following equation was pro
posed as a means of correlating nucleate boiling data: 

Nu0 = C1-Re($
1-n>.Pr<-m> (1) 

From various data of boiling on clean surfaces Rohsenow 
suggested values of n = 0.332, m-Q.l, and C{ is a constant 
dependent on the fluid/heating surface pair. 

Many EHD researchers have noted that the application of 
an electric field to a zero-field nucleate boiling situation causes 
a decrease in bubble departure diameter. Research in the 
Soviet Union by Baboi et al. (1968) quantitatively investigated 
this phenomenon in a detailed experimental study of EHD 
pool boiling of benzene on a horizontal heated wire. In their 
theoretical analysis, which successfully predicted departure 
diameter of bubbles in an electric field, Baboi et al. assumed 
that the electric force FE acting on a bubble is purely dielec-
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trophoretic (i.e., bubbles are uncharged). FE (after conversion 
to SI units) is given by: 

F£=(i^f^W (2) 
where Tb is the volume of a bubble, e is absolute permittivity 
(the subscripts Kand L denote vapor and liquid, respectively) 
and E is electric field strength at the heat transfer surface. By 
considering a steady-state balance between electric, buoyancy, 
and surface tension forces Baboi et al. determined bubble 
breakaway diameter to be given by: 

/ a V0-5 

D„ = w(p)(— - ) 

(i + ( ^*y-^ W V 0 ' 5
 (3) 

V \(ev + 2eL)g(pL-pv)J ) 
where w is a function of contact angle (3, The change in bubble 
departure diameter can be seen as an electrically induced 
change in the characteristic dimension of Nu0 and Re0. Thus, 
equation (3) may be used to determine the magnitude of elec
trically modified Reynolds and Nusselt numbers, ReE and 
NuB, respectively. We may define an electrical influence 
number Ne such that: 

N e = (i + ( 1-WV-*L) ) VE2) -°-5
 ( 4 ) 

V \(ev + 2eL)g(pL-pv)J ) 
then 

Nu£ = (-i^-)Nu0(Ne)^-5 (5) 

and 
Re£ = Re0(Ne)-°-5 (6) 

where the subscripts E and 0 indicate finite and zero applied 
electric field for a given heat flux, respectively. Thus, under 
conditions of constant heat flux and saturation temperature 
from equation (1) we have: 

V Nu0 / V Re0 / 
and combining equations (5), (6), and (7) the degree of EHD 
enhancement of heat transfer is given by: 

f-^-)=Ne("/2> (8) 
V h0 / 

Assumptions held implicitly within the above analysis 
include: 

(/) Bubble departure diameter is unaffected by inertial 
or viscous forces (i.e., the analysis is static). 

(/;') The electric field strength E at the heat transfer sur
face is nonuniform and known. 

(Hi) Bubbles do not carry electric charge. 
(iv) Surface tension and contact angle are not affected by 

electric field strength. 
Assumption (/') implies that EHD heat transfer enhance

ment (hE/h0) is independent of heat flux q. This is contrary to 
available experimental evidence, which indicates that enhance
ment decreases with increasing zero-field heat flux (reflecting 
a progressive domination of inertial forces over forces of elec
trical origin). Therefore, the present author proposes the 
following model based on both the dimensionless increase in 
heat transfer from equation (8) and a dimensionless represen
tation of heat flux under zero-field conditions (i.e., Re0). 
Thus: 

(—^-)=aNe<"/2)(Re0)
6 (9) 

where « = 0.33 as suggested by Rohsenow and where the con
stants a and b are determined empirically. Data available from 
previous studies of EHD enhanced pool boiling on fine 

a Baboi et al (1968) o Bonjour el al (1962) 
© Choi (1962) A Markels and Durlee (1964) 
• Watson (1961) 

Fig. 9 Correlation of EHD enhanced nucleate boiling on fine horizontal 
heated wires 

horizontal heated wires are shown correlated by equation (9) 
in Fig. 9. The solid line indicates a least-squares best fit to the 
data, which has been transcribed from illustrations in the 
works of Baboi et al. (1968), Choi (1962), and Bonjour et al. 
(1962). These data result in constants for equation (9) of 
a = 0.3 and b= -0.16 (standard deviation = 0.0424). 

[Note: the data of Watson (1961) and Markels and Durfee 
(1964) are shown in Fig. 9 for completeness, but have not been 
included in determination of the constants a and b. Ex
periments by Watson included a substantial degree of subcool-
ing while those of Markels and Durfee involved a significant 
degree of Joule heating of the working fluid, water.] 

The studies of Baboi et al. (1968) and Bonjour et al. (1962) 
employed thin cylindrical electrodes lying parallel to the heater 
wire. Calculation of the magnitude of VE1 for evaluation of 
Ne in these cases was made assuming that the electric field in-
homogeneity in the immediate vicinity of the heat transfer sur
face was similar to that for the co-axial cylinder electrode 
system (finite element analysis indicated that this approxima
tion was adequate for present purposes). 

Equation (9) does not successfully correlate data from the 
present study or from recent investigations by others (e.g., 
Yokoyama et al., 1986) as discussed below. However, it does 
represent the first successful correlation of EHD nucleate boil
ing data from a number of investigations and the analytical 
model used may prove to be the basis for development of a 
more generally applicable correlation method. 

Discussion 

Elimination of boiling hysteresis by a brief application of a 
modest electric field to a heat transfer surface may prove to be 
relatively simple to implement in many engineering heat 
transfer situations. The required duration of applied electric 
stress is short and the energy required extremely small. In 
practice, this has the following implications: 

(a) A very simple high-voltage generator may be used 
(e.g., similar to that used in gas ignition spark generators). 

(b) The need for a sophisticated electrode/insulation 
system capable of withstanding continuous electric stress is 
reduced. 

(c) Relatively conductive working fluids (including water) 
may be amenable to this technique. 

The cost effectiveness of a high-voltage continuous EHD 
enhancement system in a practical evaporator will be depend
ent on a number of factors including: 

(0 the EHD increase in overall heat transfer coefficient 
obtainable 

(i7) the influence of the electrode system design on: 
8 tube bundle packing density 
9 pressure drop through the equipment 
8 complexity of the manufacturing process. 
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The future of practical EHD enhancement is dependent on a 
realistic assessment of these factors in commercial terms. 

Equation (9) successfully models EHD nucleate boiling 
from heated horizontal wires where conventional nucleate 
boiling bubble dynamics occur. However, data from the 
present study and Yokoyama et al. (1986) are not successfully 
correlated by this method. Several factors may contribute to 
this lack of agreement, including: 

(/') The present study for boiling on a "lo-fin" tube in
volved complex bubble dynamics. The electrical bubble trap
ping mechanism led to high enhancement of heat transfer for a 
given value of VE1 compared to .experiments using fine 
horizontal wires. The explanation for this high enhancement 
may lie in the EHD induced "scouring" effect of bubbles, 
which disrupt a relatively large proportion of the heat transfer 
surface boundary layer on the lo-fin tube. This contrasts with 
the fine wire apparatus where bubbles have relatively little in
fluence on fluid hydrodynamics after release since electric 
field forces move bubbles radially outward from the heat 
transfer surface. 

(//) The experimental data of Yokoyama et al. (1986) also 
show high EHD enhancement for the magnitude of VE2 

available from the electrode geometry employed. The explana
tion here may lie in the relatively high degree of charge injec
tion produced from the Yokoyama electrode system, which 
may have caused considerable disruption of single-phase heat 
transfer in the thermal boundary layer. 

The EHD boiling model described above successfully cor
relates experimental data, but only for relatively simple ap
paratus. However, it may yet provide the foundation for the 
development of a more comprehensive model to correlate all 
types of EHD nucleate boiling data. Such a correlation must 
await more detailed experimental data for a variety of heat 
transfer surfaces and electrode geometries. 

Conclusions 

EHD enhancement of boiling heat transfer from a lo-fin 
tube has been shown to improve heat transfer coefficients by 
up to a factor of ten in pure Rl 14 and in mixtures of Rl 14 and 
oil. 

Boiling hysteresis is completely eliminated through the elec
trical activation of nucleation sites on the heat transfer surface 
following a brief application of a modest electric field. 

A model of the EHD enhanced nucleate boiling process has 
been developed, which utilizes the relationship between ap
plied electric stress and bubble departure diameter at a heat 
transfer surface. This model has successfully correlated data 
from simple thermal and electrical geometries (i.e., fine 
horizontal heated wires with co-axial or parallel cylinder 
electrodes). 
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Liquid-Solid Contact During Flow 
Film Boiling of Subcooled ' 
Freon-11 
Liquid-solid contacts were measured for flow film boiling of subcooled Freon-11 
over an electrically heated cylinder equipped with a surface microthermocouple 
probe. No systematic variation of the extent of liquid-solid contact with wall su
perheat, liquid subcooling, or velocity was detected. Only random small-scale con
tacts that contribute negligibly to overall heat transfer were detected when the surface 
was above the homogeneous nucleation temperature of the Freon-11. When large-
scale contacts were detected, they led to an unexpected intermediate transition from 
local film boiling to local transition boiling. An explanation is proposed for these 
unexpected transitions. A comparison of analytical results that used experimentally 
determined liquid-solid contact parameters to experimental heat fluxes did not show 
good agreement. It was concluded that the available model for heat transfer ac
counting for liquid-solid contact is not adequate for flow film boiling. 

Introduction 
In today's industries film boiling has a role in certain areas 

of surface-liquid heat transfer. Heat treatment of steels, boil
ing in rod bundles, rewetting of coolant channels by an emer
gency core cooling system in a pressurized-water reactor, 
accidental spills of molten materials into volatile coolants, and 
cooldown of electrical and superconducting components are 
only a few examples involving film boiling. A complete un
derstanding of the heat transfer mechanism(s) of film boiling 
is needed. 

Many studies have been done by assuming a continuous 
vapor film existing between the liquid and the heater surface 
throughout the film boiling region. But several experimental 
studies, e.g., Bradfield (1966), Coury and Dukler (1970), Yao 
and Henry (1978), Lee et al. (1982, 1985), Neti et al. (1986), 
and Dhuga and Winterton (1986) have shown that brief random 
contacts between the liquid and the surface occur in some 
portions of this region. The vapor film might appear to be 
quite continuous to the naked eye, but small contacts become 
longer and more numerous as the heating surface superheat 
approaches the minimum wall superheat. The liquid-solid con
tacts contribute to the average heat transfer rate during this 
stage of film boiling, eventually leading to the so-called min
imum heat flux. 

This paper reports the results of research designed to de
termine the influence of liquid-solid contact on flow film boil
ing from a heated cylinder. A liquid-solid contact probe was 
mounted in the surface of an electrically heated cylinder sus
pended horizontally in up-flowing Freon-11 (R-l 1). The probe 
yielded information concerning the duration of contacts, the 
frequency of contacts, the temperature depressions caused by 
contacts, and the fraction of the surface covered by liquid 
contacts. It also provided boiling curves (q - ATW) for various 
angular positions on the cylinder. The influence of liquid ve
locity and subcooling was examined over the ranges allowed 
by the flow loop in which the experiments were carried out. 

Experimental Apparatus 
Figure 1 is a schematic diagram of the flow loop in which 

the experiments were performed. The loop was described in 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division August 29, 
1988; revision received June 9, 1989. Keywords: Boiling, Forced Convection, 
Thin Film Flow. 

detail by Orozco and Witte (1986). The loop was modified to 
accommodate a square test section. Figure 2 shows the heater 
suspended across the test section with the supporting structures 
and the buses for electrical heating. The heater was a 6.35-
mm-o.d. Hastelloy C tube, 0.102-mm wall thickness, with an 
effective heating length between the walls of the test section 
of 80 mm. 

Figure 3 shows the details of the heater, including a mi
crothermocouple probe for liquid-solid contact measurements. 
A lava insert gave the heater structural rigidity as well as 
additional thermal mass to prevent precipitous surface tem
perature changes because of liquid-solid contacts. A groove 
was machined into the lava insert in which a 1.6-mm-o.d. 
Inconel sheathed chromel-alumel thermocouple was laid. Its 

Vent (P2) 
j X l Y Flll-up 
^ - - t S r port 

Transition II 

P5) Heat 
exchanger 

Test 
sectio .ion .lr(P6) 

Transition I I £ I 

Accumulator 

1® 

rTx) represents the temperature measurement at location x. 

(fnj) represents the pressure measurement at location y. 

Fig. 1 Schematic diagram of the flow loop 
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Fig. 3 

Hastelloy C tubing ^-Lava cylinder (fired) , , „ , , . „ „ 
6.35 OD, 0.102 wall, 86 length u n u . m m 

Microthermocouple installed in the cylindrical heater 

wires (0.4 mm in dia.) were brought to the surface through a 
1.7-mm hole drilled in the Hastelloy heater. Alumina was 
packed into the area surrounding the wire. A 0.05-mm-thick, 
1-mm circular copper junction was electroplated onto the wires 
to serve as a sensitive microthermocouple junction. The time 
constant of the junction was estimated at 0.9 ms. 

The area between the junction and the heater was sealed 
with high-temperature epoxy and polished to be flush with the 
heater surface. Prior to the probe junction electroplating, the 
entire assembly was fired in an oven to harden the lava insert. 
Lava expands permanently upon heating, so a good thermal 
fit between all the components was assured. After firing in 
this manner, the lava insert could not be removed from the 
heater nondestructively. 

The heater was powered by a regulated d-c power supply. 
Probe signals were recorded on a DEC Micro-11 computer 
equipped with a variable gain A/D board. The details of the 
data acquisition system are given by Chang (1987). 

Nomenclature 

It was found that the combination of the probe and the data 
acquisition system could detect temperature depressions of 
greater than 0.25 deg C at an event frequency up to about 10 
contacts/s. The contact event consists of a sharp temperature 
depression followed by a relatively slow temperature recovery, 
so that a minimum actual contact time on the order of about 
20 ms could be detected. 

Liquid-Solid Contact Heat Transfer 
Witte et al. (1983) developed an expression for the heat 

transfer that would occur because of momentary liquid-solid 
contacts. Their work assumed that the liquid and solid behaved 
as semi-infinite regions; upon touching, the interface temper
ature was assumed fixed in time. Chang (1987) investigated a 
constant flux model in which the surface temperature can 
change during the duration of the contact. He found that there 
is little difference between the two models as far as the heat 
transfer is concerned; indeed the resulting expressions differ 
only by a constant. Since the constants were both close to 
unity, he suggested that 

k£Te 
Qc = 

(<*)' 
ifcUcY 0) 

be used to represent the influence of liquid-solid contacts on 
heater transfer. The liquid-solid contact component is added 
to the film boiling component in the following way: 

Q = Q/b + qi 

q = qv(l-Fa) + qcFa 

(2) 

(3) 
where Fa is the area fraction Ac/A„ and qv is computed by the 
method of Witte and Orozco (1984). Equations (1) and (3) 
clearly show that to include the influence of liquid-solid con
tact on the total heat transfer during film boiling, one must 
know the duration of contact tc, and the area fraction of 
contact Fa. 

To show the influence of liquid-solid contact on the flow 
film boiling curve, correlations of the contact parameters de
scribed above with the wall superheat are desirable. The ex
periments described in the following section were directed at 
obtaining such information. 

Flow Boiling Experiments 
Extensive testing was carried out to verify that the micro-

thermocouple probe was indeed capable of detecting liquid-
solid contact. These tests are described in detail by Chang 
(1987). Figure 4 shows the data plotted directly from the com
puter memory for pool boiling tests of the heater/probe. These 
data show the characteristically steep depression in temperature 
as contact occurs followed by a relatively slow temperature 
recovery as the film is re-established. 

If the vapor film experiences fluctuations in its thickness 

A = area of heater 
fc = frequency of liquid-solid Th„ = 

contact 
F„ = area fraction of contact Tm = 
F, = time fraction of contact 
ks = thermal conductivity of Tv = 

heater material V = 
q = heat flux density AT = 
tc = duration of liquid-solid ATg = 

contact 
T = temperature ATC = 

TB = liquid temperature 
Tcr = critical temperature of liq- ATW = 

uid a = 

homogeneous nucleation 
temperature 
saturation temperature of 
liquid 
wall temperature 
liquid velocity 
temperature difference 
liquid subcooling = 
•'sat ~ Tg 

temperature depression dur
ing liquid-solid contact 
wall superheat = Tw- TsM 
thermal diffusivity 

angle measured from for
ward stagnation point 

Subscripts 
a 
b 
c 

fb 
I 
s 
t 
V 

alumina 
bulk solid 
contact 
film boiling 
liquid, lava 
solid 
total 
film boiling, without liquid-
solid contact 
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Fig. 4 Probe signals obtained from the tests in pool film boiling of 
saturated Freon-11: probe position = 180 deg, q = 22 kW/m2, ATW = 
115-0 
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Fig. 5 Boiling curves for V =0.7 m/s, ATB = 2.8°C or 3.3°C, and 6 
90 or 180 deg with comparisons to theoretical results 

q, 

k w / m 2 

-Theory w i t h ATB = 3.9°C 

» ATB = 3.9"C at 
8 = 0" 

o ATB = 3.6°C at 
e = 90" 

o ATB = 3.9°C at 
e = IBO" 

AT„ = Tw - T , . i , "C 

Fig. 6 Boiling curves for V = 1.0 m/s, Ar„ = 3.6°C or 3.9°C or 3.9°C, 
and 6 = 90 or 180 deg with comparisons to theoretical results 

without creating liquid-solid contact, it is possible that some 
fluctuations in the probe output could be caused. Coury and 
Dukler (1970) observed such fluctuations during film boiling 
of Freon-113 on a nickel surface. However, these fluctuations 
would not take on the characteristic "signature" of actual 
contact, as shown in Fig. 4. In our analysis of contacts, only 
events that take on the shape characteristic of liquid-solid 
contact were considered. Flow film boiling experiments were 
carried out over obtainable ranges of flow velocity and liquid 
subcooling. Basically, there were three parameters that set 
apart the experimental runs in this study: flow velocity, liquid 
subcooling, and probe position in the flow field. The cylinder 
was rotated so that measurements were made with the probe 
at 0 deg (the forward stagnation point), 90 deg, and 180 deg. 
Careful control of the power level, the liquid flow velocity, 
and the liquid subcooling allowed stable film boiling to be 
reproduced with only a small difference of wall superheats, 

- Theory wi th ATB = 4.4"C 

ATB= 4.4DC Qt 
6 = 0 ° 

ATB= 4.4-C at 
8 = 90» 

ATB= 5.0°C at 
B = 180° 

ATV = T V - T S „ , " C 

Fig. 7 Boiling curves for V = 1.5 m/s, ATB= 4.4°C or 5.0°C, and i 
0, 90, or 180 deg with comparisons to theoretical results 

-Theory w i t h V 

ni /s and AT8= 5.6°C 

1.9 m/s and ATB= 5.0"C 
V = 1.9 m/s, ATB = 
5.0'C,ond 8 = I BO

AT, = T » - T „ , , ' C 

Fig. 8 Boiling curves for V= 1.7 to 1.9 m/s, ATB = 4.4°C to 5.6°C, and 
8 = 0, 90, or 180 deg with comparisons to theoretical results 

40 60 200 220 240 

AT, = Tv - T „ , , 'C 

Fig.9 Boiling curves for V= 1.7 m/s, A7S = 6.7°C, and $ = 180 deg with 
comparison to theoretical results 

about 5°C maximum, between runs. Thus the reproducibility 
of the data could be considered quite adequate. 

Twenty-seven experimental runs, consisting of several steady-
state data points for each run, were performed. Some runs 
ended with premature film collapse or other system malfunc
tions. Eventually twelve runs that covered the obtainable ranges 
of subcooling and velocity were selected as representative of 
the data. Heat transfer and liquid-solid contact information 
were obtained for these runs. An uncertainty analysis (see 
Chang, 1987) showed that the heat fluxes could be ascertained 
with ± 3 percent uncertainty while the corresponding surface 
temperatures were ± 1 percent accurate. 

Heat Transfer Results 
Figures 5-9 show the boiling heat transfer data for various 

liquid subcoolings, velocities, and probe locations. The curves 
are strongly dependent upon probe position because of the 
variation of vapor film thickness around the heater as shown 
by Witte and Orozco (1984). The heat flux is uniform so that 
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Fig. 11 Photograph 01 boiling trom 6.35·mm heater tollowlng an inter·
mediate transition: q= 204.6 kW/m2, ATw= 54°C, V= 1.7 mis, ATB = 6.7°C.
8 = 180 deg

operate at an average temperature between the 0- and 180-deg
positions. The lower the wall superheat, the greater is the
deviation of the theoretical curves from the experimental ones.
Indeed it appears that the no-contact theory is approaching
the experimental data as wall temperature is increased. This
is to be expected, and indicates that the deviation between the
no-contact theory and the experimental values is due to liquid
solid contact.

Fig. 12 Probe trace showing rapid temperature rises during stable "in·
termediate" boiling: V = 1.0 mis, ATB = 3.9°C, 0 = 180 deg. q= 75.7 kWI
m2,ATw=102°C

An Unexpected Boiling Transition
The data showed an unexpected boiling transition in some

experimental runs. For example, Figs. 6, 7, and 9 show a very
large temperature drop at a fixed heat flux for cases where the
probe is at 90 and 180 deg. Figure 10 shows the temperature
time trace that corresponds to the boiling curve that exhibits
the transition in Fig. 6. The actual plots in millivolts are shown
for authenticity; a temperature coordinate is also shown for
convenience.

When such a transition was first observed, we thought this
was the transition from film to nucleate boiling. However,
visual observations showed that a smooth vapor film still ex
isted over the forward portion of the heater. Figure 11 is a
photograph of the heater that has undergone one of these
transition. events with the probe at 180 deg for the conditions
indicated.

Figure 12 shows an excerpt from the probe output recorded
after the transition had occurred. The temperature of the probe
was stable indefinitely until the heat flux was changed. Figure
13 shows the eventual change to nucleate boiling at a slightly
lower heat flux for the same case as Figs. 10 and 12. Thus it
is clear that the probe location undergoes two transitions be
tween stable film boiling and stable nucleate boiling.

(5)

25
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240
T =225°[
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the surface temperature must adjust itself to accommodate the
flux. Thus the wall superheat for the 180-deg position always
tends to be higher than the superheat for the O-deg position
at the same q in stable film boiling.

The installation of the probe requires alteration of the ther
mal environment, leading to the possibility that the probe
temperature is not necessarily representative of the surrounding
heater temperature. If one assumes that the primary effect is
due to the different substrates underlying the heater and the
thermocouple, then the influence of the different substrates
on the heater and the probe surface temperatures can be es
timated.

Using the notion that once liquid-solid contact occurs, a
constant heat flux is withdrawn from the surface, one can write
using the results of Carslaw and Jaeger (1959)

Tc- T
b

= 2Qc ~ (4)
K;~7r

which represents the temperature depression at the surface of
the substrate after some contact time tc' Solving for qc and
assuming that liquid-solid contacts occur simultaneously on
the probe and the surrounding heater surface, one finds the
following for the ratio of the surface temperature depression
for alumina compared to the lava:

Substituting values of k and a typical of our experiments, one
finds that this ratio is about 17 percent. This means that at
any given time, the surface of the alumina substrate has cooled
much less than the surrounding lava substrate. A similar anal
ysis for the copper and Hastelloy surfaces shows just the op
posite: The copper probe surface will cool more than the
Hastelloy heater surface. In reality, the cooling histories of
the two surfaces will depend upon a combination of the cooling
characteristics of the metal surfaces and the ceramic substrates.
They tend to offset each other, leading us to believe that the
probe temperature is representative of the surrounding heater
temperature as liquid-solid contact occurs.

Observations and photographs of film boiling over the probe
locations showed no sign of disturbances due to the presence
of the probe (see Chang, 1987).

Also shown for comparison in the figures are the curves
calculated using the technique of Witte and Orozco, which
assumes no liquid-solid contact. These curves are based on a
uniform wall temperature so that it is expected that some
deviation between them and the experimental curves should
exist. However, the theoretical curves should compare rea
sonably well with data at the 90-deg position, since it will

5 ,=-_~_~~"_~_~_~_~_~_~__J
o .5 10 15 2.0

TIME, SECONDS

Fig. 10 Probe trace indicating unexpected temperature transition and
rapid temperature rises alter the transition: V = 1.0 mis, ATB = 3.9°C,
0= 180 deg, q=79.3 kW/m2
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T I M E , S E C O N D ; 
Fig. 13 Probe trace showing eventual transition to nucleate boiling: 
same conditions as Fig. 10 and 12, and q = 72.5 kW/m2 

We also found that the first transition was repeatable; that 
is, by increasing the heat flux after such a transition occurred, 
the temperature drop could be reversed. A reduction in flux 
once again led to the large drop in temperature. Since these 
events were not film-to-nucleate transitions, we called them 
"intermediate" transitions for want of a better description. 

Once the boiling had undergone the final transition to nu
cleate boiling, the situation could not be reversed by simply 
increasing the heat flux once again. 

Liquid-Solid Contact Measurements 
Probe signals revealed that there were two distinct modes 

of liquid-solid contact in flow film boiling. In the first mode, 
called the small-scale contact mode, both the temperature 
depression ATC and the contact duration tc were small and 
random. A large-scale mode involved much larger ATc and tc. 
However, large-scale contacts were only detected just prior to 
an intermediate transition. 

The peak-to-peak noise of the probe signal was 0.25°C, so 
only temperature depressions greater than 0.5°C were con
servatively identified as contact events from the probe traces. 
The data from the probe at 0 deg never demonstrated large-
scale contacts. The data showed that when the vapor film 
became unstable there, a total collapse of the vapor film was 
precipitated, leading immediately to nucleate boiling. This can 
be explained by the fact that the film thickness is the thinnest 
and the heater temperature is the least at the forward stagnation 
point. Contact with the heater apparently caused a cold spot 
whose energy level could not be replenished and transition 
always occurred. Consequently, only contact data for the 90-
and 180-deg points are reported. 

Figures 14 and 15 show averaged contact data for the two 
extreme cases that we were able to examine in this study. Figure 
14 shows data for low velocity/low subcooling, while Fig. 15 
contains data for the highest obtainable level of velocity and 
subcooling. It is clear that there is no discernible trend of 
contact data with wall superheat, or velocity or subcooling. 
One would expect that both A Tc and tc should increase as the 
wall superheat decreases and as velocity and subcooling in
crease. However, such trends were not present for small-scale 
contacts. Generally, in the small-scale contact mode, the av
erage contact data were: Arc = 0.6 C, tc = 20 ms,/c = 0.2 con
tacts, and A/A, = 0.004. Therefore the contact heat flux could 
not contribute much to the overall heat transfer rate. These 
values were found by summing over a period of about 50 s. 

In the large-scale mode, contacts were much more extensive 
and led to intermediate transitions. Figure 10 shows the probe 
trace that corresponds to the intermediate transition of Fig. 
6. Large-scale contact of liquid occurred during this event. 
ATC and tc were much larger for these cases, ranging up to 
20°C and 250 ms, respectively. Such contacts should clearly 
have a dramatic effect on the total heat transfer from the 
surface. 

ATC 

°C 

Data f o r ATB = 3.3"C and 8 = 9 0 ° 

Data f o r ATB = 2.8 'C and 8 = 180° 

30 190 200 

ATW = T w - T „ ( , °C 

t c . 

ms 6 0 

o Data f o r ATB = 3.3°C and 8 = 9 0 ° 

n Data f o r A T B = 2.8°C and e = 100° 

160 170 IB0 190 200 210 220 

ATW =T„- Tsa(, °C 

Fig. 14 Liquid-solid contact data for temperature depression A7"c and 
contact duration tc: V = 0.7 m/s, ATB = 2.8°C or 3.3°C, and 6 = 90 or 
180 deg 

ATc, 

° Data for V = 1.7 m/s, ATB= 5.6°C and 8 = 90° 
° Data for V = 1.9 m/s, ATB = 5.0°C and 6 = 180° 

o o o o • 

130 140 150 160 170 

ATW = T w - TSJ, , °C 

o Date f o r V = 1.7 m / s , ATB = 5.6°C end e = 9 0 ° 
D Data f o r V = 1.9 m / s , ATB = 5.0°C end 8 = 180° 

t c , 

ms 

130 140 150 160 170 180 190 

ATW = T w - T„, , °C 

Fig. 15 Liquid-solid contact data for temperature depression ATC and 
contact duration fc. V=1.7 m/s or 1.9 m/s, Ars=5.0°C or 5.6°C, and 0 
= 180°C 

Liquid-solid contact data for two cases where large-scale 
contact occurred just prior to the intermediate transitions were 
reduced to a form suitable for the application of equations (1) 
and (3). Average contact values of AXC=5.2°C, /c=151 ms, 
/ c = 2.85 contacts/s, and Fa = 0.430 were calculated for V = 
l.Om/s,A7,

fl=3.9°C,and0 = 180 deg (see Fig. 6).Theergodic 
surmise was used to evaluate Fa; i.e., the time fraction of 
contact F, can be set equal to the area fraction if the surface 
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Fig. 16 Qualitative representation of intermediate transition on boiling 
curves 

is large enough to include many contact events per unit time 
and if the sample time is long enough to include many contact 
events. These conditions were met in our experiments. 

At ATW = 195°C, q„ - 80 kW/m2, while from equation (1) 
qc = 42.3 kW/m2. Using the Fa value above yields q = 63.8 
kW/m2. While the effect of liquid-solid contact on the cal
culated heat flux is significant (about 28 percent), the exper
imental heat flux is about 80k W/m2. So the prediction is about 
20 percent lower than the measured value. 

A similar calculation for V=\.l m/s, ATB = 6J°C, and 
0=180 deg (see Fig. 9) gives: ATC =6.6°C, fc=80 ms,/c = 7.08 
contacts/s, and Fa = 0.566. For this case, equation (1) gives 
97.9 kW/m2 and q„ is 120 kW/m2 and AT„ = 208°C. Equation 
(3) gives q= 107.5 kW/m2, which does not compare well with 
the measured value of 206 kW/m2. 

It is clear that the model for liquid-solid contact of Witte 
et al. (1983) does not represent an accurate assessment of the 
influence of liquid-solid contact. Indeed the model for film 
boiling without liquid-solid contact of Witte and Orozco (1984) 
predicts higher heat fluxes than do equations (1) and (3) even 
though there is significant liquid-solid contact at these two 
data points. 

A Proposed Explanation for the Intermediate Transi
tions 

Based on heat transfer and liquid-solid contact data, and 
on photographic observations, a possible explanation for in
termediate transitions can be offered. We believe that inter
mediate transitions lead to a stable local region of transition 
boiling in the wake. Generally it is thought that an electrically 
heated surface cannot achieve a stable transition condition. 
However, in this study, only a portion of the surface exists in 
this state while the remainder is in the film boiling state at a 
significantly higher temperature. Perhaps this heater system 
distributes energy spatially in such a way as to allow local 
stable transition boiling. While this cannot be proven, there 
is substantial evidence that this is what is happening. 

Figure 16 shows a qualitative representation of what is spec
ulated to happen as intermediate transitions occur. When the 
heat flux is lowered along a stable film boiling curve, say from 
point A to point B on Fig. 16, only small-scale contacts occur 
without much effect on heat transfer. These points are typified 
by the heater temperature being greater than the homogeneous 
nucleation temperature of R-ll, so only momentary liquid 

contact is possible. Lienhard (1982) has shown that for most 
cases the Thn is well approximated by 0.923 T„; for our case 
rA„ = 183°C. 

As the heater temperature approaches Thn, the contact mode 
becomes large scale as described previously and the surface 
begins to experience longer and more intense contacts. This 
drives the heater temperature down to a point where the local 
cooling of the heater can create temperature depressions that 
lower the heater temperature below Thn. Then, liquid can re
main in contact with the heater surface and a state of transition 
boiling exists, say point C, where there are alternating liquid 
and vapor patches over the surface. Both Figs. 10 and 12 show 
behavior that supports this contention. On Fig. 10, following 
the large temperature drop that we call the intermediate tran
sition, there are several rapid temperature rises (1-6) typical 
of vapor being formed over the probe location. Figure 12 shows 
two such temperature spikes on an expanded temperature scale. 
Thus the data indicate that superheated liquid is in intimate 
contact with the heater surface with momentary "flashes" of 
vapor. 

The explanation is supported by the experimental evidence. 
For the highest velocity, highest subcooling case (see Fig. 9), 
the tendency for large-scale contacts was to occur at higher 
heater superheat, as illustrated by Point D on Fig. 16. Thus 
the transition should begin at a higher ATW. This is indeed the 
case. Furthermore, if the intermediate state is a stable transition 
boiling point, the resulting ATW should be less than for lower 
velocity lower subcooling as shown by point E. Again, the 
data bear this out. 

It is interesting to note that Orozco and Witte (1986) ob
served a similar transition in R-ll for a spherical heater sup
plied with heat by circulating Dowtherm. They described a 
thin-wake regime where it was clear that film boiling was oc
curring everywhere on the heater, and a thick wake regime 
that resulted from an uncontrollable temperature drop down 
to a new stable point. As in the present study using electrical 
heating, Orozco observed a second transition into nucleate 
boiling following this intermediate transition. His heater was 
spherical with a large supporting superstructure in the wake, 
while the cylindrical heater used in this study had nothing to 
interfere with the behavior of the wake. It is surprising that 
two such diverse heaters would display such strikingly similar 
behavior. 

Vapor Wake Behavior 
Conventional thinking about how a film boiling wake be

haves seems to be substantially incorrect based on the obser
vations and photographs made during this study. Traditionally 
the wake is pictured as a teardrop-shaped region streaming 
behind the cylinder with its edges coinciding with the liquid 
streamlines. For the conditions of this study, the model is not 
correct. The wake is a relatively thin, irregular patch of vapor 
with vapor being torn from its edges rather than being diffused 
out the back of the wake as illustrated in Fig. 11. A stagnant 
liquid wake region lies above the vapor wake. This suggests 
that the liquid-vapor interface in this stagnant region should 
behave much like a pool boiling case. If so, Taylor instability 
concepts should be used to describe its behavior. The details 
of the wake behavior have been presented in another paper 
(Chang and Witte, 1989). 

Summary 
It was found that liquid-solid contacts occurred in a small-

scale mode in most of experiments, where the surface tem
perature was greater than the homogeneous nucleation tem
perature of R-ll. In contrast, large-scale contacts took place 
just prior to unexpected intermediate transitions in some cases. 
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In the large-scale mode, liquid-solid contacts became longer 
and more intense, causing a cold spot to form. This led to 
very large temperature drops that shifted the boiling behavior 
to a significantly lower wall superheat. 

An explanation for intermediate transitions was proposed; 
it assumes that such transitions lead to stable boiling in the 
wake region of the heater, even though the front portion of 
the heater can still be covered by a smooth stable vapor film. 
The last stable film boiling point prior to the transition is at 
a temperature greater than the homogeneous nucleation tem
perature while the stable point following the transition is at a 
temperature less than T\,„. Yao and Henry (1978) measured 
virtually no contact above Th„ for pool boiling of saturated 
ethanol and water. But they measured dramatically increased 
contact areas as the surface approached Th„, So their obser
vations support our explanation. 

Comparison of the experimental data to an analysis that 
includes the influence of liquid-solid contact on the heat flux 
did not show good agreement. This indicates that available 
models accounting for liquid-solid contact during flow boiling 
are not adequate. The data for liquid-solid contact showed a 
randomness that prevented the application of the analysis of 
Witte et al. (1983) over the range of wall superheats covered 
in this study. 

Visual observations of the vapor wake showed that conven
tional thinking about the shape of the vapor wake during the 
flow film boiling is incorrect. Rather than a teardrop-shaped 
wake whose boundaries coincide with liquid streamlines, the 
wake is a relatively thin irregular patch of vapor. Vapor is torn 
from its edges rather than being diffused out the back of the 
wake. Our treatment of the wake region needs to be altered 
to account for its behavior more accurately. 
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Numerical Analysis of Heat and 
l a s s Transfer From Horizontal 
Cylinders in Downward Flow of 
Air-Water l i s t • 
A numerical analysis is made of heat and mass transfer from horizontal circular 
cylinders in a downward flow of air/water mist ofpolydisperse droplets, taking into 
account the far-upstream droplet size distribution and the blockage effect of the 
gas phase flow. The effects of the droplet size distribution, temperatures, and liquid-
to-gas mass flow ratio upon the liquid film thickness and wall shear stress, velocity, 
and temperature of the air-water interface, two-phase Nusselt numbers, etc., are 
examined. 

Introduction 
Cooling of heated bodies by water droplets suspended in a 

gas stream shows a remarkably improved heat transfer per
formance in comparison with single-phase gas cooling. Ac
cordingly, gas-water mist cooling facilitates a significant 
reduction in the size and weight of heat exchangers and is 
useful for emergency cooling at peak loads or in accidents of 
normally gas-cooled equipment. This simple cooling technique 
is also suitable for heat transfer control (Aihara, 1988), because 
a 10-to-30-fold change in the heat transfer performance can eas
ily be accomplished by varying the mass flow rate of droplets 
to gas by a mere few percent. 

Many theoretical and experimental studies of air-water mist 
cooling have hitherto been carried out; an extensive historical 
review of 53 papers was made by Aihara (1988). The majority 
of existing theoretical studies are focused on either the heat 
transfer from a dry surface or the flow behavior and evapo
ration of a water film, without considering the droplet trajec
tories. 

Recently, a numerical analysis was made by Lu and Heyt 
(1980) of heat and mass transfer of double laminar boundary 
layers, i.e., liquid and outer gas boundary layers. However, 
the agreement between the predicted and measured values is 
not good, due to the assumption of nongravity and mono-
disperse droplets. 

On the other hand, Aihara and Fu (1986) made a trajectory 
analysis of the inertia collection of polydisperse droplets by a 
circular cylinder and a normal flat plate, taking into account 
the gas-phase flow separation; they confirmed that the gas 
flow separation has little influence on the local partial collec
tion efficiency of the cylinder. Furthermore, Aihara et al. 
(1988) carried out a similar analysis for the case of horizontal 
cylinders in a vertical downward flow of gas/polydisperse 
droplets with a blockage ratio of 0-0.4. In the present study, 
a numerical analysis of the double boundary layers is carried 
out using the collection efficiencies obtained in these analyses. 
The effects of the drop size distribution, temperatures, and 
liquid-to-gas mass flow ratio are examined on the flow behavior 
and evaporation of a thin liquid film on cylinders with a uni
form wall temperature and on the two-phase, local Nusselt 
number, etc. 

Mathematical Formulation 

Physical Model and Assumptions. We consider heat and 
mass transfer from the front surfaces of horizontal circular 
cylinders with a uniform wall temperature Tw in a downward 
flow of air-water mist. Figure 1 shows the physical model of 
the near-upstream region for a cylinder placed in the middle 
of a channel of width b or one of the cylinders in a crossflow 
array of a pitch b. Water droplets carried by an air stream 
impinge onto the cylinder and evaporate on its surface. When 
the mass flow rate of impinging droplets is greater than the 
mass evaporation rate of droplets on the cylinder surface, a 
liquid film starts to form in the vicinity of the forward stag
nation point. However, farther downstream, less liquid film 
is formed, because the mass flux of the droplets impinging 
onto the cylinder decreases progressively on approaching the 
droplet grazing point. Hereafter, the area where the liquid film 

Air-water mist flow 
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HEAT TRANSFER. Manuscript received by the Heat Transfer Division April 16, 
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forms is referred to as the "liquid film zone," the area with 
no liquid film as the "dryout zone," and the boundary between 
both zones as the "starting point of dryout, x0." 

For simplification, the following assumptions are made: 
1 The gas-liquid mixture is composed of water droplets 

and saturated humid air (hereafter referred to as the gas phase); 
the droplet temperature is the same as the far-upstream gas 
temperature T„. 

2 The liquid droplets are uniformly distributed in the gas 
far upstream and their size distribution can be approximated 
by the following mass-basis Rosin-Rammler distribution: 

fw(d)= ~ ( ^ ) exp ,= ^©"lexpr©" (i) 

where dp is the droplet diameter, fwW the mass-basis size dis
tribution function, d0 the size parameter, and n the dispersion 
parameter. 

3 The gas velocity at the outer boundary layer, the droplet 
trajectories, and the local partial collection efficiency on the 
cylinder surface agree with results obtained in the authors' 
previous study (Aihara et al., 1988). 

4 The cloud of droplets at a low concentration does not 
affect the gas-phase flow pattern. 

5 The thickness of the gas-phase boundary layer is very 
small compared with the cylinder diameter dc; the droplets 
travel in straight paths without heat and mass transfer through 
the gas boundary layer. 

6 Both the gas-phase and liquid-film flows are steady, two 
dimensional, and laminar. 

7 No ripple of liquid film, no re-entrainment due to liquid 
splashback, and no surface tension are assumed. 

8 Within the boundary layers, all fluid physical properties 

are assumed to be constant and evaluated at a reference tem
perature (Tj + T„)/2 and a reference humidity (x, + x J / 2 . 

9 The liquid-to-gas mass flow ratio is small and the liquid 
film is sufficiently thin to allow the assumption of a linear 
distribution of velocity and temperature in the liquid film. 

Governing Equations. According to Aihara and Fu's (1982) 
numerical analysis of a heated wedge surface, the term (<#>/ 
dx)1, the inertia and evaporation terms in the liquid-film mo
mentum equation, and the term of enthalpy transport in the 
liquid-film energy equation are negligible. 

Liquid Film Zone (0 < x < x0). The gas-phase boundary 
layer equations are 

^ + ^ =o 
dx dy 

du„ du„ bue d2u„ 
8 dx g dy e dx g dy2 

dTe dTe 
Ug a + vg a 

s dx s dy 

vg d2Tg 

Prg dy2 

dco„ dco„ 

(2) 

(3) 

(4) 

(5) 

Based on the result of a numerical analysis by Aihara and Fu 
(1982), the term u^dS/dx) can be omitted and the boundary 
conditions become 
fory 

fory 

oo; 

Ug = Ue T =T (6a) 

Nomenclature 

b = channel width or transverse 
pitch of cylinders 

c = specific heat at constant 
pressure 
diameter of circular cylin
der 
diameter of droplet 
size parameter in Rosin-
Rammler equation (1) 
binary diffusion coefficient 
Froude number, equation 
(28) 
mass-basis size distribution 
function, equation (1) 
gravitational acceleration 
mass evaporation rate of 
liquid film 
mass flow rate of saturated 
humid air far upstream 
local partial mass impinging 
rate for a droplet of diame
ter dp at a position of angle 
(8 
local total mass impinging 
rate of droplets at position 
0 
mass flow rate of droplets 
far upstream 
far-upstream mass flow rate 
for a droplet of diameter dp 

dc = 

do 

Dg 
Fr 

fw(d) — 

g = 
Ge = 

G„„ — 

3P>(d,8) 

Jpi(,P) 

Jpcc(d) 

h = local heat transfer coeffi
cient, equation (34) 

K = inertia parameter, equation 
(29) 

M = liquid-to-gas mass flow 
ratio = Gp„/Ggoa 

n = dispersion parameter in 
Rosin-Rammler equation 
(1) 

Nu = local Nusselt number, equa
tion (33) 

Pr = Prandtl number 
q = heat flux 
r = latent heat of evaporation 

Re^ = gas Reynolds number = 
dc ugo,/vg 

droplet free-stream Rey
nolds number, equation 
(27) 
temperature and tempera
ture difference = {T - T^) 
velocity at the edge of gas-
phase boundary layer 
velocities in x and y direc
tions 
impinging velocity of a 
droplet onto a cylinder, 
equation (30) 
Cartesian coordinates, as 
shown in Fig. 1 
starting point of dryout 
incidence angle of a droplet 

ReD = 

T, AT 

ue = 

U, V 

Wni = 

x,y = 

xQ = 
a = 

onto liquid film (see Fig. 
1), equation (30) 

0 = azimuth angle from the for
ward-stagnation point 

5g = thickness of gas-phase 
boundary-layer 

8/ = thickness of liquid film 
Vid,p) = local partial collection effi

ciency at a position of angle 
(3, for a droplet of diameter 
dp, equation (10) 

r/((3) = local total collection effi
ciency, equation (14) 

X = thermal conductivity 
v = kinematic viscosity 
p = density 
T = shear stress 
X = saturated absolute humidity 
o> = mass fraction of water va

por to humid air = 
x/(i + x) 

Subscripts 
d = droplet of diameter dp 

g = gas phase 
/ = gas-liquid interface 
/ = liquid film 

p = droplet 
w = wall 

( )0 = stagnation point 
oo = far upstream or free stream 
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forx 

with 

ug = u, 

0: 

dv, 

Ts = 7}, wg = co,-, and vg = Ge/pg 

up = = — • & = 

dx 
dTg 

dx 
Oak. 
dx 

GP = 
1 

(66) 

(6c) 

(7) 

The liquid-film equations are derived to be solved by the 
integral method that follows. Denoting the arc AB in Fig. 1 
by dxh the time-averaged balance of the mass flow rate of 
droplets in a control volume A 'B 'AB becomes 

dGpa> (d)dZo=dGpi{difi) (dx, sin a + d&, cos a) (8) 

Referring to the approximate calculation of Hodgson and Sun
derland (1968), 28,/dc = 10"3; therefore, 

dx, = dx = fife/cos B (9) 

Defining the local partial collection efficiency 7)(d/3) as 

V(d,fi) = dz0/dzi (10) 

and substituting these into equation (8), we obtain 

dGpa,(d)riW) cos B = dGpi(dili)[sm a + cos a(dS,/dx)] (11) 

The far-upstream mass flow rate, dGpas{d), of droplets with a 
size interval between dp and dp + ddp, is expressed as 

dG poo (d) '- Gpajw^ddp (12) 

Substituting equation (12) into equation (11) and then inte
grating from the minimum drop size dmin to the maximum drop 

S dmax / 
w • ( s i 

"mm \ 
sin a + cos a ~r I dGPnd^ 

d8\ 

Tx)1 

'rfmax 

dmin (GP^Md)Vid,fSfOS B)ddp (13) 

(14) 

= G„ 1 + 
2~|l/2 

Introducing the local total collection efficiency J J ^ 

I dmax 

dmin fwWntf,mddp 

into equation (13), the following expression is obtained: 

J dmax / ^ g \ 

rfmin \ S i n a + C0Sa'd^)dGPiW) = GP«VW) COS/3 (15) 
The mass conservation equation of liquid film is expressed 

in the integral form as 

La (Sln a + C°$a T^ dGM 'P'Jx (>' "' V 

where the first and second terms on the left-hand side denote 
the droplet impingement rate and the net flow rate of the liquid 
film, respectively, and the right-hand side denotes the evap
oration rate. Substituting equation (15) into the first term on 
the left-hand side of equation (16) and considering (d8/dx)2 

« 1, we obtain the final expression for mass conservation as 

Gp„r,wCos8-Pl~ (J0 u,dyj =Ge (17) 

Similarly, using equation (13), we obtain the following mo
mentum equation for the liquid film: 

due . 
Tw = pgb,ue — +g sin B b,p, + Tgi 

(16) 

+ G™ cos B Jdmax 
w • cos a]ddp (d) wpi (18) 

where T„ is the liquid-film shear stress at the wall, and the 
first, second, third, and fourth terms on the right-hand side 
denote the pressure, gravity, gas-phase shear stress at the gas-
liquid interface, and droplet impingement force, respectively. 

Introducing the relation of equation (15), the energy equa
tion is expressed as 

qw= -\g(dTg/dy)i+Ge rt + Gp„ cos /Sr»,«c,(r,- Ta) (19) 

where the first, second, and third terms on the right-hand side 
denote the gas-phase convective heat transfer, evaporative 
cooling, and sensible cooling by droplet impingement, respec
tively. 

Dryout Zone (x > x0). The governing equations for this 
zone are identical to the gas-phase boundary layer equations 
(2)-(5) for the liquid film zone, but some modification of 
equation (66) is required for the boundary conditions as fol
lows: 

for y = 0: ug = 0, vg = Gpm/pg, Tg=Tw, oig = uw (20) 

where 

Gpm = Gpar)W) cos B (21) 

Numerical Solution Procedure 

Differential equations (2)-(5) and integral equations (17)-
(19) are solved simultaneously with the boundary conditions 
(6) and (20) by a line-by-line, forward-marching, implicit finite-
difference scheme with iteration on each new line. Thus, the 
values of ug, vg, Tg, oig, 5;, «,, and 7} are obtained as functions 
of 8. Since the finite difference equations and the details of 
the numerical scheme are given in the authors' previous report 
(Fu and Aihara, 1985), only the relevant details are described 
here. 

Correlating Equations Used for Numerical Calculation. With 
regard to the variables ue, ij^p), i?(|3), and wpi cos a, the fol
lowing equations obtained in the authors' numerical analysis 
(Aihara et al., 1988) are used: 

V{d,H) 

Vidfi) 
= 2 

/ tan B V 
\ tan Bmm) 

+ 1 - 1 

with 

and 

m, = 2[1 -0 .12 In K+ 0.033 K°s] 

(22) 

(23a) 

m2 = 0.233 1 + 0.024 ('"0 - 0.065 In Re„ -
0.093 

Fr 

(236) 

Equations (22) and (23) are applicable for K = 0.15-56, Rep 

= 4.7-200, dc/b = 0-0.4, Fr > 2.8, and Reg = 4.6 x 103-
3.4 x 104 within the maximum error of ±0.067 in ?j (dj3) (within 
±3 percent for the majority of the results). Here Bmix is the 
azimuth angle of the grazing point and is approximated by 
equation (24) within the maximum error of ±0.045 rad (within 
± 3 percent for the majority of the results) for the same range 
as equation (22) 

ft,ax= f ^8,6o) - 0.047 [ 1 + 2 . 5 ( 1 ) - ! : (24) 

The partial collection efficiency at the stagnation point, ijfrf.o), 
is given by the following equations within the maximum error 
of ±0.02 for the same range as equation (22): 

f w 

with 

'•0)~V~ K*)[l+ Re°88 \b) 1 + 
0.72 

(Re^Fr)0 

(25) 
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Fig. 2 Effect of mass flow ratio M and temperature difference (Tw -
TJ on local liquid film thickness {/ for Reg = 1.7 x 10", d0/dc = 2 x 
10-3 , n = 3, and r„ = 283 K 

AT* = 2.99 exp(0.054(ln K+ 10.2)ln A") (26) 

where Re,, and Fr are the droplet free-stream Reynolds number 
and Froude number, respectively, 

Rep = dpuga,/vg (27) 

¥t = ueJ(gdc)
ln (28) 

and K is the inertia parameter, defined as 

The local total collection efficiency r^j can be evaluated from 
equations (1) and (22)-(26). The tangential component, wpi cos 
a, of the impinging velocity is given by equation (30) within 
the maximum error of +0.085 to -0.011 (within ± 5 percent 
for the majority of the results) for the same range as equation 
(22). 

cos a 

1 + 0 . 0 1 2 ^ + j ^ l + - ( ^ ) ( 3 - ^ ) sin /3 

(30) 

Furthermore, according to assumption (9), the velocity and 
temperature distributions in the liquid film are approximated 
as 

Ui=u,{y/&,) (31) 

Ti=T„-(T„-T,)(y/6i) (32) 

Therefore, the wall shear stress of the liquid film, T„, is ex
pressed as rw = fiiUj/d/. 

Determination of Stagnation Point Values 
Clear Gas Flow. First, the stagnation point values (ug)0, (vg)0, 

(Tg)0, and (wg)0 are determined by Blasius' and Frossling's 
methods (Schlichting, 1960) for the case of an infinite stream 
of a viscous fluid past a circular cylinder. Next, employing 
those as the first starting values, the variables ug, vg, Tg, and 
ciig for cylinders with flow blockage are numerically calculated 
progressively up to /3 = TT/8. However, unreasonable results 
arise in heat/mass transfer coefficients near the stagnation 
point 03 <TT/36) , i.e., the stagnation point values are smaller 
than those downstream. 

Accordingly, by extrapolation of these values obtained for 

j3 = 7r/ll-Tr/8, the new stagnation point values are evaluated; 
then, employing those as the second starting values, the new 
values of ug, vg, Tg, and o>g are recalculated up to (3 s ir/8. 

Thereafter, the above iteration process is repeated three to 
four times until the stagnation point values converge. 

Air-Water Mist Flow. First, the liquid film thickness (8/)0 

at the stagnation point of a cylinder in an infinite stream is 
evaluated by the method of Hodgson and Sunderland (1968), 
assuming straight droplet trajectories and no evaporation of 
the liquid film. Next; putting («,)0 = 0 and T, = T„, and 
employing this (<5/)0 and the converged values for clear gas flow 
(«g)0, (ug)0, (Tg)0,

 a n d ("g)o as the first starting values, the 
variables ug, uh vg, Tg, Th and cos for the air-water mist stream 
with flow blockage are numerically calculated progressively up 
to 0 s TT/8. 

Thereafter, the iteration process similar to that in the case 
of the clear gas is repeated three to four times until the stag
nation point values converge. 

Spatial Grid Sizes and Numerical Errors. The following step 
sizes are adopted: 

Circumferential direction: 

Ax/tfc = 9 x l 0 ~ 4 forO </3< TT/180 rad 
Aj*ytfc = 4 x 10"3 for TT/180 </3< 80 TT/180 rad 

Normal direction: 
(Regy

/2Ay/dc = 7 x l 0 ~ 3 

When the value of 5//dc becomes smaller than 10"5, the liquid 
film is considered to have vanished. 

With regard to fluid physical properties, the correlating 
equations by Fujii et al. (1977) are used. 

Since the possible error due to the numerical scheme is very 
small, most of the errors in the numerical solutions arise from 
the physical model and the accuracy of equations (22)-(30). 
Consequently, the maximum errors in the present solutions 
for the Nusselt number and shear stress are predicted to be 
±4 percent and ± 6 percent, respectively, excluding those in 
the vicinity of the droplet grazing point. The present solutions 
of the local Nusselt number were compared with carefully 
measured values using a circular cylinder with a blockage ratio 
of 0.4 in a downward flow of air-water mist; the agreement 
between them is excellent. The details of this comparison are 
described in another report of this series (Aihara et al., 1990). 

Results and Discussion 
The numerical calculations were made for the range of Re^ 

= 4.6 x 103-3.4 x 10\ Fr = 2.9-14.3, dc /b = 0.4, d0/dc 

= 10"3-6 X 10"3, n = 2-4, dmin = 99.9 percent diameter 
(oversize), dmax = 1 percent diameter, M = 5 x 10 3-5 x 
10~2, T„ = 280-350 K, and AT„ = 1-70 K. The numerical 
results beyond those given here are available in the reports by 
Fu and Aihara (1985) and Aihara (1988). 

Figure 2 is a typical plot of the distribution of the liquid 
film thickness 5/ on the front half surface of a cylinder. When 
the whole surface of the front half is wetted, the liquid film 
thickness 5, increases with distance from the stagnation point; 
however, in the case where dry out occurs, 5/ decreases in the 
downstream direction, as shown by the curve for M = 5 x 
10~\ AT„ = 60 K in the figure. 

Figure 3 shows the degree of contribution of the principal 
force components to the shear stress on the liquid film at a 
cylinder surface. It is noticeable that the impact force due to 
droplet impingement (2) increases with 0; after reaching a 
maximum in the neighborhood of /3 = TT/5 rad, it decreases 
sharply to zero. Generally speaking, the dimensionless shear 
stress TJ(PI u2

gx) increases linearly with the mass flow ratio 
M. 

Figure 4 shows the surface velocity of the liquid film, uh 
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Fig. 3 Contribution of principal force components to shear stress, r „ 
on liquid film at a cylinder surface for Reg = 1.7 x 10", d0/dc = 2 x 
10-3, n = 3, AT„ = 60 K, and 7„ = 283 K; ® gas phase shear stress, 
@ droplet impingement, (3) gravity, (4) pressure gradient 
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Fig. 6 Contribution of main heat transfer components to local Nusselt 
number Nu for Reg = 1.7 x 10", n = 3,M = 10~2, AT„ = 30 K, and 7„ 
= 283 K; (T) gas phase convection, (2) evaporative cooling, (3) sen
sible-heat cooling by droplet impingement, and S. T. refers to the straight 
trajectories of droplets 
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Fig. 4 Effect of mass flow ratio M on local liquid surface velocity u, 
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Fig. 7 Effect of mass flow ratio Af on contribution of main components 
to local Nusselt number Nu for d0/dc = 2 x 10~3 and ATW = 60 K; other 
parameters and symbols are the same as in Fig. 6 
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process in the case of Reg = 5.4 x 103, djdc Dryout process in the case of Reg = 5.4 x 103, djd0 = 2 x 

3.5, AT„ = 30 K, and T„ = 320 K; symbols are the same as 
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evaluated using the numerical results of Figs. 2 and 3. Gen
erally, the greater the mass flow ratio M and size parameter 
d0, the stronger the droplet impact force; consequently, the 
liquid surface velocity u, increases with M and d0. 

Figure 5 is a typical plot of the surface temperature of the 
liquid film Tt. Since the liquid film is very thin, as shown in 
Fig. 2, the temperature difference between the cylinder and 
the liquid film, T„ - 7"„ is only 10 percent or less of (Tw -
TJ. 

Figures 6-8 show the degree of contribution of the main 
heat transfer components to the local Nusselt number Nu, 
defined as 

2 0 

with 

Nu = h dc/\„ 

h = qw/(Tw~T„) 

(33) 

(34) 

Heat transfer components (?) - (5) correspond to the respective 
terms in energy equation (19). 

In Fig. 6 for the completely wetted surface, the evaporative 
component (2) is almost the same for every d0/dc value. Hence, 
the effect of increasing the size parameter d0 appears mainly 
as an increase in the sensible-heat cooling component (5) due 
to the enhanced rate of droplet impingement. However, the 
dispersion parameter n has a weak influence on the Nusselt 
number when d0 is specified; only a few percent or less in the 
range of n = 2-4. This is one of the more important results 
obtained in the present analysis. 

In the case of a completely wetted surface, the effect of the 
increased mass flow ratio M appears mainly as an increase in 
the sensible-heat cooling component (3), because of the higher 
droplet impinging rate, as shown in Fig. 7. 

When dryout occurs, the Nu decreases discontinuously as 
shown by the dashed curve for M = 5 x 10~3 in Fig. 7, where 
the starting point of dryout is indicated by an open circle. 
Figure 8 shows the process of dryout in detail. In the liquid 
film zone near the dryout point x0, the mass evaporation rate 
exceeds the mass impinging rate of droplets; the deficiency in 
liquid mass is compensated for by the liquid film flow from 
upstream. Therefore, after the occurrence of dryout, the mass 
evaporation rate depends only upon the mass impinging rate 
of droplets. This is the reason for the discontinuity in the 
Nusselt number distribution. 

Figures 9 and 10 show the effect of the gas Reynolds number 
Reg and temperature difference T„ - 7"„, respectively. The 
enhancement in Nu produced by increasing Reg is remarkable 
in the region of smaller 0, i.e., near the stagnation point. In 
the region of greater (3 where the droplet impinging rate is 
lower, the Nu is proportional to Res

/2. The effect of temper
ature difference ATW (= Tw - Tx) appears mainly in the 
evaporative cooling component (5); the Nu increases with 
A Ty,. It is noticeable that a family of Nu curves for different 
A^s in Fig. 10 have approximately the same shape, and it is 
especially remarkable that a family of Nu curves for different 
r„s but the same ATW have almost the same shape. 

In Fig. 11, the present solutions are compared with some of 
the experimental results by Hodgson et al. (1968) under iden
tical conditions. According to the authors' previous analyses 
(Aihara and Fu, 1986; Aihara et al., 1988), the collection 
efficiency of a cylinder with flow separation is somewhat smaller 
than that without separation; and the smaller the blockage 
ratio, the smaller the collection efficiency. Conversely, the 
higher the gas-phase far-upstream velocity, the better the col
lection efficiency. These various effects cancel each other out; 
as a result, the present numerical solutions seem to agree tol
erably well with the experimental values of Hodgson et al. 
(1968). 
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0 K/% /Z/3 K/Z 
JS ( rod ) 

Fig. 9 Effect of gas Reynolds number Reg on Nusselt number Nu for 
d0ldc = 2 x 10-3, n _ 3 . 5 | M = 3 x 10"2, ATW = 20 K, and T„ = 300 
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Fig. 11 Comparison between the present numerical solution and some 
of the experimental values by Hodgson et al. (1968) and theoretical values 
by Hodgson and Sunderland (1968): AT„ = 17 K and r„ = 299 K 
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Hodgson and Sunderland (1968) carried out a theoretical 
study based on the assumptions of straight droplet trajectories, 
constant droplet velocity, and no evaporation of liquid film. 
In the case of low mass flow ratios, an overestimation of the 
droplet impinging rate due to the first assumption and neglect 
of the evaporative cooling effect by the latter assumption cancel 
each other out. Consequently, their theoretical values seem to 
show a relatively good agreement with the present numerical 
solutions. However, in the case of high mass flow ratios with 
a small temperature difference, the overestimation due to the 
first assumption is superior, because the sensible-heat cooling 
by droplet impingement is dominant. Thus the theoretical val
ues of Hodgson and Sunderland (1968) are greater than those 
of the authors. 

Conclusions 
A numerical analysis has been carried out on heat and mass 

transfer from horizontal circular cylinders in a downward flow 
of air-water mist, approximating the droplet size by the Rosin-
Rammler distribution and taking into account the gas-phase 
flow blockage and gravity. 

The following are clarified quantitatively: (1) the effects of 
the gas Reynolds number, mass flow ratio, temperature dif
ference, and the size and dispersion parameters upon the local 
Nusselt number distribution; (2) the degree of contribution of 
the gas-phase shear stress, droplet impact force, gravity, and 
pressure gradient to the local shear stress of liquid film; and 
(3) the degree of contribution of the gas phase convection, 
evaporative cooling, and sensible-heat cooling of impinging 
droplets to the local Nusselt number. 

Furthermore, it has been pointed out that when the size 
parameter is specified, the dispersion parameter has an influ
ence of only a few percent or less on the Nusselt number, and 
that dryout occurs from downstream and the local Nusselt 
number decreases discontinuously at the starting point of 
dryout. 
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Practical Fin Shapes for Surface-
Tension-Drained Condensation 
This paper introduces a new family of high-performance fin profiles for surface-
tension-drained condensation. Previously described profiles for this situation have 
been defined in terms of the fin curvature and arc length. The existing profiles are 
generally not suitable for commercial manufacture. The fin profiles presented in 
this paper are conveniently defined by the fin tip radius, the fin height, and the fin 
base thickness. Consequently, the designer may easily specify a fin shape with 
parameters that are compatible with those used by the manufacturing industry. The 
heat transfer performance of the new prof iles provides an improvement over existing, 
commercial fin shapes. An analysis is presented to show the R-ll condensation 
performance of the new profiles as a function of the geometric variables. A rec
ommended design practice for fins for surface-tension-drained condensation is given 
also. 

Introduction 
This paper introduces a new family of high-performance fin 

profiles for surface-tension-drained condensation. It is in
tended that the new profiles be suitable for commercial man
ufacture. The focus of the paper is on the effect that the fin 
parameters have on the condensation heat transfer of the fin. 
The analysis presented here can be used to determine the best 
fin geometry for a given heat transfer surface. This analysis 
can also be used with the model of Webb et al. (1985), or the 
more recent model of Adamek and Webb (1989), to predict 
the condensation of a total tube. 

Gregorig (1954) was the first to propose and design a fin 
profile that uses surface-tension drainage. Surface-tension 
forces are the dominant factor in determining the heat transfer 
for fins with fin heights less than 1.5 mm. The surface-tension 
enhancement is a result of a variation of the curvature of the 
liquid-vapor interface of the condensate film on the fin. 

Figure 1 is an illustration of a vertical finned plate and the 
coordinate system used for the convex fin. A condensate film 
of thickness 8 exists on the finned surface. The illustration 
shows the Gregorig fin profile having an arc length of Sm, and 
a drainage channel of depth Ls. The coordinate measured along 
the liquid-vapor interface is s1. The coordinate measured along 
the fin surface is s'. The location s' = 0 is the point of 
symmetry of the fin arc and is referred to as the fin-tip. The 
angle 6 measures the rotation of the liquid-vapor interface 
from the fin tip to an arbitrary point s. The condensate surface 
turns through a maximum angle of 9m, and a maximum arc 
length Sm. 

Figure 1 shows that surface-tension forces drain the con
densate film perpendicular to the direction of gravity (z di
rection) along the arc length Sm. Then, the condensate is carried 
by gravity in the channel. The pressure gradient (dP/ds) in the 
5 direction due to surface-tension forces is given by 

dP dK 

ds ds (1) 

where K is the curvature of the liquid-vapor interface. Gregorig 
defined a shape for the convex profile, which would provide 
a constant film thickness over the entire arc length Sm. The 
required shape of the liquid-vapor interface is 
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1.5 G„ 

W (2) 

Adamek (1981) defined a family of convex shapes that use 
surface tension to drain the film. His fin curvature is defined 
as 

On mne>\ for - l < f < o o (3) 

where each value of f gives a fin profile with a different shape 
and aspect ratio (e/tb). Figure 2 shows nine different Adamek 
profiles for f values within the range -0.9 < f < 30. The 
profiles of the liquid-vapor interface, as shown in Fig. 2, start 
at s = 0 in the upper left corner and rotate through equal 
lengths of Sm. 

Adamek used equation (3) along with equation (1) to cal-

Base surface 
Condensate film 
liquid-vapor 
interface 

Fig. 1 Finned surface with film, streamlines, and coordinate system 
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culate dP/ds, and paralleled Nusselt's analysis to solve the 
equation for the film thickness as a function of .v (b(s)), i.e., 

12 5Sfc M 5 2 - f N 1/4 

' Vem(f+D(f+2)/ 
(4) 

where 5 is the property group vkATs/(ka). By integrating 1/ 
5 from equation (4) over 0 s s < S,„, Adamek obtained the 
average condensate film thickness (8), and using h = k/S 
obtained the average heat transfer coefficient (h) 

e „ ( f + l ) N 1/4 

h =2.149 k ( e„(f+i) V 
Vflss,(r+2)V 

(5) 

The Adamek profile for f = 2 is identical to Gregorig's profile. 
If f = 1 one obtains the results for dP/ds = const, a profile 
that was described by Zener and Lavi (1974). 

"Practical" Fin Profiles 
There are two primary applications for surface-tension-

drained condensation. The first is for a vertical tube with axial 
fins, on which condensing may occur on the outer surface, 
and boiling occurs on the inner surface. Such service may be 
used in water desalination or gas liquefaction equipment. A 
second application involves horizontal, integral-fin tubes used 
in shell-and-tube heat exchangers. 

Figure 3 shows the cross section of a fin from a commercially 
available integral-fin tube. The finned tube geometry is typi
cally defined by specifying the tube diameter over the fins (D0), 
the fins per meter (fpm), and the fin height (e). The fins of a 
commercially manufactured finned tube are formed by a thread 
rolling process. The rolling process uses a series of closely 
spaced "finning disks," to extrude the base metal from the 
tube wall into the narrow region between the finning disks. 
Figure 3 shows that the fins are of a trapezoidal shape, and 
that the sides are flat. Table 1 shows the dimensions of the 
fins, as reported by Webb et al. (1985). The fin thickness at 
the tip and the base are determined by the tooling requirements 
ofthe staged finning disks. This typically involves specification 
of a minimum desirable fin base and fin tip thicknesses, tb and 
t„ respectively. An extrusion process used to produce axial 
fins on vertical tubes also would establish the minimum desired 
fin base and tip thickness. Thus, the heat transfer designer 
typically specifies the D0, fpm, and e dimensions, while the 
tooling engineer controls t, and tb and the fin shape. 

The present analysis seeks to specify the fin shape and thick
ness dimensions to values that are acceptable to the tooling 
designer, and which provide favorable condensation perform
ance. Thus, we seek to allow independent specification of the 

Fig. 2 Family of Adamek liquid-vapor interface profiles 

fin base thickness (tb), the fin-tip radius (r0), the fin height (e), 
and the angle Qm shown in Fig. 1. Unfortunately, the analyses 
of Gregorig (1954) and Adamek (1981) do not allow inde
pendent specification of e, tb, rot and Qm. One may specify 
only Sm, Qm, and f. The values of f defines the fin aspect ratio, 
e/tb. The value of e/tb increases as f becomes smaller; see Fig. 
2. This inability to specify e/tb independently causes two prac
tical problems. First, the Adamek f < 1 profiles all exhibit a 
zero fin-tip radius, which is physically impossible. Second, with 
fixed e, the fin thickness increases as f is increased (f > 0). 
A large fin thickness will waste material and result in greater 
condensate retention than would exist with thinner fins. Hence, 
the Adamek family of fin profiles may not allow specification 
of the desired fin dimensions. 

N o m e n c l a t u r e 

B = 

Bo = 

D0 = 
e = 
E = 

fpm = 

h = 

P 

property group = vk ATS/ 
{a X), m 
Bond number = -Apg/ 
(dP/ds) 
tube diameter over fins, m 
fin height of convex profile, m 
total fin height = e + Ls, m 
fins per meter, 1/m 
gravitational acceleration = 
9.806 m/s2 

heat transfer coefficient, 
W/(m2 K) 
thermal conductivity of con
densate, W/(m K) 
depth of drainage channel, m 
pressure, Pa 
radius of curvature of fin sur
face, m 

r„ 
$m 

S 

s' 
T 
1 s 

Tw 

h 
t, 
X 

y 
z 

Z 

iTr 

= radius of fin tip, m 
= total fin arc length, m 
= coordinate along liquid-vapor 

interface arc length, m 
= fin arc length coordinate, m 
= saturation temperature of 

vapor, K 
= temperature of fin wall, K 
= fin thickness at base, m 
= fin thickness at tip,- m 
= half fin thickness coordinate, 

= fin height coordinate, m 
= coordinate perpendicular to 

x-y plane, m 
= shape factor in new curvature 

equation 
= T, — T„, K 

Ap 
5 

r 
e 

em 
K 

X 

M 

V 

p 
Pv 
a 

p - p„, kg/m3 

condensate film thickness, m 
parameter in Adamek's curva
ture equation 
coordinate of fin, rad 
maximum angle through 
which Sm turns, rad 
curvature of fin surface, 1/m 
latent heat of condensate, 
kj/kg 
dynamic viscosity of conden
sate, kg/(m s) 
kinematic viscosity of conden
sate, m2/s 
density of condensate, kg/m3 

density of vapor, kg/m3 

surface tension of condensate, 
N/m 
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Fig. 3 Cross section of commercial 748-fpm integral fin 

The new profiles described here allow specification of r0 and 
tb independently of e and Qm. Analytical results are presented 
to show the effect of the several geometric parameters on 
condensation of R-ll. These results are useful to determine 
the effect of manufacturing tolerances on condensation per
formance. One may use the analysis to select fin profiles that 
are manufacturable, and that provide high condensatoin per
formance. Guidance is provided for selection of the preferred 
geometric parameters. 

Profile Definition 
The new profiles, like the profiles of Gregorig and Adamek, 

are of the liquid-vapor interface. Since the condensate film is 
thin, the shape of the fin metal closely follows that of the 
liquid-vapor interface. Therefore, general observations con
cerning the liquid-vapor interface profile are valid for the 
solid-liquid profile also. 

The new profile describes the fin shape in terms of tb, r0, e, 
9m, and a shape factor parameter Z. The width of the fin tip 
can be reduced by lowering the value of Z; see Fig. 4. The Z 
is analogous to the f of Adamek that causes a variation in the 
aspect ratio of the profile. The equation to represent the profile 
was chosen such that the radius of curvature decreases for 
increasing 8. A linear combination of an exponential and a 
linear variation with 6 permits an infinite range of functional 
forms depending on the magnitude of the multiplying con
stants. The radius of curvature (r) of the new profile is defined 
by 

r=Ci + C2 exp(Z0) + C30 (6) 

The constants d , C2, C3 are given by 

Q=r„ 

0.75 

0.60 

0.45 

y (mm) 

0.30 

0.15 

0 

Increasing z 

= 1.5 
3.5 
5.5 
7.5 
9.5 

50.0 

6m = 90, r0 = 0.0254 mm 

j _ 

0 0.15 0.30 0.45 0.60 0.75 
x (mm) 

Fig. 4 Cross section of new profile for different values of Z 

c = 0.5fr,(sin 9 m - 9 m cos 9m)-e(cos 9,„ + 9m sin 8 m - 1) 
2 C 4 - (2( l -cose m ) -e m s in9„ , ) 

r0(G,„ sin Qm-2(1 - cos 9 J ) 

C 4 - (2(1 - cos 9m) - 9 „ , sin 9,„) 

_ 0.5tb- C) sin Qm - C2 Zexp(Z9m) cos 9„,/(Z 2 + 1) 
3 cos 9m + 9m sin 9,„ - 1 

_ C2(exp(Z8m) sin 9 ,„-Z)/(Z 2+ 1) 
cos Qm + 9m sin Qm - 1 

Q = (exp(Z8,„) (1 - cos 8,„ + Z(sin Qm - 9„,)) 

(8) 

(9) 

+ (Z9 m - l ) cos 8 m - (Z+9 m ) sin 9,„+1)/(Z2+1) (10) 

The constants defined by equations (7)-(9) are obtained by 
applying the following boundary conditions to equation (6): 

r = r o at0 = O (11) 
f7r/2 

* = 2 ] o ' 

e= )0 rsi 

cos e de 

sin 6 dd 

(12) 

(13) 

The procedure to solve for the radius of curvature (r) of the 
new profile is outlined in the following. First, select e, tb, 9m, 
/•„, and Z. Then evaluate C4 given by equation (10) and sub
stitute C4 into equation (8) and solve for C2. Next use C2 to 
solve equation (7) for Ct. The constants Q and C2 can now 
be used to solve for the remaining constant C3. 

Physically, it is convenient to define the fin in terms of x 
and y coordinates, where the y coordinate measures the fin 
height and the x coordinate measures half the fin thickness. 
Figure 4 shows a plot of six different fin cross sections plotted 
on x-y coordinates. The origin is at the center of the base of 
the fin. Equation (6) can be represented in rectangular coor
dinates (x, y) by integrating the x and y components of r, as 
done in equation (12) and equation (13). For example, the x 
coordinate can be obtained by changing the upper limit of 
integration of equation (12) from 7r/2 to 6, obtaining 

C2(Zexp(Zfl) cos fl + exp(Z0) sin 6-Z) 
x- Z2+l 

+ C, sin 6 

(7) 

+ C3(cos 0 + 6I sin 0-1) (14) 
The y coordinate can be obtained similarly by making the same 
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z = 50, r0 = 0.0254 mm 

Increasing e^ 

85° 
80° 

_L 
0 0.15 0.30 0.45 0.60 0.75 

x (mm) 
Fig. 5 Cross section of new profile for different values of 0„, 

change to the upper limit of integration of equation (13). The 
result is 

y = e-
C2(Zexp(Z0) sin fl-exp(Zfl) cos 9 + 1) 

Z 2 + l 
- C,(l - cos 6») - C3(sin 6 - 6 cos 0) (15) 

The above procedure was used to evaluate the constants Cx 
through C4 along with equation (14) and equation (15) to 
determine the effect of Z and 9m on the fin shape. Figure 4 
shows the shape of the new profile for tb = e/2, r0 = 0.0254 
mm, and 9m = 90 deg for various values of Z. The profile is 
shown to have wider fin tips for larger values of Z. Figure 5 
shows the profile for tb - e/2, r0 = 0.0254 mm, and Qm = 
80, 85, and 90 deg. Notice that a larger portion of the fin side 
is flat for the smaller 9m's. 

Since the fin profile is a continuous function, one may pro
ceed to develop an analytical solution for the condensation 
heat transfer coefficient (h), just as Adamek (1981) and Gre-
gorig (1954) have done for their profiles. The key assumptions 
used to obtain equation (16) are: (1) laminar condensate flow; 
(2) surface tension in the s direction is the only driving force; 
(3) zero interfacial, vapor shear; and (4) constant fin temper
ature. The assumption that gravity forces are negligible com
pared to surface-tension forces can be checked by following 
the procedure given in the "Recommended Design Practice" 
section of this paper. 

The film thickness of the new profile can be obtained by 
substituting the gradient of equation (6) with respect to 6 (dr/ 
dd) into the following: 

84 = 4B i: dd (16) 

Direct analytical integration of equation (16) proved difficult, 
so it was solved numerically. The discrete values of 8 were used 
to calculate the average heat transfer coefficient from h - k/ 
[Jl/5 ds]/S,„. 

Kedzierski and Webb (1987) have experimentally verified 
the theories of Gregorig (1954) and Adamek (1981). Equation 
(16) was the basis of Gregorig's and Adamek's analyses. There
fore, a new theory with the curvature equation given here 
(equation (6)), substituted into equation (16), also is expected 
to predict the actual heat transfer. Consequently, no experi
mental data are given in this paper. 

Table 1 Dimensions of fins on commercially available inte
gral fin tubes with D0 = 19.0 mm 
Fins/m 
Fin height, e (mm) 
Fin thickness at tip, t, (mm) 
Fin thickness at base, tb (mm) 
Aspect ratio, e/tb 

748 
1.53 
0.20 
0.42 
3.6 

1024 
1.53 
0.20' 
0.52 
2.9 

1378 
0.89 
0.20 
0.29 
3.1 

10 

i 

E 

CO 

9m = 90,r0 

n 1 — 
= 0.0254 mm 

R11, AT = 5 K 

.Increasing e 

e = 1.45 mm 
1.07 
0.762 
0.356 

60 120 180 240 300 

Fig. 6 Influence of Zon R-11 condensation at ATS = 5 K 

Condensation Performance of the New Profiles 
R-11 condensation at 40 °C with A 7̂  = 5 K was selected for 

illustration of the condensation performance of the new pro
files. Four fins with the same tb(tb = 0.356 mm) but different 
fin heights (e = 0.356 mm, 0.762 mm, 1.067 mm, and 1.45 
mm) were analyzed. These dimensions encompass the dimen
sional range of the commercial fin dimensions given in Table 
1. The fin heights chosen are slightly lower than those of Table 
1 to permit the addition of a 0.13-mm drainage channel, which 
makes the total fin height (E) compatible with those of Table 
1. Thus, the total fin height is e + Ls = E, as shown in Fig. 
1. Heat transfer calculations for the above fins without drain
age channels were done with variations on Z, r0, and Gm to 
determine which parameters have the greatest influence on the 
heat transfer. 

Figure 6 is a graph of the average overall heat conductance 
of the fin per unit fin length (hSm) versus the shape factor (Z) 
for r0 = 0.0254 mm and Qm = 90 deg. Figure 6 demonstrates 
that the heat transfer is relatively insensitive to a wide range 
of Z. Recall from Fig. 4 that the shape factor represents the 
wideness of the fin tip. These results are encouraging since 
they demonstrate that for a given aspect ratio ie/tb) a moderate 
deviation of the fin-tip shape will have little effect on the heat 
transfer of the fin. Thus, manufacturing tolerances associated 
with the shaping of the fin tip would tend to have a small 
effect on the heat transfer. 

Figure 7 is a plot of hSm versus the maximum angle through 
which the arc length turns (Qm) for ra = 0.0254 mm and Z = 
100. In general, 9m = 90 deg gives the highest heat transfer 
for all fin heights (aspect ratios). The 6m = 90 deg represents 
the maximum potential for the surface-tension pressure gra
dient for a given fin height. Angles less than 90 deg fail to use 
all of the available drainage force (curvature change) and con
sequently exhibit reduced heat transfer ability. For example, 
the hSm of the e = 1.45 mm fin is reduced by 4 percent for 
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Fig. 8 Influence of r0 on R-11 condensation at AJ"S = 5 K 
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Fig. 10 Influence of aspect ratio and Zon overall conductance 

each degree less than 90 deg. Also note that the heat transfer 
of the e = 0.762 mm fin for 9m = 79 deg is 37 percent less 
than that for 9m = 90 deg. Figure 7 demonstrates that the 
degradation of hSm due to values of 9m less than 90 deg can 
be significant. Thus, the performance of the integral fin shown 
in Fig. 3 can be improved by increasing its 0m from 85 to 90 
deg. 

Figure 8 is a plot of hSm versus the fin-tip radius (/•„) for 
9m = 90 deg and Z = 50. Surprisingly, a 100 percent increase 
in r0 has a negligible effect on the heat transfer. As expected, 
the hSm is larger for the smaller rot since this contributes to a 
higher average curvature for the fin. However, the above seems 
to support the observation that the fin-tip shape has a marginal 
effect on the heat transfer since r0 contributes to the shape of 
the fin tip. 

Figure 9 is a plot of hSm versus aspect ratio for the new fin 
geometry for R-11 with ATS = 5 K, Z = 50, and different 
values of Sm. Figure 9 shows that the fins with larger Sm have 

higher heat transfer rates. There is a trade-off between in
creased surface area (Sm) and decrease in the magnitude of the 
average heat transfer coefficient (h) for higher fin heights. 
The reduction of h is due to a decrease in the surface-tension 
drainage force, which may become less than the gravity force 
if the fin height is too large. The hSm rapidly decays for in
creasing e once the gravity force becomes dominant over sur
face tension. Guidance is given in a later section of this paper 
on how to determine the optimum value of e. Figure 9 also 
shows that the maximum hSm for Z = 50 is at e/tb = 1.25. 
The optimum aspect ratio is shown to be independent of Sm 
for fins of the same Z. The hSm is shown to decrease by 
approximately 14 percent when the e/tb is increased from 1.25 
to 5. 

Figure 10 illustrates the effect of e/tb and Z on hSm for a 
condensing length of 0.75 mm. The figure shows that for a 
given aspect ratio, fins with narrower fin tips (smaller Z) have 
larger hSm values. For example, approximately a 10 percent 
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Table 2 Comparison of hSm on three profile types 
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x (mm) 

Fig. 11 Cross sections of new profile for different aspect ratios 

increase in hSm is achieved for a reduction of Z from 300 to 
50. Consequently, the heat transfer of high-aspect-ratio {e/tb 

> 2) fins can be increased slightly by reducing the width of 
the fin tip. Figure 10 also shows that for a given Z, the hSm 

becomes smaller with increasing e/tb for values of e/tb greater 
than the optimum value. For example, the hSm is shown to 
decrease by approximately 22 percent when e/tb is increased 
from the optimum value to e/tb = 5. The value of e/tb that 
gives the optimum hSm is larger for decreasing values of Z. 
For example, the optimum values of e/tb for Z = 50, 100, 
150, and 300 are 1.25, 1.12, 1.06, and 1.0, respectively. The 
Adamek profile f = - 0 . 5 , which corresponds to e/tb = 2, 
gives the optimum hSm for his family of fins. The fin tip of 
the Adamek f = - 0 . 5 profile is narrower than the Z = 50 
(narrowest Z). This is consistent with the above generalizations 
since the optimum e/tb (2) for the f = - 0.5 profile (narrower 
fin tip) is larger than the optimum e/tb (1.25) for the Z = 50 
profile (wider fin tip). 

Figure 11 shows the half cross section of the fins described 
by the uppermost curve of Fig. 10, i.e., for Z = 50, r0 = 
0.0254 mm, Qm = 90 deg and Sm = 0.75 mm. Notice that for 
the same Sm the higher-aspect-ratio fins contain less fin ma
terial. Although the fin with e/tb = 1.25 gives approximately 
15 percent higher heat transfer than the e/tb = 5.0 fin for the 
same arc length, it does so at the expense of three times the 
fin material. Also note that the tb of the e/tb = 5.0 fin is less 
than half that of the e/tb = 1.25 fin. Consequently, at least 
twice as many of the high-aspect-ratio fins can be used per 
unit length on a tube than the lower aspect ratio fin. Although 
e/tb = 1.25 gives the optimum h for a given Sm, a fin with a 
higher aspect ratio is more economical in terms of fin material 
and more energy efficient in terms of use with finned tubes. 

It is important that the designer know the limitations of the 
fin parameters Qm, r0, and Z. The maximum value of Qm is 
90 deg for the fin shape given by equation (6). The smallest 
value of 9 m is set by the aspect ratio of the fin, i.e., Qm (min) 
= arctan (2e/tb). The smallest value of 9 m for a given aspect 
ratio corresponds to a fin of triangular shape. In order to have 
a fin of a particular e/tb with a 9 m smaller than 9 m (min), the 
fin must be concave instead of convex. The largest rQ attempted 
in this analysis was 0.035 mm. The maximum r0 is directly 
proportional to Sm. For example, the r„ for a fin of constant 
radius is r0 = Sm/Qm. Consider this to be the upper limit of 
r0. However, the maximum r0 for all fins will be less than Sm/ 
6m since the radius of curvature decreases as the arc turns 
through 9 m . There were certain values of Z that caused the 
values of the exponential terms encountered in equation (6) to 

Profile 

Gregorig 
Gregorig 
Adamek 
New profile 

(r0 = 0.025 mm) 

Parameter 

r=2 
f=2 
f= -0 .78 
Z=10 

e 
(mm) 

1.45 
0.28 
1.45 
1.45 

h 
(mm) 
1.88 
0.356 
0.356 
0.356 

hS„, 
(W/m-s) 

8.04 
5.31 
9.45 
8.45 

be outside the numerical range permitted by Fortran. Lower 
limits of Z were found to be around - 0 . 0 1 . Upper limits of 
Z were found to be around 500. The limitation of Z depends 
on the aspect ratio of the fin. For example, larger lower limits 
on Z are associated with larger aspect ratios. Hence, all fins 
will not necessarily fall within the above limits of Z. 

Comparison With Adamek and Gregorig Profiles 
Table 2 compares the average h over the arc length (S,„) for 

Sm = 1.485 mm and 9 m = 90 deg for all profiles. For a fin 
base thickness of tb = 0.356 mm, the value of hS,„ of the new 
profile is within 10 percent of the Adamek profile, which has 
a zero tip radius. The r0 = 0 profile Adamek is not practically 
attainable. Consequently, the calculated heat transfer coeffi
cient for the Adamek profile is optimistically higher than what 
can be realistically achieved. However,the authors believe that 
if the Adamek profile had r0 ?± 0, the calculated heat transfer 
would be only 2-4 percent lower than that for r0 = 0. Thus, 
the actual difference between the heat transfer performance 
of the new profile and the Adamek profile for the same aspect 
ratio would be somewhat smaller than the calculated 10 per
cent. 

Table 2 also shows that the tb = 0.356 mm Gregorig profile 
has a small hSm, because of its smaller fin height. If the fin 
height of the Gregorig fin is set at 1.45 mm, hSm will increase, 
but the base thickness will be 1.88 mm. A1.88-mm fin thickness 
will waste a considerable amount of fin material, and limit the 
fin density to considerably smaller values than for the tb = 
0.356 mm fins. The above discussion illustrates the disad
vantage associated with the Gregorig fin by not being able to 
choose e and tb independently. 

Recommended Design Practice 
The sensitivity investigation presented here can be used to 

provide some general guidelines for good fin design. It can be 
seen that fins with high aspect ratios result in high hSm and 
large fpm, which implies high heat transfer per tube. Fins with 
9„, = 90 deg make better use of the surface-tension enhance
ment that fins with Qm < 90 deg. Therefore, it can be easily 
decided that the fin should always be designed for Qm = 90 
deg. But how large can e be? And how small can tb be? 

Care must be taken to ensure that e is not so large that the 
surface-tension pressure gradient has dissipated over a signif
icant portion of the fin. The Bond number (Bo), which is the 
ratio of gravity forces to surface-tension forces, can be used 
to test the strength of the surface-tension pressure gradient. 
If the surface-tension forces are dominant over gravity forces, 
then the condensate drainage is determined by surface-tension. 
The strength of the surface-tension pressure gradient weakens 
as the film approaches the base of the fin. The Bond number 
at the base of the fin can be approximated by 

Ap g e1 

Bo = 
oQ„ 

(17) 

A Bo of 1 implies that surface-tension forces are equal to the 
gravity forces at the end of the fin and that surface-tension 
forces are greater than gravity forces for the remainder of the 
fin. Equation (17) should always be used to check first whether 
surface-tension forces are truly dominant (Bo < 1) over gravity 
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Fig. 12 Bond number as a function of e for R-11 at Ts = 213.15 K 

forces before performing an analysis that assumes so. Notice 
that equation (17) predicts that small fin heights and large 9,„ 
give strong pressure gradients. 

In order to achieve a high hS,„ and maintain surface-tension 
drainage, the authors recommend that fin heights be designed 
to achieve Bo = 1. Figure 12 is a plot of equation (17) (Bo) 
for R-11 at Ts = 213.15 K versus e. The Bo becomes 1 at e 
= 1.36 mm. Consequently, a good fin height design is e = 
1.36 mm for condensation of R-11 at Ts = 213.75 K. The Bo 
= 1 for this fin ensures that surface-tension forces are larger 
than gravity forces for the entire fin (with the exception of the 
very end of the fin). The advantage of a high fin height is in 
that a large hSm is achieved. Fins larger than 1.36 mm will 
exhibit surface-tension drainage along the entire fin for higher 
surface-tension fluids, such as water. 

Two other factors to consider when designing the fin height 
are tube-side pressure drop, and the condensation row effect. 
Small fin heights are beneficial for applications where low tube-
side pressure drop is important. For a constraint on the overall 
diameter (D0) of the tube, a large internal diameter is possible 
if the heights of the fins are small. However, Webb and Mur-
awski (1988) have shown that high fin heights can benefit heat 
transfer by reducing the row effect caused by condensate in
undation. 

Two factors to consider when designing the fin thickness 
are condensate retention and the number of fins per meter. 
When condensed fluid is retained in the interfin spaces of the 
lower portion of a horizontal finned tube, the phenomenon is 
known as condensate retention. The condensed fluid acts as 
an insulating blanket on the tube. Consequently, severe deg
radation of heat transfer performance can occur with an in
crease in condensate retention. For a fixed fpm, one can reduce 
the condensate retention by reducing the fin thickness. Rudy 
et al. (1984) have investigated the trade-offs between increased 
heat transfer for larger fpm and the decrease in heat transfer 
for increased condensate retention for larger fpm. They have 

shown that an optimum fpm exists, for each fluid, which is a 
compromise between the two effects. In general, the optimum 
fpm is smaller for the higher surface-tension fluids. Also, the 
fin efficiency can be increased by reducing the fin thickness. 
Thus, a small tb is one factor that can lead to finned tubes 
with high heat tranfser performance. The lower limit of tb is 
dictated by the manufacturing process and the desired struc
tural integrity of the fins. 

Rudy et al. (1984) used the model of Webb et al. (1985) to 
predict the relationship between h and fpm for process-industry 
fluids. The Webb model uses the Adamek fin profiles in their 
prediction. An iteration for the Adamek fin with the proper 
aspect ratio is required in the calculation. The iterative pro
cedure will be avoided if the new profiles presented here are 
used instead of the Adamek profiles in the analysis. 

Conclusions 
This work has defined fin profile shapes, which are practical 

for commercial manufacture. The designer may independently 
specify the fin-tip radius, the fin height, and the fin base 
thickness. The performance of the new profile with r0 = 0.025 
mm is competitive with those of Gregorig and Adamek, for 
the same fin height. A sensitivity analysis of the parameters 
Z, r0, Sm, and Qm on the performance of the new profile was 
presented. Fins with large Sm and 6,„ = 90 deg have large hSm 
values. The hSm decreases for decreasing values of Gm, and 
Qm = 90 deg always gives the optimum hSm. For example, the 
hSm of a fin with e = 1.45 mm is reduced by 4 percent for 
each degree less than 90 deg. The analysis shows that hS„, is 
moderately sensitive to Z (tip width). Fins with narrower fin 
tips have marginally higher hSm values. For example, the heat 
transfer of high-aspect-ratio (e/tb > 2) fins can be increased 
approximately 10 percent by reducing Z from 300 to 50. Also, 
the analysis has shown that a 100 percent increase in r0 has a 
negligible effect on hSm. Consequently, the shape of the fin 
tip (/•„ and tip wideness) does not need to be machined precisely. 
General design guidelines for selection of the geometric pa
rameters are also given. The fin height and the fin thickness 
are more crucial design parameters than the shape of the fin. 
The authors suggest that fin heights be designed for Bo = 1 
to ensure surface-tension drainage and large hSm. 
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An Instrument for Local Radiative 
Heat Transfer Measurement 
Around a Horizontal Tube 
Immersed in a Fluidized Bed 

An instrument for the measurement of the radiative component of total heat 
transfer in a high-temperature gas fluidized bed is described. The main objective of 
this paper is to emphasize the design, instrumentation, and calibration of this 
device. The results are presented and discussed elsewhere (Alavizadeh, 1985; 
Alavizadeh et al., 1985). The design makes use of a silicon window to transmit the 
radiative heat flux to a thermopile-type heat flow detector located at the base of a 
cavity. The window material thermal conductivity is sufficiently large to prevent 
conduction errors due to the convective component of total heat transfer. Also, its 
transmission and mechanical hardness are well suited for the fluid bed environment. 
The device has been calibrated using a blackbody source both before and after ex
posure to a fluidized bed, indicating the effect of the abrasive bed environment on 
performance. The instrument has been used to measure local radiative heat transfer 
around a horizontal tube. Typical results for a particle size of 2.14 mm and a bed 
temperature of 1050 K are presented and discussed to illustrate instrument 
performance. 

Introduction 
In recent years there has been considerable interest in the 

utilization of fluidized bed combustion of coal for power 
generation. A fundamental knowledge of heat transfer in 
high-temperature fluidized beds is essential for proper design 
and optimization of such a combustor. However, few data 
regarding the radiative component of heat transfer are 
reported in the literature. Published data provide mixed 
assessments of the relative importance of the radiative compo
nent of total heat transfer. The present work is an attempt to 
obtain a direct measurement of local radiative heat transfer 
around an immersed tube in a fluidized bed by using a careful
ly designed instrumentation. 

There have been limited attempts to measure the radiative 
component of heat transfer in a gas-fluidized bed. A discus
sion of different probes employed by other investigators in the 
measurement of radiative heat transfer in a fluidized bed is ap
propriate here. Baskakov et al. (1973) measured spatial 
average radiative heat transfer indirectly in a fluidized bed by 
recording the transient temperature response of two spheres of 
low Biot number with different surface emissivities (silver-
plated and oxidized). The bed consisted of chamotte particles 
with mean particle diameters of 0.35, 0.65, and 1.35 mm. The 
results suggest a radiative heat transfer contribution of about 
9 percent for the largest particle size at a bed temperature of 
1123 K and wall temperature of 443 K. 

Using a similar approach, Yoshida et al. (1974) compared 
the total heat transfer to two oxidized and polished vertical 
stainless steel pipes of 1.3 cm o.d. in a bed of fluidized solids 
of 0.18 mm mean diameter and temperature up to 1273 K. 
Total heat transfer was calculated indirectly from the heat 
transfer to the coolant. They concluded that the radiative con
tribution was insignificant. 

Basu (1978) used a 6.5 mm copper tube and a coaxial silica 
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tube with a gap to reduce heat conduction to the copper tube 
as a result of bed convective heat transfer. He then calculated 
the spatial average radiation by measuring inlet and outlet 
water temperature used as a coolant. A correction was made 
for the conduction error. The bed material in Basu's test was 
sand of 0.325-0.5 mm diameter. He found the radiative con
tribution to be about 10 percent of the total heat transfer in a 
bed at 1173 K. 

Vadivel and Vedamurthy (1980) used a "glass quartz" win
dow mounted on top of a cavity within a tube to filter convec
tive heat transfer and to transmit radiation. Transmitted 
radiation was then detected by a thermistor located at the base 
of the cavity. The bed temperature was 1023 K and particles 
up to 6 mm were used. Quartz has low thermal conductivity, 
which can cause a large conduction errror due to bed convec
tive heat transfer. In the report it is not clear that compensa
tion has been made for this error in the radiative heat transfer 
calculations. Also, quartz is opaque to incident radiation at 
wavelengths larger than 5 fim (Touloukian, 1970; Adolf 
Meller Co., 1981) while the measurements could involve 
energy spanning over a wide range of wavelengths. They 
reported that spatial average radiation measured at 30 deg 
steps around a horizontal tube contributes about 35 percent to 
the total heat transfer. Their probe is comparable to the 
present probe in that it is capable of making local 
measurements around a horizontal tube. 

In a study by Ozkaynak et al. (1983), a two-layer flat win
dow of zinc selenide was employed. Although their probe and 
the one used in the present study have different designs, the 
authors have appropriately discussed some of the issues in
volved in the design of the instrumentation. However, their 
probe is not capable of making local radiative heat transfer 
measurements around a horizontal tube since it is mounted on 
a circular flat surface on one end of a brass tube. In addition, 
it requires circulating air between the windows to minimize the 
conduction error produced as a result of the bed convective 
heat transfer. The radiative component was determined to be 
about 30 percent of the total heat transfer for a mean particle 
diameter of 1.03 mm and a bed temperature of 1053 K. 
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Zhang and Xie (1985) obtained radiative heat transfer data 
in a fluidized bed combustion boiler with particles up to 8 mm 
in diameter and bed temperature between 1073 K and 1313 K. 
The probe consisted of a Gardon gage (Gardon, 1953) type 
heat flow sensor with a sheet of monocrystalline silicon placed 
in front of the sensor, and mounted on a flat end of a tube. 
The Gardon gage is best suited for an environment where the 
incident radiative heat flux is uniform over its sensing area. 
The probe was calibrated in a furnace before and after use in 
the fluidized bed combustor. They reported the radiative heat 
transfer to be 20 and 5 percent of the total heat transfer in the 
main and fine ash bed, respectively, at 1123 K bed 
temperature. 

A round quartz window and a heat flux meter mounted on 
one end of a 50.8 mm o.d. tube and transversely inserted into 
a 66.3 mm o.d. pipe were utilized by Mathur and Saxena 
(1987) to measure radiation in a fluidized bed with 0.56 mm 
and 0.75 mm particles. In their analysis, theoretical calcula
tions related the heat flux meter reading to radiation at the 
probe surface by accounting for convective leak and 
transmissivity of quartz window. They found the radiation to 
be 12 percent for 0.75 mm particles at 1175 K and about 10 
percent for 0.56 mm particles at 985 K. 

The present study is an attempt to address some of the issues 
not adequately discussed in the investigations cited. They in
clude the analysis of radiative heat flux instrumentation probe 
to assess its performance under the test conditions, tube wall 
emissivity in determining the radiative heat transfer contribu
tion, and more details regarding the calibration technique. 

Instrumentation 

Design. Figure 1 illustrates the basic instrument design 
concept. An infrared transparent window mounted on top of a 
cavity within a tube transmits the radiative component of the 
total heat transfer. A heat flow detector located at the base of 
the cavity detects the transmitted radiation. The following 
considerations were made in the design of the instrument: 

(A) Conductive heat transfer, due to fluid bed convective 
heat transfer, from the window to heat flow detector should 
be minimized and instead directed to the sides where the win
dow contacts the tube. This can be achieved without cooling 
by selecting a window material with high thermal 
conductivity. 

(B) The window should be capable of transmitting radia
tion in the wavelength range at which maximum emissive 
power occurs. This range is 2.7<X<8.7 ^m for the conditions 
of operation of the high temperature fluidized bed used in the 
experiment when behaving similar to a blackbody source. In 

TOTAL 

CONVECTION 

CD A 
RADIATION 

^ /~\ (\ ^ ^ -WINDOW 

J? &o/D&] <^o 
<p OrDo^ 
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Fig. 1 Schematic of the basic instrumentation design concept 

short, the window should transmit over the widest wavelength 
range possible. 

(C) Constant particle motion could cause abrasive damage 
to the window. This implies that the window material should 
be mechanically hard to withstand the hostile bed 
environment. 

(D) The nonuniform temperature distribution of the par
ticles, caused by cooling due to contact with the window, will 
generate a nonuniform heat flux distribution. 

(E) The heat flow detector should absorb the largest possi
ble fraction of the radiation transmitted through the window. 

(F) The instrumentation should not disturb the flow of gas 
and particles around the tube. 

Analysis. The instrumentation design parameters and per
formance were established by an analysis that included the 
following: 

Nonuniform Heat Flux. The probability of nonuniform 
heat flux in a fluidized bed seems to suggest the application of 
an averaging device such as a thermopile-type (thermocouples 
in series) heat flow detector formed by a thin low thermal con
ductivity film with a thermopile on each side. Since this detec
tor measures an average temperature over its sensing area, the 
nonuniformity in heat flux will have far less effect on the 
measurement than in the case of a Gardon gage (Gardon, 
1953). To assess the performance of this device, a steady-state 
conduction analysis was completed for a typical model as 

Nomenclature 

C 

DP 

Fk-j 
FAX 

heat flow detector thickness 
mean particle diameter 
view factor, from k to j 
fraction of total emissive 
power for wavelength 
interval AX 

Gr = Grashof number = 
glfPAT 

g = acceleration of gravity 
H = cavity height 
h = heat transfer coefficient 
K = thermal conductivity 
L = cavity, window, and heat 

flow detector length 
a" = heat flux 

T = 
U0 = 
w = 
0 = 

8kj = 

A = 
e = 

temperature 
gas velocity 
cavity, window, and heat 
flow detector width 
coefficient of thermal 
expansion 
window thickness 
Kronecker delta, 1 when 
j = k and 0 when/';*/: 
difference 
emissivity 
temperature difference 
kinematic viscosity 
Stefan-Boltzmann constant 
transmissivity 

Subscripts and Superscripts 

a 
b 
c 
d 
f 
i 

k 
0 

r 
s 

u 
w 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 

air 
black wall 
conduction heat transfer 
heat flow detector 
fluid bed 
radiative energy incident 
surface indices 
radiosity (energy leaving) 
radiative 
sensing area of heat flow 
detector 
tube wall 
window 
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Fig. 2 Schematic of a thermopile-type heat flow detector 
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Fig. 3 Geometry of the selected heat flow detector 

shown in Fig. 2. The steady temperature distribution within 
the detector is governed by (Arpaci, 1966) 

dx2 dy2 dz2 0 (1) 

where 6d = Td — Tu, and the boundary conditions are 

8d(.0,y,z) = 0 

8d(L,y,z) = 0 

6d(x,0,z) = 0 

6d(x, W,z) = 0 

ed(x,y,0) = Q 

Q" = -Kd-^{x,y,C) = q'{ 
OZ 

= <7i" 

sensing area 

rest of the area 

The heat flux detected by the sensing area was analytically 
calculated from 

K, 
Q;=- (2) 

where 

1 -n 
Jx, J, 

ri 
9d(x, y, Qdydx 

(x2-x0 (y2~yi) J*i ->n 

Two cases were compared, one with a uniform heat flux 
distribution over the entire area of the detector (q"= q2 = q"), 
and the very unlikely case of a nonuniform heat flux distribu
tion of q"= q" and q2 = 0. A difference of only about 2.5 per
cent in q"(equation (2)) was calculated for the heat flow detec
tor selected for the instrumentation and shown in Fig. 3. 

Fig. 4 Cavity with the window on top and the heat flow detector at the 
bottom 

Conduction Error. Of particular concern in the in
strumentation design was the error produced by transmission 
through conduction of the convective component of the total 
heat transfer to the heat flow detector. Figure 4 illustrates the 
window with the heat flow detector at the base of the cavity. A 
two-dimensional heat conduction analysis of the window will 
yield 

32fl. 92e„ 

dx2 dy2 -\26U,-\2T,I + U=0 (3) 

where 

Kw'b 
U--

hfTf + heTu 

k„-b 

and /i„ 
H 

with the boundary conditions 

dx 

dy 

(0,y) = 0 

(x, 0) = 0 

6w{L/2,y) = Q 

6w(x, W/2) = 0 

The magnitude of conduction error is given by the average 
heat flux by conduction to the sensing area across the air-filled 
cavity 

1 

(x2-x1)(y: 

?x2 t?2 

-yd J*i h 
he6w(x, y)dydx (4) 

The radiative heat transfer to the sensing area (q"s) was 
estimated by the net radiation method discussed by Siegel and 
Howell (1972) and spectral characteristics of the window, i.e., 

/ h 1 — \ 
(5) 

The analysis was performed for the enclosure shown in Fig. 4. 
The radiosity of the window was approximated by 

<tt,» = rwoT} + (l-Tw)q[vl 

Comparison of q"s with the conductive heat transfer estimated 
according to equation (4), q"s, gives an estimate of the relative 
error in radiative heat transfer measurement. This error is 
given in Table 1 for four different window materials. 

Window Temperature. A substantial temperature dif
ference could arise between a low thermally conducting win-
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Table 1 Window material properties with the results of the instrumentation analysis 

Window Transmissivity Thermal 
Materials (waveband, /im) conduc

tivity at 
Tw, W/m 

Silicon 
(Si) 

Sapphire 
(A1203) 
Quartz, 
crystal 
(Si02) 

Quartz, 
fused 
(Si02) 

0.50 
(1.3-7.0) 

0.35 
(7.0-12.0) 

0.84 
(0.30-5.0) 

0.92 
(0.30-2.2) 

0.50 
(2.2-3.6) 

0.91 
(0.30-3.4) 

0.40 
(3.4-4.7) 

dow and the radiation probe wall. The average window 
temperature can be calculated from 

I (• +L/2 p +W/2 
T»=l^\-uA-.nd^>y)dydX+T» (6) 

where 0„ is the solution of equation (3) and Tu is the probe 
wall temperature. In the absence of a direct window 
temperature measurement, care should be exercised in using 
an appropriate substitute for Tw when computing the radiative 
heat transfer coefficient, i.e., 

Q" 
hr =-7=—— (Tf is fluid bed temperature) 

(Tf—T„) 
Tw as obtained from equation (6) is presented in Table 1 for a 
bronze tube at 345 K immersed in a bed with the largest total 
heat transfer coefficient expected in this study. 

Natural convection within the cavity was conservatively ap
proximated for a geometry consisting of two infinite plates at 
temperatures of Tw and Tu and separated by a distance i f (Fig. 
4). The Grashof number (Gr) was calculated and used to 
estimate the effect of natural convection. Table 1 shows 
Grashof numbers for different window materials. 

Results. The analysis described above was completed for 
four window materials: silicon, sapphire, crystal quartz, and 
fused quartz. Table 1 shows transmissivity, thermal conduc
tivity, and hardness for these materials. The results of the 
analysis are also shown in Table 1. Test data obtained by 
George (1981) for the fluid bed used in the present investiga
tion were used to estimate the typical bed conditions at a tube 
wall temperature of about 345 K. 

Of the materials considered, silicon is transparent over the 
widest waveband (1.3 ixm to 12.0 /mi). The conduction errors 
for silicon (1 percent) and sapphire (3 percent) are com
parable. Note that this error is considerably greater for quartz. 
The average window temperature (Tw) is by far larger for 
crystal quartz when compared to that of silicon and sapphire. 
The Grashof number is sufficiently small (Gr<1700) to pre
vent natural convection in the cavity for all the window 
materials considered. Based on the wide transmission wave
band and small conduction error, silicon (Si) was selected as 
the window material. Since the transmissivity of silicon drops 
rapidly with temperature above 573 K, the tube temperature 
was kept well below this temperature. 

Assembly. The radiative heat transfer instrumentation 
was mounted within the wall of a bronze tube, 51.8 mm in 
diameter, as shown in Fig. 5. The heat flow detector was 
bonded to the bottom of the cavity with a high-temperature 
thermal conducting epoxy and was coated with a high-
absorptivity paint (3 M Nextle, e = 0.98) to increase the frac-

Hardness Conduction Tw Gr 
(Knoop) error, K 

percent 

1150 1 354 91 

1370 3 374 213 

741 ' 23 ' 446 555 

461 28 589 961 

Fig. 5 Radiative heat transfer measurement instrumentation 

tion of transmitted radiation detected. The window was 
mounted on top of the cavity, using a high thermal conductivi
ty paste to reduce the thermal contact resistance, and was held 
in position by an overlapping stainless steel shim. To measure 
the total heat transfer, a gage of the type used in the radiation 
device was bonded to the tube and was covered with shim. 
Three such instrumented ports were mounted 90 deg apart. 
Details of the radiative and total heat transfer measurement 
instrumentation and assembly have been discussed by 
Alavizadeh (1985) and George (1981). 

Calibration 

The purpose of the calibration was to relate the radiative 
heat flux detected by the radiation probe (<7j) to the radiation 
absorbed by a tube with a wall emissivity of unity (qHb), i.e., a 
black wall. The advantage of this method is that the radiation 
can be estimated for immersed surfaces with different 
emissivities in a fluidized bed. Further, both the detected and 
absorbed radiation are directly measured and not calculated. 
Calibration was carried out employing a blackbody source 
with a cavity diameter of 2.54 cm and a temperature range of 
323 K-1273 K for three different tube temperatures. To 
measure the detected radiative heat flux by the radiation probe 
(q'JD, the window was carefully aligned with the blackbody 
source and then exposed to it. The radiation absorbed by a 
black tube wall (q„b), used as a reference surface, was deter
mined by aligning and exposing the total heat transfer 
measurement probe detector to the blackbody source under 
identical conditions. Natural convection heat losses during 
calibration were also measured for both probes by blocking 
the blackbody source and recording the heat flow detector 
response of each probe. 

During each calibration run, enough time was given for the 
tube and blackbody source to reach their set temperatures. 
Heat flow detector reading of each probe was recorded with 
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Fig. 6 Radiative heat flux absorbed by a black tube wall versus 
radiative heat flux detected by the radiation device 

the corresponding natural convection losses at the set 
temperatures. Calibration runs were completed by varying the 
blackbody source temperature for each fixed tube temperature 
and repeating the procedure. Finally, subtracting convection 
losses, the heat flux detected by the radiation probe (4J) and 
the corresponding radiation absorbed by a black tube wall 
(Qub) w e r e obtained. This calibration procedure was repeated 
after each exposure to the fluidized bed to account for possible 
window transmissivity change. 

To study the effect of tube wall temperature, calibrations 
were performed at tube temperatures of 333 K, 368 K, and 403 
K. The calibration results were found to be independent of the 
tube temperature and approximated by the following equa
tion: 

<Z«&i = l - 9 6 ? d i (7) 

Figure 6 is a plot of equation (7) and the calibration data for 
different tube temperatures. Also shown are the calibration 
results obtained before exposure to the fluidized bed. An 
average drop of 20 percent in the detected heat flux by the 
radiation device occurred after the first exposure and no 
measurable change was observed for the successive runs. The 
calibration was repeated for the two remaining radiation 
devices and the following relations were obtained: 

&M = 2.Q2#i and ?,;'H = 1.87^, 

The view angle of the radiation probe heat flow detector 
was wider in the fluid bed than when it was exposed to the 
blackbody source. This can slightly drop the directional 
average emissivity (<4 percent), estimated according to Duf-
fie and Beckman (1974), when the probe is immersed in the 
bed. Also, an overall accuracy of ± 11 percent was computed, 
based on the root-mean-square approach (Doeblin, 1975), for 
the calibration runs. 

Finally, the emissivity of the stainless steel shim covering the 
total heat transfer detector to protect it from the hostile fluid 
bed environment was measured by exposing the detector with 
the shim over it to the blackbody source and comparing the 
results with those of the black tube wall test {q^). The 

DISTRIBUTOR 
PLATE 

PROPANE 

Fig. 7 Schematic of OSU high temperature fluidized bed 

emissivity was found to be 0.64 (after exposure to the fluidized 
bed) and was used to adjust the inferred black tube wall 
radiative heat transfer to obtain the radiative contribution to 
the total heat transfer. 

Experiments 

Measurements were conducted in the Oregon State Univer
sity high-temperature fluidized bed facility. A schematic of the 
facility is shown in Fig. 7. 

In order to assess the thermal and mechanical performance 
of the window, one window was exposed to the fluidized bed. 
To monitor the window temperature, a thin foil thermocouple 
was inserted between the window and upper base of the cavity 
and a second thermocouple was located in the wire channel 
close to the tube surface. The two temperatures did not differ 
by more than 10 K during 12 hr of operation at 1050 K and 
lower. This confirmed our earlier predictions that the window 
temperature should be close to tube temperature (Table 1). 

A response time of about 120 ms was measured for the 
radiation device when the response came to within 5 percent of 
a step change in the incident heat flux to the window. 

Data were taken at 0, 45, 90, 135, and 180 deg from the 
lower stagnation point using a digital voltmeter. Typical 
results are presented in Figs. 8 and 9 for the particle mean 
diameter of 2.14 mm and bed temperature of 1050 K. 

Figure 8 shows the local radiative heat transfer coefficient 
(hrb = q'ub/(Jj— Tu)) for a black tube wall for gas velocities of 
1.56 m/s, 2.8 m/s, and 3.49 m/s. The radiative heat transfer 
coefficient is seen to be nearly constant over the lower half—0, 
45, and 90 deg positions—of the tube. A stagnant stack of 
more densely packed particles is known to exist on the upper 
half of the tube at lower gas velocities, resulting in a lower 
radiative heat flux at the 135 and 180 deg positions for 
U0 = 1.56 m/s. However, this stack collapses when gas veloci
ty is increased and hrb tends to become more uniform around 
the tube. This is the case for U0 = 2.18 m/s and 3.49 m/s as 
shown in Fig. 8. 

The average total and radiative heat transfer coefficients are 
also shown as a function of gas velocity in Fig. 9. Presented in 
this figure are the radiative heat transfer coefficient to a black 
tube wall (curve B) and to the stainless steel shim (measured 
e = 0.64) covering the heat flow detector used for total heat 
transfer measurements (curve C). The radiation contribution 
was found to be about 13 percent for the latter case (curves A, 
C). The sharp increase in total heat transfer coefficient (curve 
A) indicates the removal of the particle stack and the slow 
decrease following is due to larger bed voidage (gas 
volume/total volume) as gas velocity is increased. 

The repeatability of the measurements was ± 12 percent and 
a root square mean (Doeblin, 1975) accuracy of - 12 percent, 
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Fig. 8 Local radiative heat transfer coefficient for a black tube wall 

+13 percent was calculated for the conducted tests. A max
imum conduction error of 3 percent based on detected heat 
flux {q'd) in the fluidized bed and q"s of equation (4) was 
recomputed. 

Concluding Remarks 

The spatial radiative component of the total heat transfer to 
a horizontal tube was isolated and measured with a carefully 
designed instrumentation. The conduction error due to con-
vective component of the total heat transfer was found to be 
negligible. 

Calibration of the device revealed the independence of the 
results from tube temperature. A linear relationship between 
the radiation absorbed by the tube wall and radiation detected 
by the device was found. Detected radiation dropped by about 
20 percent after the first exposure of the device to the fluidized 
bed. It remained unchanged for successive runs. 

Typical results for a mean particle diameter of 2.14 mm and 
fluid bed temperature of 1050 K indicate a spatial average 
radiation contribution of about 13 percent with respect to the 
surface emissivity of the total heat transfer measurement 
device (e = 0.64). Spatial average convective and radiative heat 
transfer coefficients were from 161 to 223 and from 18 to 28 
W/m2»K, respectively, depending on the gas velocity. Little 
change was observed in the radiative local heat transfer coeffi
cient with gas velocity on the lower half of the tube. However, 
on the upper half of the tube the radiative heat transfer coeffi
cient was found to rise sharply and then increase at a slower 
rate. 
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This section contains shorter technical papers. These shorter papers will be subjected to the same review process as that 
for full papers. 

Conduction Shape Factor for a Region of Uniform 
Thickness Surrounding a Three-Dimensional Body of 
Arbitrary Shape 

A. V. Hassani1 and K. G. T. Hollands1 

Introduction 
Calculation of heat flow through a region of uniform thick

ness surrounding a body of arbitrary shape is of practical 
interest, for example, in calculating heat losses from an in
sulated body. The problem reduces to finding the conduction 
shape factor S of the bounded region, given by 

Nomenclature 
S = 

k(T,-T2) 
(1) 

A = 

a -

heat transfer surface area of 
body, m2 

side dimension of parallelepiped, 
m 

B 
b 

C 
c 

A 

A 

k 
Ls 

n 

Q 
S(A) 

S„(A) 

Ooo 

Tt-T2 

V 
A 

7 

= major axis of spheroid, m 
= side dimension of parallelepiped, 

m 
= minor axis of spheroid, m 
= height of parallelepiped, m 
= base diameter of the inner cone 

or diameter of the inner cylinder, 

m 
= base diameter of the outer cone 

or diameter of the outer cylin
der, m 

= thermal conductivity, W/mK 
= longest straight line passing 

through the inner body, m 
= exponent of Churchill-Usagi fit, 

given as a function of body 
shape by equation (9) 

= heat transfer, W 
= conduction shape factor of re

gion of thickness A surrounding 
body, m 

= conduction shape factor for 
small values of A, m 

= conduction shape factor for large 
values of A, m 

= temperature difference across the 
uniform region, K 

= volume of inner body, m3 

= thickness of the uniform layer 
surrounding the body, m 

= body aspect ratio 

'Department of Mechanical Engineering, University of Waterloo, Waterloo, 
Ontario, Canada, N2L 3G1. 

Contributed by the Heat Transfer Division and presented at the ASME Winter 
Annual Meeting, Anaheim, California, December 1986. Manuscript received by 
the Heat Transfer Division July 11, 1988. Keywords: Conduction. 

where Q is the heat transfer, Tx - T2 is the temperature dif
ference across the region, and k is the thermal conductivity of 
the bounded region. The existing literature offers very little 
about this important problem. With the exception of Langmuir 
et al. (1913) who presented approximate solutions for the shape 
factor of hollow right rectangular parallelepipeds, researchers 
in this area have mainly concerned themselves with regions of 
nonuniform thickness surrounding two-dimensional shapes. 
Among them are Smith et al. (1958), Balcerzak and Rayner 
(1961), Lewis (1968), Dungan (1972), Laura and Susemihl 
(1973), and Laura and Sanchez Sarmienta (1978a, 1978b). 
Others such as Smythe (1956,1962), Greenspan (1966), Hahne 
and Grigull (1975), and Chow and Yovanovich (1982) sug
gested methods of calculating the shape factor for single bodies 
in an infinite medium. 

Presented here is an approximate method for calculating S 
for a region of uniform thickness surrounding a three-dimen
sional body. This method employs the asymptotic solutions 

Fig. 1 Heat flow through a region of uniform thickness surrounding a 
body of arbitrary shape 
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Fig. 2 Three body shapes tested, showing relevant dimensions 

for S for large and small values of the thickness A of the 
bounded region. These asymptotic solutions are then used in 
the interpolation equation suggested by Churchill and Usagi 
(1972), to give S for any A. 

Approximate Method 
The shape factor S„ for a region with very large A is equiv

alent to that of an isothermal body located in an infinite me
dium. One should obtain S„ by analytical or numerical means 
if possible. Otherwise this asymptote can be closely calculated 
by the approximate method suggested by Chow and Yova-
novich (1982). Their method draws upon the fact that the 
conduction shape factor of a body of fixed area is a slowly 
changing function of its shape. Because of this slow change, 
the conduction shape factor for a body of arbitrary shape and 
size in an infinite environment can be closely calculated by 
choosing a similar shape with known conduction shape factor 
whose area is equal to that of the arbitrary shape. For example 
the conduction shape factor for a cube can be approximated 
by that of a sphere whose surface area is equal to the surface 
area of the cube. The result is S = 8.682 Z,- (where L, is the 
side length of the cube), which is 4.6 percent higher than the 
exact value, S = 8.298 L,- reported by Greenspan (1966). Thus 
this asymptote can be closely calculated (within 5 percent) for 
most three-dimensional shapes by using 

the inner cylinder equal to unity, is considered here. Appli
cation of the method in this case gives 

S„ = 3.51 (2) 
where A is the surface area of the body. 

The other asymptote 50(A), corresponding to a region of 
very small thickness, is obtained by assuming one-dimensional 
heat transfer and ignoring the effects of the corners and the 
edges. This asymptote can be estimated from 

Sc(A)=f (3) 
where A is the area of the (inner) body. Applying the Churchill-
Usagi technique, the following equation interpolates between 
two asymptotic solutions, 50(A) and S„: 

S(A)=(S2(A)+Si ) I / " (4) 

where n is a constant that is expected to be a function of the 
shape of the body. Equation (4), with the appropriate value 
of n, constitutes the "approximate method." 

Several geometries were used to test the appropriateness of 
the Churchill-Usagi fit and to establish a relationship between 
n and the body shape. As an example, the case of concentric 
cylinders, shown in Fig. 2(a),2 with aspect ratio y = L/Dj of 

2For clarity the corners and edges of the outer bodies have not been drawn 
at uniform distance from those of the inner bodies. 

s= m + (7.476 O;)" (5) 

Equation (5) was compared to a numerical solution for the 
conduction shape factor obtained using a finite element code. 
The code was based on the WATSHARE (Waterloo Applied 
Thermal Science Hydrodynamic software to Aid Research in 
Engineering) library of subroutines developed at the University 
of Waterloo, and a grid generation routine developed by Galpin 
and Raithby (1985). The accuracy of this code was examined 
by solving some problems with known analytical solutions such 
as concentric spheres and long concentric cylinders. The dif
ference between the analytical and numerical solutions in either 
case was found to be less than 0.2 percent. The grid refinement 
procedure was also performed for each numerical solution until 
the difference between two successive solutions was less than 
0.2 percent. The grid refinement procedure (for a given thick
ness of the layer surrounding the body) consisted of first solving 
the conduction problem by using an orthogonal curvilinear 
mesh, which consisted of 20 x 20 control volumes. Then the 
problem was solved by increasing the number of control vol
umes to 25 x 25 and so on up to 35 x 35 control volumes. 
In each case the solution was compared to the previous case 
and to the exact solution. As the number of control volumes 
increased the difference between the exact solution and the 
numerical solution decreased. The numerical results using a 
mesh with 35 x 35 control volumes showed only 0.2 percent 
difference compared to the exact solution. This case also showed 
only 0.2 percent improvement compared to the numerical re
sults using a mesh with a 30 X 30 control volumes. This 
indicated that the numerical solution was converging in the 
right direction. Similar grid refinement studies were applied 
in numerical solutions for other body shapes described later 
in the paper. It was concluded that the expected error in the 
numerically predicted values of S should be less than 0.3 per
cent. 

Through a trial and error procedure, a value of n = 1.08 
was found to minimize the difference between equation (5) 
and the numerical solution. The fit was found to be very close; 
the maximum error was 1.6 percent. This procedure was re
peated for several other geometries as well as for cylinders of 
different aspect ratio. The asymptotic solutions, the n values, 
and the maximum error in fit for certain geometries are listed 
in Table 1. 

The numerical solution to the above problem was repeated 
but this time the edges of the outer cylinder were not rounded. 
The results were compared to the previous numerical solutions 
listed and differences of less than 1 percent were observed. 
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Table 1 Asymptotic solution for various shapes 2.0 

Shape of The 
Inner Body 

Cylinder, -7 = 1.0 

Cylinder, 7 = 0.4 

Cylinder, 1 = 2.2 

Base Attached Cones 
height 

1 • 
diameter 

= 0.5 

Base Attached Cones 
height 

1 = diameter 
= 2.2 

Parallelpiped with 

b = a and - = 0.05 
a 

S»(A) 

3irD* 
2A 

1.3irD? 
2A 

4.9irD? 
2A 

1.12TTA-

2A 

2A2nDf 
2A 

2.2a2 

2.38 irDi 

1.88 TTD,-

3.32 •wDi 

4.67 D{ 

6.97 Di 

4.88 a 

1.08 

1.12 

1.03 

1.10 

1.01 

1.11 

% Max. 
Diff. 

1.6 

1.5 

1.9 

2.0 

3.2 

A BASE ATTACH CONES 
n PARALLELEPIPEDS 
o CYLINDERS 
e SPHERE 
e CIRCULAR DISK 

— EQUATION ( 9 ) 

1.00 

Fig. 3 Exponent n for various shapes 

This indicated that rounding of the corners or edges did not 
substantially alter the solution. 

The numerical code could handle only two-dimensional or 
axisymmetric problems. Therefore for three-dimensional re
gions such as parallelepiped shells, the results of equation (4) 
were compared to another source: the approximate solutions 
given by Langmuir et al. (1913). For example, for a region of 
uniform thickness A surrounding a parallelepiped with di
mensions a = b, c/a = 0.05, and area A = 2a2(l + 2c/a), 
the expression given by Langmuir reduces to the following 
nondimensional form: 

- = 2 . 2 - + 3.72 + 0 . 3 5 - f o r - < 2 . 5 (6) 
a A a a 

There is no analytical solution available for S„ of this shape. 
Therefore S„ was approximated by the exact value of S„ for 
an oblate spheroid with aspect ratio C/B = 0.05 and surface 
area equal to that of the inner parallelepiped. This resulted in 
5„ = 4.88a. The other asymptote S0(A) for this shape is 

S0(A) = 
A 

and equation (4) becomes 

S(A) m' 
= 2.2-

+ (4.88)" 

(7) 

(8) 

The value n = 1.11 was found to give minimum difference 
between the approximate solution of Langmuir and the pre
dictions of equation (8). This procedure was repeated for par
allelepipeds of various dimensions, and the n value that resulted 
in the best fit was recorded. 

In the special case of a sphere the well-known analytical 
solution gives the shape factor exactly. In this case the error 
is zero when n = 1.0. That is, with the appropriate value of 
nx the approximate method gives the exact result. 

As is clear from Table 1, the best value of n is sensitive to 
the body shape. Being dimensionless, n should correlate with 

dimensionless measures of body shape. After several tries, two 
such measures, which seemed to correlate well with n and are 

readily calculated, were chosen: \jA/Ls, and Vln/\] A, where 
V and A are the volume and the surface area of the inner 
body, respectively, and Ls is the longest straight line passing 
through the inner body. Figure 3 shows the n values obtained 
for the geometeries tested plotted in parametric form against 
these two dimensionless measures. The fact that lines of con
stant n can be constructed in this plot indicates that n is a 
unique function of these two variables, at least to a reasonable 
approximation. An empirical formula fitting the lines of con
stant n has been found to be 

1.26-
(2-yfA/Li 

9^l.-4J9V2/3/A 
1.0 (9) 

where Y = [xu x2]max means that Y = Xj if xt > x2 and Y= 
x2 if x2 > xx. This formula, plotted in Fig. 3, covers the range 
for n: 1 < n < 1.2, which includes a very wide range of body 
shapes. 

Equations (4) and (9) were tested for other body shapes, 
principally the cube (Fig. 2(c)) and attached cones (Fig. 2(b)) 
with aspect ratio L/D, equal to unity. For the cones, the max
imum error over the full range in A was observed to be 3 
percent. For the cube, the maximum difference between the 
present results and those from the method of Langmuir et al. 
(1913) was 5.8 percent. 

A set of tests was performed to examine the sensitivity of 
the results of the approximate method to the n value obtained 
from equation (9). It was observed that for n > 1.11 a 5 percent 
error in the n value will cause less than 2.5 percent error in 
the estimated conduction shape factor. On the other hand for 
n < 1.11 a 5 percent error in the n value will result in less 
than 1.0 percent error in conduction shape factor. Thus small 
errors in calculating n from equation (9) will not introduce 
large errors in conduction shape factor. 
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Conclusions 
A simple approximate method, summarized by equations 

(3), (4), and (9), has been presented for calculating the con
duction shape factor of a region bounded by two concentric 
bodies with a uniform spacing A between them. The results 
obtained through this method show agreement to within about 
5 percent with those obtained from numerical or existing an
alytical techniques. 
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A Generalized Laplace Transform Technique for 
Phase-Change Problems 
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Introduction 

Analytical solutions of transient heat transfer problems in
volving melting or solidification are inherently difficult to ob
tain because of the nonlinearity associated with the moving 
boundary condition at the solid-liquid interface. A few exact 
solutions of phase-change problems are currently available 
(Ozisik, 1980; Carslaw and Jaeger, 1959). The mathematical 
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approach used to achieve these solutions, however, is quite 
crude. Instead of solving the problem, a solution is assumed 
for the temperature profile. The assumed solution satisfies the 
governing differential equation, one of the boundary condi
tions and, in some cases, the initial condition as well. The 
assumed solution depends on the nature of the problem. It 
could be an error function or a complementary error function 
with coefficients to be determined by applying the remaining 
boundary condition. The interface condition is then applied to 
yield normally a transcendental equation, from which the 
transient interface location can be determined. 

The present note proposes a technique to extend the Laplace 
Transform method to obtain a closed-form solution for 
nonlinear phase-change problems. Solutions to a few prob
lems are demonstrated to elucidate the essence of the 
technique. 

Mathematical Formulation and Solutions 
To demonstrate how the Laplace transform method can be 

extended to solve phase-change problems, two melting and 
two solidification problems are analyzed here. For three of 
them, the exact solutions are available, which can serve as the 
benchmark solutions to validate the technique proposed. The 
remaining problem for which no exact solution is available in 
the literature is included to illustrate the potential of the 
technique. 

Problem 1—Melting of a Solid. A semi-infinite solid in
itially at its solidification (or melting) temperature (Tm) is con
fined to a half-space (x>0). At time t = 0, the temperature of 
the boundary surface at x=0 is raised to Tw, higher than Tm, 
and maintained at that temperature for time t>0. 

This is essentially a single-region problem because the 
temperature throughout the solid phase is Tm. Therefore, only 
the temperature profile in the liquid phase and the location of 
the solid-liquid interface P(t) need to be solved for. 

The heat conduction equation and the boundary conditions 
in the liquid phase are 

d2T,(x, t) 1 dT, 

dx2 dt 
in0<x<P(t), t>0 

T,= Twatx=0, t>0 

T,= Tmatx=P, t>0 

-k, 
dT, 

~dx" 
• PL-

dP 

It atx=P, / > 0 

(1) 

(2) 

(3) 

(4) 

where L is the latent heat of fusion. The Laplace transforms of 
equations (1) and (2) yield, respectively, 

dlTf2'
S)^sfl(pc,s)-Tl0c,0)), 

dx2 a, 
and 

in 0<x<P(s) (5) 

fr 
T 

at x=0 (6) 

Before proceeding, it is essential to note that equation (5) calls 
for an initial temperature profile condition in the newly 
evolved liquid region, Tt(x, 0), which is unspecified, although 
the one in the solid region is given. As f—0, the liquid phase 
region is infinitesimally small and its thickness shrinks to zero, 
like a line without a thickness. Temperature is discontinuous 
across this "line" with Tw on one side and Tm on the other. It 
is therefore reasonable to assume a constant but unspecified 
value of the initial temperature "profile" in this newly formed 
liquid phase region, i.e., 

T,(x,t)=Tc as t-0 

Then, the solution of equation (5) can be readily obtained as 
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Conclusions 
A simple approximate method, summarized by equations 

(3), (4), and (9), has been presented for calculating the con
duction shape factor of a region bounded by two concentric 
bodies with a uniform spacing A between them. The results 
obtained through this method show agreement to within about 
5 percent with those obtained from numerical or existing an
alytical techniques. 
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Introduction 

Analytical solutions of transient heat transfer problems in
volving melting or solidification are inherently difficult to ob
tain because of the nonlinearity associated with the moving 
boundary condition at the solid-liquid interface. A few exact 
solutions of phase-change problems are currently available 
(Ozisik, 1980; Carslaw and Jaeger, 1959). The mathematical 
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approach used to achieve these solutions, however, is quite 
crude. Instead of solving the problem, a solution is assumed 
for the temperature profile. The assumed solution satisfies the 
governing differential equation, one of the boundary condi
tions and, in some cases, the initial condition as well. The 
assumed solution depends on the nature of the problem. It 
could be an error function or a complementary error function 
with coefficients to be determined by applying the remaining 
boundary condition. The interface condition is then applied to 
yield normally a transcendental equation, from which the 
transient interface location can be determined. 

The present note proposes a technique to extend the Laplace 
Transform method to obtain a closed-form solution for 
nonlinear phase-change problems. Solutions to a few prob
lems are demonstrated to elucidate the essence of the 
technique. 

Mathematical Formulation and Solutions 
To demonstrate how the Laplace transform method can be 

extended to solve phase-change problems, two melting and 
two solidification problems are analyzed here. For three of 
them, the exact solutions are available, which can serve as the 
benchmark solutions to validate the technique proposed. The 
remaining problem for which no exact solution is available in 
the literature is included to illustrate the potential of the 
technique. 

Problem 1—Melting of a Solid. A semi-infinite solid in
itially at its solidification (or melting) temperature (Tm) is con
fined to a half-space (x>0). At time t = 0, the temperature of 
the boundary surface at x=0 is raised to Tw, higher than Tm, 
and maintained at that temperature for time t>0. 

This is essentially a single-region problem because the 
temperature throughout the solid phase is Tm. Therefore, only 
the temperature profile in the liquid phase and the location of 
the solid-liquid interface P(t) need to be solved for. 

The heat conduction equation and the boundary conditions 
in the liquid phase are 

d2T,(x, t) 1 dT, 

dx2 dt 
in0<x<P(t), t>0 

T,= Twatx=0, t>0 

T,= Tmatx=P, t>0 

-k, 
dT, 

~dx" 
• PL-

dP 

It atx=P, / > 0 

(1) 

(2) 

(3) 

(4) 

where L is the latent heat of fusion. The Laplace transforms of 
equations (1) and (2) yield, respectively, 

dlTf2'
S)^sfl(pc,s)-Tl0c,0)), 

dx2 a, 
and 

in 0<x<P(s) (5) 

fr 
T 

at x=0 (6) 

Before proceeding, it is essential to note that equation (5) calls 
for an initial temperature profile condition in the newly 
evolved liquid region, Tt(x, 0), which is unspecified, although 
the one in the solid region is given. As f—0, the liquid phase 
region is infinitesimally small and its thickness shrinks to zero, 
like a line without a thickness. Temperature is discontinuous 
across this "line" with Tw on one side and Tm on the other. It 
is therefore reasonable to assume a constant but unspecified 
value of the initial temperature "profile" in this newly formed 
liquid phase region, i.e., 

T,(x,t)=Tc as t-0 

Then, the solution of equation (5) can be readily obtained as 
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-xis/c,)' 
+ C,e 

X(S/U/) 
(7) 

• oo re-A finite value of the temperature at x^oo when P(t)-
quires that C2 = 0. C, is determined by applying the boundary 
condition, given by equation (6). Therefore, taking the inverse 
of the transformed equation yields 

(r,-rj/(r„-rc) = erf[—y (8) 

where Tc is given, after applying equation (3), by 

rc = rw-(rw-rm)/erf(X) (9) 
with 

\ = P(t)/2(a,t)in (10) 

The above result is identical to that obtained through the ap
proach described in the introduction (Ozisik, 1980; Carslaw 
and Jaeger, 1959). Once the temperature profile is found, the 
value of X or the interface location, P(t), can be found by ap
plying the interfacial condition, equation (4), in the same man
ner as the approach mentioned above and will not be 
reiterated here. 

Problem 2—Solidification of a Supercooled Liquid. A 
semi-infinite supercooled liquid at a uniform temperature (Tf) 
that is lower than the solidification temperature (Tm) of the 
solid phase is confined to a half-space (x>0). It is assumed 
that the solidification starts at the surface x=Q at time / = 0 
when the surface temperature becomes Tm and the solid-liq
uid interface moves in the positive x direction. 

This is also a single-region problem because one is only con
cerned with the temperature distribution in the liquid phase 
and the location of the solid-liquid interface. The heat con
duction equation given by equation (1) is equally valid here ex
cept it applies to the region in P(t) <x< oo, r>0 , and is sub
ject to the boundary and initial conditions 

7} = finite as x— o°, t>0 

T, = Tm atx=P, t>0 

dT, dP 
-k,—!-=pL—ratx=P, t>0 

dx dt 

T,= Tifoit = 0, i n x > 0 

(11) 
(12) 

(13) 

(14) 

Note that the initial condition is known and specified in this 
case by equation (14). The general solution to the Laplace 
transformed heat condition equation is simply 

f, = C4e -xfs/a/)1 ' 
+ C.e 

x(s/ai) 1/2 
(15) 

By equation (11), C5 =0 . However, in the liquid region of in
terest, the boundary condition at x=Q, as t—0, suffers a 
discontinuity, namely, the temperature Tt jumps from Tt to 
Tm. It is therefore assumed that there exists a constant but 
unspecified temperature 

r / = r 6 a s x - 0 a n d ^ 0 

The above can be regarded as a boundary condition, which is 
used to determine C4. Thus, the inverse transform of the solu
tion yields 

rc-W.-rj-afcL-^] 
2(a,ty 

By the boundary condition, equation (12), Tb is found as 

T —T 

(16) 

erfc (X) 
-+T, 

The final temperature distribution in the liquid phase given 

by equations (16) and (17) is identical to the exact solution ob
tained by Ozisik (1980) and Carslaw and Jaeger (1959). 

Problem 3—Solidification of a Subcooled Liquid. A semi-
infinite liquid at a uniform temperature (T,), higher than the 
melting temperature (Tm) of the solid phase, is confined to the 
half-space (x>0). At time t = 0, the temperature of the 
boundary surface at x=0 is lowered to T„ below Tm and 
maintained at that temperature for time / > 0 . This is a two-
region problem since the temperatures are unknown in both 
the solid and liquid phases. Accordingly, for the solid region 

a t x = 0 , t>0 T —T 

while for the liquid region 

T, = finite 

T,= T, 

The coupling conditions at the interface are 

TS = T,= T,„ a tx = P, / > 0 

a s x - 0 , t>0 

atf = 0, i n x > 0 

9T, 

' dx 
-k, 

dT, 

dx 
= PL-

dP 

It 
BXx=P, t>0 

(18) 

(19) 

(20) 

(21) 

(22) 

The solid phase problem is similar to Problem 1 with an 
unspecified initial condition in the newly evolved solid region. 
Therefore, a similar solution is readily obtainable as follows: 

T -T 

T -T 

erf l-2(Q<rt1/2J 
erf (X) 

(23) 

(24) 

where 

\ = P/2{ast)
x/1 

The liquid region is similar to Problem 2 with a given initial 
condition, given by equation (20), but with a jump boundary 
condition as x—0 and r ^ 0 . The temperature profile can be 
readily obtained by the present Laplace transform technique 
as 

T,-T, 

Tm - T, 
= erfc [ 2 ( ^ ] / e r f C [ X ( a s / a ' ) 1 / 2 ] (25) 

where X is given by equation (24). 
The temperature profiles in both phases obtained by the 

Laplace transform technique are again in agreement with ex
isting solutions (Ozisik, 1980; Carslaw and Jaeger, 1959). 
Naturally, the use of the interface condition, equation (22), 
should yield an identical expression for X. 

Problem 4—Solid Melting With Heat Flux Boundary Con
dition. As a final example, consider a problem for which no 
prior analytical solution exists. It is the same as Problem 1 
above, except subject to a constant heat flux (q0) condition, 
namely, k dT/dx= -q0, at x = 0. 

Following the same procedure one can readily obtain the 
desired closed form solution. For brevity, only the final 
temperature profile is given here 

00,, I) = 2QJ— [exp(- V
2/4f) - exp( - r,2p/4I)] 

• Q herfcO,/2vT) - ^er fcfo^Vfj ] 

where 6 = C(T~Tm)/L, r)=x/Ln t = at/L2
r, Q = CLrq0/k\, 

(17) y]p=P/Lr, and LT is an arbitrary reference length. The inter
face location is obtainable by the direct integration of the 
equation 
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isting exact solutions of phase-change problems, including 
those in cylindrical and spherical coordinates (Chan and Ku, 
1984). The potential of the technique has been shown for ob
taining the closed-form solution for problems for which no 
prior closed-form solutions are yet available. 
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Fig. 1 Analytical and numerical temperature profile comparison with 
various heat fluxes at two different times 

with 7̂  = 0 at ? = 0. 
In the absence of an exact solution in the existing literature, 

numerical solutions by the standard enthalpy method were 
carried out and compared with the present analytical solution. 
Good agreement is shown in Fig. 1 between the analytical (in
dicated by lines) and the numerical (circles, etc.) results. 

Discussion 
At the initial state of each problem studied, it is seen that 

either the temperature is discontinuous at a boundary or the 
initial temperature is unspecified in the newly evolved phase. 
In the latter class of problems where the initial temperature 
profile is unspecified, a constant but undetermined initial 
temperature Tc is introduced, which makes the Laplace 
transform method a viable solution technique to these phase-
change problems. As shown in Problem 1, the introduced in
itial temperature Tc, given by equation (9), turns out to be 
neither the imposed surface temperature T„ nor the initial 
temperature of the original phase Tm. Had we mistakenly 
taken Tc as Tm and substituted it into Tt(x, 0) in equation (5), 
the result would have yielded an erroneous answer. The pro
posed method is to leave Tc unspecified until the closed-form 
temperature profile is obtained. Then the proper value of Tc is 
determined automatically by applying the remaining boundary 
condition given by equation (3). 

In the other class of phase-change problems where the 
problem of interest lies in the original phase (see Problem 2), 
one of the boundary conditions suffers a discontinuity initial
ly. To overcome the discontinuity difficulty and to make the 
Laplace transform technique applicable, we again introduced 
at the discontinuous boundary a temperature, the value of 
which is not determined a priori. The introduced temperature 
allows the Laplace transform technique to proceed to yield the 
solution, and the solution obtained is in turn used to deter
mine the unspecified value by applying one of the given 
boundary conditions. 

While the proposed technique can systematically derive ex
act solutions of phase-change problems by the standard 
Laplace transform method without the need of educated 
guesses of trial solutions, there are limitations that should be 
noted. The solution technique obviously does not apply for 
nonlinearity caused by temperature-dependent thermal prop
erties or by nonlinear boundary conditions. Other limitations 
may exist, which will be the subjects for future studies. Never
theless, the technique can reproduce systematically all the ex-

A Table of Regenerator Effectiveness 

F. E. Romie1 

Nomenclature 
(hA)a,b = 

t<i,b = 

t, = 

(wc)a-b = 
WC = 

Kb = 
na ,6 = 

Subscripts 
a = 

thermal conductance, W/K 
flow period, s 
time for one revolution of 
rotary regenerator, s 
capacitance rate of gas, W/K 
thermal capacitance of matrix, 
J/K 
(hA/wc)aJ, 
(hAt)ab/WC for stationary 
regenerators; (fiA)„ibt/,/WC for 
rotary regenerators 

assigned such that C* (Table 1) 
is not greater than unity 

This note gives the thermal effectiveness, er, of the 
counterflow regenerator in terms of four parameters, Ntu, C*, 
C*n and hA", over the range Ntu=l to 128, C*=0.8 to 1, 
C*r = 0 to 1, and hA * = 0.5 to 1. These parameters are defined 
in Table 1 for both rotary and single stationary regenerators. 
Table 1 also expresses the four parameters in terms of an alter
native set of parameters often used in regenerator analysis: Aa, 
Ab, ua, n 6 . 

To provide interpolation accuracy, Table 2 presents er in the 
form 

4>=l-er/ec (1) 

in which ec, the thermal effectiveness of the counterflow 
recuperator, is dependent on Ntu and C* only 

ec = Ntu/(l+Ntu), C* = l (2) 
' «e = [1 - exp(Ntu(C* - 1))]/[1 - C*exp(Ntu(C* - 1))], 

C* < 1 (3) 
Note that 1000 is the percentage by which er is less than ec and 
that <f> goes to zero as C*r goes to zero. Also note that Table 2, 
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isting exact solutions of phase-change problems, including 
those in cylindrical and spherical coordinates (Chan and Ku, 
1984). The potential of the technique has been shown for ob
taining the closed-form solution for problems for which no 
prior closed-form solutions are yet available. 
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Fig. 1 Analytical and numerical temperature profile comparison with 
various heat fluxes at two different times 

with 7̂  = 0 at ? = 0. 
In the absence of an exact solution in the existing literature, 

numerical solutions by the standard enthalpy method were 
carried out and compared with the present analytical solution. 
Good agreement is shown in Fig. 1 between the analytical (in
dicated by lines) and the numerical (circles, etc.) results. 

Discussion 
At the initial state of each problem studied, it is seen that 

either the temperature is discontinuous at a boundary or the 
initial temperature is unspecified in the newly evolved phase. 
In the latter class of problems where the initial temperature 
profile is unspecified, a constant but undetermined initial 
temperature Tc is introduced, which makes the Laplace 
transform method a viable solution technique to these phase-
change problems. As shown in Problem 1, the introduced in
itial temperature Tc, given by equation (9), turns out to be 
neither the imposed surface temperature T„ nor the initial 
temperature of the original phase Tm. Had we mistakenly 
taken Tc as Tm and substituted it into Tt(x, 0) in equation (5), 
the result would have yielded an erroneous answer. The pro
posed method is to leave Tc unspecified until the closed-form 
temperature profile is obtained. Then the proper value of Tc is 
determined automatically by applying the remaining boundary 
condition given by equation (3). 

In the other class of phase-change problems where the 
problem of interest lies in the original phase (see Problem 2), 
one of the boundary conditions suffers a discontinuity initial
ly. To overcome the discontinuity difficulty and to make the 
Laplace transform technique applicable, we again introduced 
at the discontinuous boundary a temperature, the value of 
which is not determined a priori. The introduced temperature 
allows the Laplace transform technique to proceed to yield the 
solution, and the solution obtained is in turn used to deter
mine the unspecified value by applying one of the given 
boundary conditions. 

While the proposed technique can systematically derive ex
act solutions of phase-change problems by the standard 
Laplace transform method without the need of educated 
guesses of trial solutions, there are limitations that should be 
noted. The solution technique obviously does not apply for 
nonlinearity caused by temperature-dependent thermal prop
erties or by nonlinear boundary conditions. Other limitations 
may exist, which will be the subjects for future studies. Never
theless, the technique can reproduce systematically all the ex-

A Table of Regenerator Effectiveness 

F. E. Romie1 

Nomenclature 
(hA)a,b = 

t<i,b = 

t, = 

(wc)a-b = 
WC = 

Kb = 
na ,6 = 

Subscripts 
a = 

thermal conductance, W/K 
flow period, s 
time for one revolution of 
rotary regenerator, s 
capacitance rate of gas, W/K 
thermal capacitance of matrix, 
J/K 
(hA/wc)aJ, 
(hAt)ab/WC for stationary 
regenerators; (fiA)„ibt/,/WC for 
rotary regenerators 

assigned such that C* (Table 1) 
is not greater than unity 

This note gives the thermal effectiveness, er, of the 
counterflow regenerator in terms of four parameters, Ntu, C*, 
C*n and hA", over the range Ntu=l to 128, C*=0.8 to 1, 
C*r = 0 to 1, and hA * = 0.5 to 1. These parameters are defined 
in Table 1 for both rotary and single stationary regenerators. 
Table 1 also expresses the four parameters in terms of an alter
native set of parameters often used in regenerator analysis: Aa, 
Ab, ua, n 6 . 

To provide interpolation accuracy, Table 2 presents er in the 
form 

4>=l-er/ec (1) 

in which ec, the thermal effectiveness of the counterflow 
recuperator, is dependent on Ntu and C* only 

ec = Ntu/(l+Ntu), C* = l (2) 
' «e = [1 - exp(Ntu(C* - 1))]/[1 - C*exp(Ntu(C* - 1))], 

C* < 1 (3) 
Note that 1000 is the percentage by which er is less than ec and 
that <f> goes to zero as C*r goes to zero. Also note that Table 2, 
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as indicated in the footnote, gives </> for two values of hA*, 1 
and 0.5. 

The regenerator described satisfies the usual idealizations. 
(1) The fluid capacitance rates, (wc)a and (wc)b, and the 
thermal conductances, (hA)a and (hA)b, for transfer of heat 
between the fluids and matrix are uniform and constant as is 

Table 1 Parameter definitions; A = stationary regenerators, 
B = rotary regenerators 

A B 

Ntu 

1 + n„ 

c* 

hA* 

n6 

ntAfl 

n„ 
K 

n* 

1+hA* 

(wct)a 

(wct)b 

(wct)a 

WC 

(hAt)a 

(hAt)b 

1 + hA* 

(wc)„ 
(wc)b 

(wc)at, 

WC 

(hA)a 

(hA)b 

the thermal capacitance, WC, of the regenerator matrix. (2) 
No heat is conducted in the matrix in the direction of fluid 
flow. (3) The matrix material offers no resistance to heat flow 
in the direction normal to fluid flow. (Biot's number is very 
small.) (4) The ratios of the thermal capacitances of the fluids 
contained, at any instant, in the matrix to the thermal 
capacitance of the containing matrix are negligibly small and 
are treated as zero. This latter idealization means, in effect, 
that the fluids must be gases and that transit times for gas par
ticles to flow through the matrix must be negligibly small com
pared to the flow periods /„ and tb: 

The tabulated values of 4> are obtained using a computer 
program that implements the regenerator analysis presented 
by Romie and Baclic (1988). The program gives 4> with four-
decimal-place accuracy. Regenerator effectiveness values com
puted by the program are in agreement with those of Lambert-
son (1958) and Bahnke and Howard (1964). These two 
references give er for a greater range of the four parameters 
than this note but in a form less conducive to interpolation. 
However, the range of parameters in Table 2 is believed to be 
sufficient for most applications. 

Discussion 
Linear interpolation of 4> m Table 2 is suitable with respect 

to Ntu, C*, and hA", but logarithmic interpolation gives bet-
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1 .00 
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:ample : Nt 
hA 
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.00 26+0 2 
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.0000+00 

u = 8 , C*= 
i*=l.O ; A 

hA*=0.5 j d 

Table 2 

.4 

.0114+00 

.0171-02 

.0197-01 

.0183-00 

.0143-00 

.0098-00 

.0061-00 

.0036-00 

.0117+02 

.0178+01 

.0205+03 

.0190+03 

.0144+02 

.0083+01 

.0037+00 

.0006+00 

.0121+03 

.0184+04 

.0213+06 

.0193+06 

.0134+04 

.0060+02 

.0010+00 

.0001+00 

.0124+05 

.0191+08 

.0220+10 

.0191+10 

.0115+06 

.0033+02 

.0 002+00 

.0000+00 

.0128+0 7 
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=. 9 , Cn. * 
i = .0 193 
J = .0193+ 

0<D 
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.0012+0 2 
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.0 492+30' 
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. 0 0 0 6= . 0 1 

.8 
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.0737-05 

.0678-03 

.0540-02 

.0386-00 

.0256-00 

.0160-00 

.0453+07 

.0677+05 

.0 772+0 6 

.0714+08 

.0564+09 

.0384+09 

.0213+07 

.0081+04 

.0465+13 

.0702+15 

.0805+18 

.0740+22 

.0562+22 

.0333+20 

.0130+14 

.0026+0 6 

.0 478+19 

.0728+25 

.0836+32 

.0 758+36 

.0 540+36 

.0269+30 

.0077+19 

.0010+05 

.0492+25 

.0 753+37 

.0365+47 

.0767+52 

.0505+51 

.0214+40 

.0050+21 

.00 05+0 5 

.9 

.0551+03 
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.0876-05 
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.0546-02 

.0383-01 
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.0566+09 

.0 845+0 7 

.0972+08 

.0924+10 

.0 765+11 

.0561+12 

.0352+12 

.0174+11 

.0 582+16 

.0876+18 

.1014+22 

.0962+27 

.0 777+29 

.0521+29 

.0 269+27 

.0102+20 

.0 598+23 

.0 90 7+30 

. 10 54 + 38 

.0991+45 

.0 767+47 

.0 464+47 

.0212+40 

.0072+27 

.0614+31 

.0938+44 

.1091+56 

. 10 11 + 63 

.0743+67 

.0414+63 

.0181+50 

.00 62+31 

:ry= . 0193 + 06 

99 

1 
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. 1 112-05 
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.0791-03 
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.1032+15 

.0834+18 

.0622+20 

.0428+21 

.0 708+20 

.1064+23 

.1247+27 

.1227+32 

.1063+37 

.0820+40 

.0567+41 

.0377+40 

.0727+28 

.110 1+37 

.1296+45 

.1269+52 

.10 72+57 

.0785+60 

.0 529+58 

.0 359+50 

.0747+37 

. 1139+51 

.1343+63 

.1302+73 

. 1064+79 

.0 752+78 

.0510+63 

.0354+53 
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ter accuracy with respect to C*r. For example, to find the ther
mal effectiveness for Ntu = 11.6, C* = 0.873, C*r = 0.3, and 
hA * = 0.80 one uses linear interpolation to find, at Ntu =11.6, 
C* =0.873 and M*=0.80; <*>, =0.0047 with C ^ O . 2 0 and 
4>2= 0.0164 with C;?,2 = 0.40. For logarithmic interpolation 
let j ! = log (0i/*2)/log(C*,/C^); then <t> = 4>i(C%/C*ni)\ 
from which </> = 0.0098. The thermal effectiveness of the recu
perator with Ntu= 11.6 and C* = 0.873 is, from equation (3), 
0.9636. Thus the regenerator effectiveness is er = 
0.9636(1-0.0098) = 0.9542. This value is the value given by 
the computer program so that no error has been introduced by 
interpolation in this example. If linear interpolation were used 
with respect to C*r the interpolated effectiveness would be 
0.9534, which is 0.08 percent less than the correct value. 

The maximum errors attributable to interpolation can be ex
pected to be very nearly equal to those at the midpoints of ad
jacent parameter values listed in Table 2. For example Ntu = 6, 
C* =0.975, C*r=0.3, and hA* =0.75 is a midpoint. Com
parison of the thermal effectiveness values found by interpola
tion at the 168 midpoints afforded by Table 2 with values 
found with the computer program showed an rms error of 
0.20 percent with a maximum error of +0.46 percent occur
ring at Ntu = 3, C*=0.825, C;r = 0.95, and hA* =0.75. The 
maximum interpolation errors for C*rr<0.40 have an rms er
ror of 0.03 percent with a maximum error of -0.10 percent. 
On average, the errors introduced by interpolation will, of 
course, be less than these maximum errors. 
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Exact Solution for Slug Flow Laminar Heat Transfer 
Development in a Rectangular Duct With Isothermal 
Walls 

G. D. Thiart1 

Introduction 
The transfer of heat to or from a fluid in the entrance region 

of a straight duct is almost independent of the momentum 
transfer that is taking place simultaneously if the Prandtl 
number of the fluid is very low, as is the case with liquid 
metals. The thermal boundary layer develops much faster than 
the corresponding hydrodynamic boundary layer; it is 
therefore a good approximation to assume that a uniform 
velocity profile (slug flow) exists. The differential equation 
describing the conservation of energy is then simply 

dT __ k / d2T d2T d2T\ 
oc V dx2 dv2 dz2 ' dx 

for constant fluid density o, heat capacity c, and thermal con
ductivity k. The solution of equation (1) can be written in a 
simple closed form for the case of a rectangular duct with 
isothermal walls, in contrast to the corresponding solutions 
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for other simple geometries, which are usually complicated by 
the presence of eigenvalues that have to be calculated from so-
called eigenfunctions (e.g., zeros of Bessel functions for the 
circular duct). Nevertheless, this solution (for the rectangular 
duct) cannot be found in either the extensive compendium of 
laminar duct flow solutions of Shah and London (1978), nor 
in the relevant chapter on forced convection heat transfer in 
ducts in the Handbook of Heat Transfer Fundamentals 
(1985), nor in heat transfer textbooks such as those of 
Rohsenow and Choi (1961), Kays (1966), Burmeister (1983), 
or Bejan (1984). 

Values of fully developed Nusselt number as function of 
duct aspect ratio are given by Hartnett and Irvine (1957), but 
these were apparently calculated from the equation for tran
sient heat conduction without conduction in the axial direc
tion. Now, since the maximum Reynolds number for laminar 
heat transfer is of the order 2000, while the Prandtl number 
for liquid metals is of the order 0.001, it follows, as pointed 
out by Rohsenow (1988), that the maximum Peclet number for 
the case under discussion is approximately 2. It is clear, 
therefore, that axial conduction effects are not negligible in 
practical applications. 

Temperature Field Solution 
For the configuration shown in Fig. 1, the boundary condi

tions subject to which equation (1) must be solved are given by 

T=Tw&ty=± W/2, z = ±H/2 (2a) 

T=T, aix = 0 (2b) 

The mathematical problem described by equations (1) and (2) 
can be written in dimensionless form in terms of the dimen-
sionless variables £=x/DhPe, -r\=y/Dh, $ = z/Dh, and 
d=(Tw-T)/(Tw-Tj), as well as the Peclet number 
Pe = pcUDh/k (with Dh denoting the hydraulic diameter of the 
duct) as 

de _ i d2e d2e d2e 

which have to be solved subject to the boundary conditions 
6 = 0 at ri = ± W/2D„, f = ± H/2Dh (3a) 
0 = 1 at £ = 0 (3b) 

The solution is obtained by the method of separation of 
variables, by assuming a product solution of the type 6 = XYZ, 
where X, Y, and Z are functions of £, rj, and f, respectively. It 
follows that a solution satisfying all the boundary conditions 
except for (3b) is given by 

Fig. 1 Coordinate definition 
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ter accuracy with respect to C*r. For example, to find the ther
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perator with Ntu= 11.6 and C* = 0.873 is, from equation (3), 
0.9636. Thus the regenerator effectiveness is er = 
0.9636(1-0.0098) = 0.9542. This value is the value given by 
the computer program so that no error has been introduced by 
interpolation in this example. If linear interpolation were used 
with respect to C*r the interpolated effectiveness would be 
0.9534, which is 0.08 percent less than the correct value. 

The maximum errors attributable to interpolation can be ex
pected to be very nearly equal to those at the midpoints of ad
jacent parameter values listed in Table 2. For example Ntu = 6, 
C* =0.975, C*r=0.3, and hA* =0.75 is a midpoint. Com
parison of the thermal effectiveness values found by interpola
tion at the 168 midpoints afforded by Table 2 with values 
found with the computer program showed an rms error of 
0.20 percent with a maximum error of +0.46 percent occur
ring at Ntu = 3, C*=0.825, C;r = 0.95, and hA* =0.75. The 
maximum interpolation errors for C*rr<0.40 have an rms er
ror of 0.03 percent with a maximum error of -0.10 percent. 
On average, the errors introduced by interpolation will, of 
course, be less than these maximum errors. 
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The transfer of heat to or from a fluid in the entrance region 

of a straight duct is almost independent of the momentum 
transfer that is taking place simultaneously if the Prandtl 
number of the fluid is very low, as is the case with liquid 
metals. The thermal boundary layer develops much faster than 
the corresponding hydrodynamic boundary layer; it is 
therefore a good approximation to assume that a uniform 
velocity profile (slug flow) exists. The differential equation 
describing the conservation of energy is then simply 
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for constant fluid density o, heat capacity c, and thermal con
ductivity k. The solution of equation (1) can be written in a 
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for other simple geometries, which are usually complicated by 
the presence of eigenvalues that have to be calculated from so-
called eigenfunctions (e.g., zeros of Bessel functions for the 
circular duct). Nevertheless, this solution (for the rectangular 
duct) cannot be found in either the extensive compendium of 
laminar duct flow solutions of Shah and London (1978), nor 
in the relevant chapter on forced convection heat transfer in 
ducts in the Handbook of Heat Transfer Fundamentals 
(1985), nor in heat transfer textbooks such as those of 
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or Bejan (1984). 

Values of fully developed Nusselt number as function of 
duct aspect ratio are given by Hartnett and Irvine (1957), but 
these were apparently calculated from the equation for tran
sient heat conduction without conduction in the axial direc
tion. Now, since the maximum Reynolds number for laminar 
heat transfer is of the order 2000, while the Prandtl number 
for liquid metals is of the order 0.001, it follows, as pointed 
out by Rohsenow (1988), that the maximum Peclet number for 
the case under discussion is approximately 2. It is clear, 
therefore, that axial conduction effects are not negligible in 
practical applications. 

Temperature Field Solution 
For the configuration shown in Fig. 1, the boundary condi

tions subject to which equation (1) must be solved are given by 

T=Tw&ty=± W/2, z = ±H/2 (2a) 

T=T, aix = 0 (2b) 

The mathematical problem described by equations (1) and (2) 
can be written in dimensionless form in terms of the dimen-
sionless variables £=x/DhPe, -r\=y/Dh, $ = z/Dh, and 
d=(Tw-T)/(Tw-Tj), as well as the Peclet number 
Pe = pcUDh/k (with Dh denoting the hydraulic diameter of the 
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6 = 0 at ri = ± W/2D„, f = ± H/2Dh (3a) 
0 = 1 at £ = 0 (3b) 

The solution is obtained by the method of separation of 
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2WH/(H+ W), it follows, with a = H/W denoting the duct 
aspect ratio, that Dh/H=2/(1+a). Thus 

(8) 
n ^ r , / o fi , / 4TT \ 2 (a2m2 + n2)^ x 
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The average or mixing temperature at any axial position can 
be obtained from the temperature solution in the usual man
ner: 
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for m, n= 1, 3, (9) 

The film coefficient for the side y = W/2 is 
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Since the governing equation (3) is linear, we can superpose 
solutions for all m, n to arrive at a possible solution 
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The constants C,„„ are determined from the remaining 
boundary condition, equation (3b), from which we find that 

The average film coefficient for the side of the duct under con
sideration is obtained by integrating this expression over the 
height of the duct: 
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The average film coefficient hz over the side z = H/2 is given 
by a similar expression. It follows that the average film coeffi
cient over all four sides of the duct is 
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Reverting to the dimensional form, the solution to the 
problem can be written as 
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form, n = l , 3, . . . (12) 

The local Nusselt number as function of axial distance is 
therefore 
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Nusselt Number 

For the sake of convenience, the exponential term in equa
tion (7) will henceforth be denoted by E(x). Now, since the 
hydraulic diameter for a rectangular duct is equal to 
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for m, n = l, 3, (13) 

With this expression, values of Nusselt number as functions of 
duct aspect ratio, Peclet number, and dimensionless axial 
distance were calculated on the University of Stellenbosch 
VAX 785 in double precision FORTRAN 77. In summing the 
series, two suggestions of Kreitzberg and Shneiderman (1972) 
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were implemented in order to reduce roundoff errors, i.e., 
summing the series backward and creating subsums. The max
imum values of m (wmax) and «(«max) were chosen such that 
the values of the terms for n - 1, m = mmax and n = «max, m = 1 
were always less than 10"6 times that of the fully summed 
series. This meant that up to 16 million terms of the series had 
to be calculated for the lowest Peclet number/lowest axial 
distance combinations. An indication of the convergence of 
the numerical summation process is that the difference in 
Nusselt number calculated with the 10 ~6 limitation always dif
fered by less than 0.005 percent from corresponding values 
calculated with a 10"10 limitation. 

Typical results are presented in Fig. 2 for a square duct. The 
increase in Nusselt number for Peclet numbers of order 10 or 
less over that for the no-axial-conduction case, represented by 
the Pe = oo curve, is clearly evident. 

Finally, it was found by numerical computation that the ful
ly developed Nusselt number can be expressed in terms of duct 
aspect ratio as 

1 + a 2 

N U ^ T T * (14) 
(1 + a) 

Although this relationship could not be proved mathematical
ly insofar as it represents the limiting value of Nu (equation 
(13)) as x tends to infinity, it does exactly reproduce the rela
tionship given in graphic form by Hartnett and Irvine (1957). 
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L = length of test cylinder (also, height 
of the wind tunnel) = 305 mm in 
present study 

Rerf = Reynolds number based on U„ and 
d 

Sh = local Sherwood number based on 
cylinder diameter 

Sh0 = Sherwood number on a plate 
without protruding cylinder 

U^ = mean velocity of mainstream 
VI = a "horseshoe vortex; see Fig. 1 
V2 = a small vortex located at the base 

of the cylinder; see Fig. 1 
V3 = a small vortex located near the 

cylinder surface just above V2; see 
Fig. 1 

x = downstream distance along the tun
nel test section measured from up
stream edge of cylinder; see Fig. 1 

y = upward direction along the cylinder 
front stagnation line measured 
from the plate; see Fig. 1 

Z = lateral direction across the tunnel 
test section; see Fig. 1 

5 = mainstream boundary layer 
thickness 

5* = displacement thickness of 
mainstream boundary layer just 
upstream of the cylinder 

6 = angle around the cylinder, 
measured in degrees from the front 
stagnation point 

Introduction 

The mass (heat) transfer pattern near the base of a cylinder 
in crossflow, at Red of 10,000-80,000, was described by Gold
stein and Kami (1984) and Kami and Goldstein (1986). Two 
small, intense vortices within the horseshoe vortex system pro
duce high values and steep gradients of the transport coeffi
cient over a narrow strip extending from the cylinder base to 
about 0.07d above it. The studies also indicate the effects of 
cylinder diameter and endwall boundary layer thickness on 
these phenomena. 

In those earlier studies an active cylinder and an inactive 
endwall were used, i.e., the test cylinder was coated with 
naphthalene, whose local sublimation rate during exposure to 
air flow was measured, while the endwall was not coated and 
was impermeable. In the analogous heat transfer case, an ac
tive surface corresponds to an isothermal surface, while an in
active or impermeable surface corresponds to an adiabatic 
one. An active naphthalene plate and inactive cylinders were 
used by Goldstein et al. (1985) in an investigation of mass 
(heat) transfer from the endwall near a protruding cylinder. 
Applications of heated cylinder-endwall components, such as 
in heat exchangers and gas turbines, generally involve heat 
transfer from all surfaces. In the present study a portion of the 
endwall and the test cylinder placed normal to it are coated 
with naphthalene (Fig. 1). Local mass transfer measurements 
are conducted on both surfaces and the results are compared 
to earlier data by Kami and Goldstein (1985) at Red = 30,000 
and a similar d*/d ratio. Thus, the effect of changing the end-
wall boundary conditions from inactive to active on the mass 
(heat) transfer pattern is investigated. 

Van Dresar and Mayle (1986) used a naphthalene sublima
tion technique to conduct a similar study at Red= 110,000. 
Their measurements with an inactive endwall confirmed the 
main trends reported earlier by Goldstein and Kami (1984) 
and Kami and Goldstein (1986). At 0 = 0 their data obtained 
with an active endwall are virtually identical to their results 
with an inactive endwall; but the active endwall diminishes the 
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Rerf = Reynolds number based on U„ and 
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cylinder diameter 
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Introduction 

The mass (heat) transfer pattern near the base of a cylinder 
in crossflow, at Red of 10,000-80,000, was described by Gold
stein and Kami (1984) and Kami and Goldstein (1986). Two 
small, intense vortices within the horseshoe vortex system pro
duce high values and steep gradients of the transport coeffi
cient over a narrow strip extending from the cylinder base to 
about 0.07d above it. The studies also indicate the effects of 
cylinder diameter and endwall boundary layer thickness on 
these phenomena. 

In those earlier studies an active cylinder and an inactive 
endwall were used, i.e., the test cylinder was coated with 
naphthalene, whose local sublimation rate during exposure to 
air flow was measured, while the endwall was not coated and 
was impermeable. In the analogous heat transfer case, an ac
tive surface corresponds to an isothermal surface, while an in
active or impermeable surface corresponds to an adiabatic 
one. An active naphthalene plate and inactive cylinders were 
used by Goldstein et al. (1985) in an investigation of mass 
(heat) transfer from the endwall near a protruding cylinder. 
Applications of heated cylinder-endwall components, such as 
in heat exchangers and gas turbines, generally involve heat 
transfer from all surfaces. In the present study a portion of the 
endwall and the test cylinder placed normal to it are coated 
with naphthalene (Fig. 1). Local mass transfer measurements 
are conducted on both surfaces and the results are compared 
to earlier data by Kami and Goldstein (1985) at Red = 30,000 
and a similar d*/d ratio. Thus, the effect of changing the end-
wall boundary conditions from inactive to active on the mass 
(heat) transfer pattern is investigated. 

Van Dresar and Mayle (1986) used a naphthalene sublima
tion technique to conduct a similar study at Red= 110,000. 
Their measurements with an inactive endwall confirmed the 
main trends reported earlier by Goldstein and Kami (1984) 
and Kami and Goldstein (1986). At 0 = 0 their data obtained 
with an active endwall are virtually identical to their results 
with an inactive endwall; but the active endwall diminishes the 
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Fig. 1 Schematic view of the experimental setup and the vortex 
system. The shaded surfaces are covered with naphthalene. Dimen
sions in mm. 

effect of the corner vortex (V2 in Fig. 1) at 6 = 30 and 60 deg. 
They did not report measurements over the endwall. Ireland 
and Jones (1986) used thermochromic liquid crystals to 
measure the local heat transfer coefficient on the endwall near 
a circular cylinder situated in fully developed passage flow, at 
Red of 9000-34,000 and L/d= 1.0 and 2.0. Their results are 
compared herein with the present measurements. Heat and 
mass transfer studies of narrowly spaced heat exchanger fins 
also show similar patterns to that presently observed over the 
endwall [cf. Kruckels (1972)]. 

Experimental Apparatus and Measurement Technique 
The experimental configuration is shown in Fig. 1. The test 

plate is mounted such that its naphthalene-coated surface is 
aligned smoothly with the bottom-wall surface of the wind 
tunnel. The cylinder sits on top of, and perpendicular to, the 
naphthalene plate, held by a threaded bolt, which is fixed in
side it and fitted through a 12.7-mm-dia hole in the plate; the 
bolt is secured with a nut to the other side of the plate. The 
naphthalene surface of the cylinder extends to its lower end, 
matching the naphthalene surface of the plate. The three vor
tices VI, V2, and V3, which directly affect the mass transfer 
distribution, are also shown schematically in Fig. 1. The in
ferred flow pattern is discussed by Goldstein and Kami (1984). 

The wind tunnel used and the cylinder position in the tunnel 
are the same as those described by Kami and Goldstein (1986). 
The casting process, measurement procedure, and data acqui
sition and reduction techniques are similar to those described 
in the earlier papers from this laboratory. The maximum error 
in measuring the mass transfer coefficient is 6 percent over the 
cylinder, and 5 percent on the plate. 

Results 
In Fig. 2, the mass transfer variation along the cylinder, 

near its base, is shown at various angles around the cylinder. 
The present results are compared to data obtained with an in
active endwall (Kami and Goldstein, 1986) at similar Red, 5*, 
and d. Very near the endwall, at ,y/e?<0.03, the Sh values of 
the present study are consistently lower than those obtained 
with an inactive endwall. Note that the first peak, detected at 
y/d<= 0.010 when the endwall is inactive, is now observed at 
y/d" 0.005 (Figs. 2a, b, c). This shift is partially accounted 
for by the sublimation of the endwall, which causes a slight 
downward shift in the location of the corner vortex V2 (Fig. 
1). At 0 = 5-10 deg and 50-55 deg (Figs. 2a and b) the Sh 
maximum nearest to the endwall is 12-15 percent lower in the 
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Fig. 2 Variation of Sherwood number along the cylinder near the end-
wall, at representative angles. Data from Kami and Goldstein (1986) were 
taken with an inactive endwall. 

present measurements than in the earlier ones. The influence 
of the active endwall increases with 8 and at 6 = 70-75 deg (Fig. 
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Fig. 4 Sherwood number distribution on the endwall and the cylinder 
along the upstream line of symmetry (0 = 0 deg, z = 0) 

2c) the Sh peak is about 40 percent lower than that with an in
active endwall. At 0 = 90-95 deg (Fig. 2c?) the Sh maximum 
near the base is still very large when the endwall is inactive but 
almost disappears when the endwall is active. Note that pres
ent results near the cylinder front stagnation line differ 
somewhat from the data of Van Dresar and Mayle (1986) who 
found near-perfect agreement between data obtained near 
0 = 0 deg with active and inactive endwalls. This discrepancy 
may be due to the different mass transfer boundary condi
tions, and perhaps somewhat different flow structures in the 
two studies. 

Over the front portion of the cylinder (Figs. 2a, b, c, d), 
there is little difference between present and earlier values for 
y/d>0.03. In particular, the second maximum, at 
y/da0.040-0.045, is nearly unaffected by the change in the 
endwall boundary conditions. Over the cylinder's rear (Figs. 
2e and f) the present results show that Sh remains relatively 
low up to y/d*=0M when the endwall is active. 

Figure 3 is a contour plot of the mass transfer distribution 
(expressed in terms of hm/h0) over the endwall near the 
cylinder base. The contour lines, which are calculated directly 
from the measurements, clearly correspond to the pattern of a 
horseshoe vortex flow as described previously by Goldstein 
and Kami (1984); mass transfer peaks associated with two dif
ferent vortices (VI and V2 in Fig. 1) are observed. The higher 
peak, which corresponds to V2, is located about 0.0256' 
upstream of the cylinder. At this peak hm/h0 »10; this cannot 
be shown in the contour plot, but is clearly seen in Fig. 4. The 
second peak (VI), with hm/h0~4.\, is observed at 
x/d" -0.25. A similar pattern, with more moderate gra
dients, was observed by Ireland and Jones (1986); see Fig. 7 of 
that study. The existence of two separated mass transfer peaks 

was not detected by Goldstein et al. (1985) where a relatively 
small (12.7 mm) cylinder diameter was used, and the distance 
between measurement points was relatively large. As shown by 
Kami and Goldstein (1986), the size of the vortices is propor
tional to d. 

Figure 4 combines the Sh distribution along the plate's line 
of symmetry upstream of the cylinder with that along the 
cylinder's front stagnation line. The intense comer vortex V2 
influences the mass transfer from the cylinder at 
0<^/d<0.025, and that from the endwall at -0.1 <x/d<0; 
thus, the region affected by this vortex is much wider on the 
plate than on the cylinder. The transport coefficient variations 
are much steeper on the cylinder than on the plate and the 
maximum Sh value obtained on the cylinder is about 15 per
cent higher than that measured on the plate. 

Mass and heat transfer results of Goldstein et al. (1985) and 
Ireland and Jones (1986), along an endwall directly in front of 
a cylinder, are also shown in Fig. 4. These data could be com
pared with the present measurements using a correlation for 
flat plate heat transfer, taking into account the active (heated) 
length and the total surface length (from the start of the end-
wall boundary layer), and the ratio between Prandtl and 
Schmidt numbers. A different and roughly comparable pro
cedure is used wherein Sh values are calculated from the 
relation 

Sh = A S h 0 (1) 
"o 

The ratio h/h0 is obtained from the original data: Fig. 9 of 
Goldstein et al. (1985) and Fig. 12 of Ireland and Jones (1986). 
Sh0 = 45, which is measured in the present study just upstream 
of the cylinder, is used to correlate the earlier results with the 
present measurements. 

The mass transfer measurements of Goldstein et al. (1985) 
were taken at Red«4.0xl03 ; nevertheless, the agreement 
with present data indicates that the ratio hm/h0 is not very 
dependent on Red. Compared to present measurements, 
Ireland and Jones (1986) obtained relatively low increases of 
the transport coefficient near the cylinder's base (although 
their h/h0 contour plots indicate a pattern generally similar to 
that of Fig. 3). However, their study was conducted in a duct 
flow where a relatively high value of h0 was obtained. Also, 
conduction in the wall could affect liquid crystal experiments. 

Conclusions 

Mass transfer measurements conducted over a cylinder and 
its endwall indicate the following: 

(a) Similar trends of mass transfer enhancement are ob
served on the cylinder near its base when either an inactive or 
active endwall is used. However, the generally high Sh values 
detected at y/d<QM lower when the active wall is used. This 
reduction in peak values of Sh grows as 0 increases from 0 to 
90 deg. 

{b) Two mass transfer maxima, corresponding to two vor
tices, are observed on the endwall upstream of the cylinder. 

(c) The region adjacent to the cylinder base where a large 
mass transfer increase is detected is considerably wider on the 
plate than on the cylinder, but the Sh peak on the cylinder is 
about 15 percent higher than that on the plate, and significant
ly steeper Sh gradients are found on the cylinder. 
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Introduction 
The theory of fluids with microstructure has been the sub

ject of a large number of investigations. For an excellent 
review, see Ariman et al. (1973, 1974). 

Latto and Shen (1969) studied the effect of injecting dilute 
aqueous polymer solutions into a turbulent boundary layer 
formed on a flat plate. They found that polymer concentra
tion and injection velocity influence the friction drag. This 
phenomenon cannot be explained on the basis of classical con
tinuum mechanics. The theory of micropolar fluids proposed 
by Eringen (1964) is capable of explaining this phenomenon. 
In this theory, the local effects arising from microstructure 
and intrinsic motion of the fluid element are taken into ac
count. Physically, micropolar fluids represent non-Newtonian 
fluids consisting of dumbbell molecules or short rigid cylin
drical elements, e.g., polymer fluids, fluid suspensions, etc. In 
addition, it may be possible to use a theory of fluids having 
microstructure to model turbulent flow. In such an applica
tion, the macromotion of the model would correspond to the 
mean motion of turbulent flow, the micromotion of the model 
would correspond to the fluctuation motion of the turbulent 
flow, and the microinertia coefficients would corre
spond to the characteristic dimensions of eddies. 

Recently, jet impingement of a micropolar fluid on a curved 
surface has been investigated by Ojha et al. (1978). The heat 
transfer characteristics of a micropolar boundary layer on a 
nonisothermal circular cylinder have been presented by Gorla 
(1984). Cooling of the boundaries has numerous applications. 
Therefore, the purpose of the present paper is to study the 
heat transfer for free convection flow of micropolar fluid over 
a horizontal cylinder subjected to constant mass transfer and 
arbitrary surface temperature or surface heat flux variations. 
Numerical results were obtained for a Prandtl number of 0.7 
and 1, with various values of the dimensionless material 
parameters A and X. For prescribed surface conditions, the 
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Fig. 1 Coordinate system 

solutions covered the range of surface mass transfer parameter 
vw from - 0 . 4 to 0.4. 

Analysis 
The curvilinear orthogonal coordinate system for this 

analysis, where the wall temperature is assumed to be greater 
than the ambient temperature, is shown in Fig. 1. By employ
ing the Boussinesq approximation, the conservation equations 
of the laminar boundary layer for the micropolar fluid can be 
written as: 

Mass 

Momentum 

du dii 
u——r- +v-dx dy 

dii dv 

dx dy 

-g(3(T-T„)sm(.x/R) 

(1) 

+ (v+K/p) 
d2u 

dy2 

da 

dy 

A ngular Momentum 

do da 
u —-— +v -

dx 

Energy 

dy 

K / dii \ 
— (2a+ - ^ r ^ ) + 
pj\ dy ) 

d2a 

pj dy2 

dT dT d2T 
ii —T-Z—Vv . . =a • 

dx dy dy2 

with the boundary conditions: 

M = 0, v=vw, T=TW{*), a=-l/2du/dy, aty = 0 

or -kdT/dy = qw (**) 

u = Q, T=Ta, d=0 as.y-oo 

(2) 

(3) 

(4) 

(5) 

* :for prescribed surface temperatures 

** :for prescribed surface heat fluxes 

Equations (l)-(5) are transformed from the (x, y) to (£, rj) 
coordinates by a proper choice of transformation variables 
defined as follows: 

i = 2^F(x)dx, v=yF(x)W2, g($, r , )=a(* . y)/F(x)1/2S 

m , V) =F(x)l/2 fy(x, y) + j * vw dx]/H 

The transformed equations are 

(6) 

1.0 

0.8 -

0.6 

N u G r " 4 

0.4 -

0.2 -

x / R 

Fig. 2 Angular distributions of the local Nusselt number for the 
nonisothermal surface case with Pr = 1, B = 1, A = 5, and A = 5 

1 . 0 

x / R 

Fig. 3 Angular distributions of the local Nusselt number for the 
nonuniform heat flux surface case with Pr = 1,B = 1,A = 5, and A = 5 

Table 1 Angular distributions of the local Nusselt number 
NuDGr5wforPr = 0.7, A = 0 , a 1 = 0 , a 2 = 0,andvH, = 0 

deg 

0 

30 

60 

90 

Present 
method 

0.4400 

0.4345 

0.4187 

0.3919 

Gortler 
series 

0.4402 

0.4351 

0.4187 

0.3898 

Merkin 
numerical 

0.4402 

0.4349 

0.4190 

0.3922 

Blasius 
series 

0.4402 

0.4350 

0.4192 

0.3930 

Huang 

0.4402 

0.4349 

0.4191 

0.3922 

(l + A)f'"+ff"[2-al(x)]-f"a2(x)+cc3(x)d-2{f')2+Ag' 

= 2$(f'df'/d£-f"df/dZ) (7) 

\g"+fg'[2-al(x)]-g'a2(x)-[2 + al(x)lf'g 

-a4(x)[2g +f" ] = 2£ ( / ' dg/d$ - g' df/di) (8) 

Pr-1e"+fB'[2-al(x)]-6'(x)a2(x)-2cil(x)f'd 

= 2l(f'd6/dZ-d'df/di,) (9) 
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Table 2 Angular distributions of the local Nusselt number for Pr = l, 
«, =0 .2 ,a 2 = 0 , 5 = 1, and F„,=0 

NuGr ~ v* (nonisothermal) NuGr ~1 / 5 (nonuniform qw) 

_x_ X = 5 x = 5 X=13.5 X = 5 X = 5 X=13.5 

* A = 5 A=13.5 A = 5 A = 5 A=13.5 A = 5 

0. 0.3401 0.2855 . 0.3391 0.4236 0.3717 0.4224 

0.5 0.3557 0.3045 0.3554 0.4337 0.3823 0.4327 

1.0 0.3831 0.3274 0.3825 0.4517 0.3988 . 0.4507 

1.5 0.4099 0.3481 0.4086 0.4736 0.4171 0.4723 

2.0 0.4221 0.3576 0.4209 0.4892 0.4295 0.4876 

2.5 0.4046 0.3389 0.4039 0.4871 0.4255 0.4857 

3 0.3256 0.2640 0.3268 0.4443 0.3820 0.4438 

•K 0.2604 0.1899 0.2621 0.4049 0.3379 0.4055 

/ = / ' = 0 , d=\{*) or 6' = -F(x)-yH**), g = - l / 2 / " 

at ij = 0 

f'=g = e = 0 asri^co (10) 

where 

a, (x) = 1/2 F(x) -2%dF{x)/dx, cx2 (x) = vwF(x) "W 2 

a 3 ( * ) = sin (*)/£, a4 (x) = AB/F(x) (11) 

and 

A = «//*, \ = y/pjv, B = R2/jGvU2{*) or B = R2/jGx2,i (**) 
(12) 

In the foregoing equations, the prime (') stands for the par
tial derivative with respect to r\. The physical quantity of 
primary interest is the local Nusselt number, defined by 

Nu = hR/k (13) 

From the definition of the local heat transfer coefficient 
h = qw/(Tw-T00), and Fourier's law q„=-k(dT/dy)y=0, it 
can be readily shown that 

N u G r - 1 / 4 = - F ( x ) 1 / 2 0 ' ( £ , O ) (*) (14) 

NuGr-1 / 5 = 1/5(1,0) (**) (15) 

Results and Discussion 
We use an efficient finite difference method to solve equa

tions (7)-(10), from Cebeci and Bradshaw (1977). 
Numerical results were obtained for a permeable horizontal 

cylinder where the wall temperature is assumed to be of the 
form T„ = Ta + (Tm — Ta,)(l+alx + a2x

2) or the wall heat 
flux is assumed to be of the form qw=qwo (1 + alx + a2x

2). 
In this paper we assumed the microrotation equal to the 

fluid vorticity at the boundary. This kind of boundary means 
that in the neighborhood of a rigid boundary the effect of 
microstructure is negligible since the suspended particles can
not get closer to the boundary than their radius. Hence in the 
neighborhood of the boundary the only rotation is due to fluid 
shear, and therefore the gyration vector must be equal to fluid 
vorticity. This type of boundary condition has been used by 
Ahmadi (1976) for the solution of micropolar boundary layer 
flow past a semi-infinite flat plate. 

As shown in Figs. 2 and 3, the local Nusselt number in
creases for suction, while an opposite trend is observed for 
blowing. By setting ax = a2 = 0 in F(x), we obtain the heat 

transfer rate from cylinders having isothermal or constant-
heat-flux surfaces. By varying a{ and a2 we obtain heat 
transfer rates for nonuniform thermal conditions. Positive 
values of both a, and a2 yield higher heat transfer rates than 
isothermal or constant-heat-flux surfaces do. This informa
tion is very important in the design of industrial equipment 
where the augmented heat transfer rates may be desirable. By 
controlling the arbitrary function F(x) properly (i.e., by 
choosing proper values of al and a2), it is possible to maintain 
the desired level of heat transfer rate augmentation. 

For comparison of our heat transfer results, Merkin (1977), 
Huang (1985), the Basius series (1962), and Gortler-type ex
pansion results (1967) were used. The results are included in 
Table 1 and show excellent agreement with our results. 

To illustrate how the dimensionless material parameters A 
and X affect the local heat transfer rate in the boundary layer 
of micropolar fluid, representative local Nusselt numbers 
along the angular positions of the cylinder are shown in Table 
2. It is noted in Table 2 that an increase in X and A yields a 
decrease in NuGr_ 1 / 4 and NuGr~1/5. 
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Natural Convection in an Inclined Rectangular Porous 
Slot: the Brinkman-Extended Darcy Model 

P. Vasseur,1 C. H. Wang,1 and M. Sen2 

Introduction 
Natural convection in porous media is of interest in many 

applications. Studies have been made of different geometries 
and heating conditions. For example, a vertical cavity in which 
a horizontal temperature - gradient is induced by side walls 
maintained at different temperatures was analyzed (Blythe et 
al., 1983; Daniels, 1983). Others have examined the effect of 
different types of thermal boundary condition, such as 
uniform heating on one vertical wall (Prasad and Kulacki, 
1984), and constant heat flux on both side walls (Bejan, 1983; 
Vasseur et al., 1987a, 1987b, 1987c; Sen et al., 1987). In all 
these studies, use has been made of Darcy's law as a governing 
equation. In general, it is found to give satisfactory results 
when the porous medium has a low porosity. However, it has 
been observed that boundary effects, not included in the 
Darcy's law model, may become significant for fluid flows in 
saturated porous media with high permeabilities. For this 
situation Darcy's model will overpredict the heat transfer 
(Hong et al., 1985) and flow velocities (Georgiadis and Cat-
ton, 1985). Brinkman's extension of Darcy's law should be 
used, as done by Tong and Subramanian (1985) and Sen 
(1987), to account for the presence of a rigid boundary. 
Significant contributions of the viscous diffusion term at high 
Rayleigh and Darcy numbers have been reported by these 
authors. 

The purpose of this note is to document the flow and heat 
transfer characteristics in an inclined porous layer with 
uniform heating and cooling through opposite walls. The 
model used to describe the flow in the cavity accounts for 
Brinkman friction. It will be shown that the boundary effect, 
though not important in low-porosity media, becomes signifi
cant in high-porosity media. 

Problem Statement and Solution Procedure 
A two-dimensional cavity, confined on all sides by an im

permeable rectangular box, and filled with an isotropic, 
homogeneous, fluid-saturated porous medium, is considered. 
The enclosure is of dimensions L' and H' in the x' and y' 
directions, with H'»L', and the direction of the larger 
dimension is tilted at an angle <£ counterclockwise with respect 
to the horizontal plane. An adiabatic condition is imposed on 
the two end walls, while a uniform heat flux q' = — kdT' /dx' 
is applied along both side walls. Here, k is the thermal conduc
tivity of the porous medium, T' the temperature, and the 
primes denote dimensional variables. It is assumed that the 
flow is laminar and steady and that the Boussinesq approx
imation applies. 

The Brinkman model is adopted for the porous medium. 
The governing equations for the nondimensional vorticity o, 
stream function xj/, and temperature Tare, after scaling length, 
temperature, and velocity w i thL ' ,q 'L ' / k , and a/L', respec
tively 

V 2 i / ' = - c o (1) 
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V2w = Da~ [«-*( dT dr \~) 
sin <£ + —— cos <j> I dx dy 

V2T= 
&V BT d\j, dT 

(2) 

(3) 
dy dx dx dy 

where Da = K/L'2 is the Darcy number and R=g@KL'2q' / 
ka.v is the Darcy-Rayleigh number. K, g, 0, a, and v are the 
permeability, gravity, thermal expansion coefficient, thermal 
diffusivity, and kinematic viscosity, respectively. The bound
ary conditions'are ^ = 0, dT/dx=l at * = ± l / 2 and 1̂  = 0, 
dT/dy = Q at j> = ±A/2, where A -H' /L' is the aspect ratio of 
the cavity. Furthermore, a representative Nusselt number 
reflecting the convective heat transfer is defined as 
Nu = q'L'/kAT' = WAT, where AT= 77(1/2, Q)-T(- 1/2, 0) 
is the wall-to-wall dimensionless temperature difference taken 
arbitrarily at the position x = 0 . 

Analytical Solution 
Following the examples of Vasseur et al. (1987a) and Sen 

(1987), we proceed to search for an approximate analytical 
solution for the large aspect ratio of the cavity (A > > 1). There 
is a core region in the center of the cavity in which the flow is 
essentially parallel (u = 0, v = v(x) are the velocity components 
in the x and y directions) and the temperature distribution is 
linear in the y direction; there are also two regions near each 
end wall where the flow turns around. In the core region, we 
can take T(x,y)=6{x)+Cy, where C is an unknown constant 
temperature gradient in the y direction. The value of C can be 
obtained (Bejan, 1983) from a heat flux balance in the y direc
tion: 

, 1 / 

vTdx. 

With these simplifications the governing equations become 

d26 

dx2 

d^ 1 d^ 

- C -
dj> 

dx 

dx$ Da dx* 

RC . dxj, 
sin 4>-

Da dx 
= 0 

(4a) 

(4b) 

The solution depends on the sign of C sin <j>; so two cases will 
be considered. 

(a) C sin (j>>0. This corresponds to a stable 
temperature gradient in the core region; C is positive (or 
negative) for sin <j> positive (or negative). This situation cor
responds to "natural flow," being the motion that would start 
from rest with a conductive temperature field, i.e., 
counterclockwise (or clockwise) motion for sin 4> positive (or 
negative). 

Solutions satisfying the boundary conditions are 

B 
\j/= — _7 L7 (a, cosh ax cos bx '• + b2 

+ tv2 sinh ax sin bx—D) 

9 = Bfi0(a0 sinh ax cos foe +cosh ax sin bx) 

v 
+ -2R sin 4> 

- Cx cot </> 

(5) 

(6) 

where 

7 + 1 

B = 

4Da ' " ^ 4 0 3 

y ( l + C cot 0) 

b = J-^—, y = ^j4RCDasm(jj 

2CDD& 
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„ , a b . , a . b 
£> = a,cosn cos 1-a, smh sin 

2 2 2 2 2 

b u a 

a0 = cot tanh 
2 2 

a.\=a + bu.a, a2 = b — aa0, 

/3o = 
7

2 - l 

2i? sin $ 

The velocity 
u = JS(sinh ax cos bx-a0 cosh ax sin to) (7) 

The Nusselt number Nu is obtained as 

1 
Nu = 

2EB(30 - C cot 0 
(8) 

where E= a 0 sinh a/2 cos b/2 + cosh a /2 sin b/2. The 
temperature gradient C is obtained from 

*£«* (D-P^E) --*-UG(I +F) +M) 
a2 + b2 \ a2 + b2 ) 8RC L' 

+ {al-F)(M+2-G)+ ( F ( l - a g ) - 2 a § ) + 1 = 0 
a0 J 

(9) 

where 

, sin a sin d 
F = a 0 V 4 i ? C D a - l , M = - 1 

a o 

G- {b cosh a sin ft + a sinh a cos b)/(a2 + b2) 

H= (a cosh a sin b — b sinh a cos b)/(a2 + b2) 

Equation (9) can readily be solved numerically to obtain C 
for given values of R and Da, after which the stream function, 
temperature, velocity distributions, and Nusselt number are 
given by equations (5) to (8). 

The present analysis, based solely on the assumption of 
parallel flow, is valid at all Rayleigh numbers for which the 
flow is stable, including the boundary layer regime. This 
regime in a vertical cavity with uniform heat flux from the side 
has been studied by Bejan (1983) for a Darcy porous medium 
and by Kimura and Bejan (1984) for a viscous fluid, using a 
modified Oseen linearization method. We can check the 
results here, since the Brinkman equation reduces to these 
limits as the permeability K-~0 and oo (i.e., Da—0 and oo), 
respectively. For the boundary layer regime in a vertical cavi
ty, $ = 90 deg and .R — oo. If Da-»0, we get 

-a 3 / 2 exp(-ax) , T=- y l 
exp(-ax) , 

conductive temperature field, will be referred to as "an-
tinatural," since it is opposite in direction to the natural mo
tion (see for instance Moya et al., 1987). 

In this case we obtain 

cosh ax - cosh 

* = - * , 

cos foe-cos 
2 

+ a-> 

„ / sinh ax sin bx\ „ 
= fi,C( -t— + a3 j-Cx cot <j> 

Nu = 
1 

25, CF- C cot <t> 

where 

a = V(/3+l)/2Da, 5 = V(j8- l)/2Da, 

i a . b 
/3 = v l -4J?CDa sin 4>, a3 = sinh —— /sin — -

(12) 

(13) 

(14) 

(15) 

sinh a/2 sin b/2 

~ a2 " * ' b2 ' 

cosh a/2 cos b/2 
G = — — r — + «3 g , 

a b 
The value of C is obtained from 

n „„. n „ 2 f „ , tt3 ( a2-

B, 

-b2 N 

1 + C cot. 

GC 

where 

P=—r(d cosh a / 2 - 2 sinh a/2) 
2a2 

252 (b cos 5 / 2 - 2 sin b/2) 

«l Q = —r-(sinh a - a ) + — ^ ( 8 ^ ft-&), 
4a3 4£3 

S = a sin 5/2 cosh a / 2 - 5 cos 5/2 sinh a/2 (17) 

Here again a numerical procedure can be used to solve the 
simultaneous transcendental equations. 

Nu = - (10) Numerical Solution 

where a = i?2/5 and x = (\/2-x). These equations, when 
translated into corresponding notation, are the same as those 
obtained by Bejan (1983). But if Da— oo, it is found that 

Ra 
v= — T ^ T exp( — ax) sin (ax), 

2a3 

4a4 1 
T= v exp( — ax) cos (ax), 

Ra a 
Nu = - (11) 

where a9 = Ra2/32, Ra = /?/Da, and x = ( l / 2 - x ) . These are 
similar to the results obtained by Kimura and Bejan (1984). 

(5) Csin4><0. This corresponds to an unstable 
temperature gradient in the core region so that C would be 
negative (or positive) for sin <$> positive (or negative). For 
positive inclination the motion is clockwise, while it is 
counterclockwise for negative inclination. In either case this 
motion, which cannot be started from rest conditions with a 

The discretized Poisson equation for \p, equation (1), is 
solved explicitly with a successive over-relaxation method, 
whereas the co and Tequations, (2) and (3), are solved using an 
alternating direction implicit method. The resultant set of 
finite-difference equations is tridiagonal in form and therefore 
both easy and economical to solve on a computer. In order to 
achieve both the desirable accuracy and the dominance of the 
principal diagonal of the tridiagonal systems of the finite dif
ference equations, very small time steps were used. The solu
tion was assumed to have converged if the relative change in 
the sum of the unknown variable over all mesh points was less 
than 10 " 4 for \j/ and 10 ~5 for either T or u. The converged 
results were stored after each run to be used as initial condi
tions for the next. 

The numerical results shown here were obtained using 
uniform grids. A grid of 51 X 51 was found to be sufficient. In
creasing the number of grid points further had little discerni
ble effect on the numerical results. For example, for 
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Da=10~6 (Darcy medium) and i? = 250, increasing the 
number of grid points from 2601 to 6561 yielded an increase in 
the value of the Nusselt number of only 1.35 percent. An 
energy balance was also used to check the accuracy of the 

Fig. 1 Velocity profile at midheight of the enclosure, y = 0, as a func
tion of Darcy number Da, for R = 100 and (a) <j> = 30 deg, (b) 4, = 90 deg, (c) 
0 = 120 deg 

results; the heat transfer through each x = const plane was 
compared with the heat input at x = 1/2, being usually within 
1-2 percent. 

Results and Discussion 
The flow structure over the central part of the cavity is in

dependent of aspect ratio if it is made large enough. With the 
thermal boundary conditions considered here, parallel flow 
can be easily established, a fact that was shown by Vasseur et 
al. (1987a) for an aspect ratio of around 2 for Da = 0 and 
R < 500. All the numerical results presented in this study were 
obtained for cavities with A = 4. 

Analytical results are plotted for a variety of parameters, 
with numerical solutions of the complete partial differential 
equations also indicated for confirmation. Figures l(a-c) 
show the velocity profiles at midheight of the enclosure for 
R= 100 and various values of Da at 0 = 30 deg, 90 deg, and 
120 deg, respectively. At a fixed inclination, a significant 
change is observed in the velocity field with an increase in the 
Darcy number. The smaller the Darcy number the closer it 
follows the Darcy medium profile (Da = 0), which is shown as 
a dotted line in the graphs. With Darcy's model the no-slip 
boundary condition is not satisfied and the velocity is max
imum at the wall. In Brinkman's model the velocity is zero at 
the wall, increasing to a peak value, and then dropping back to 
zero in the core region of the enclosure. As the value of Da in
creases, not only does the position of the peak velocity shift 
away from the wall, but also its magnitude is considerably 
reduced. It is also noted in Figs. 1 (a-c) that, for some values 
of Da, the velocity in the core of the cavity can be greater than 
the Darcy velocities. In fact for a given x it is seen that in the 
core, v goes through a maximum as Da is reduced. A similar 
trend has been reported recently by Lauriat and Prasad (1987) 
and was found to be related to the relative magnitudes of the 
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Fig. 2 Variation of stream function at center of layer, i£c, as a function 
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Fig. 3 Variation of Nusselt number Nu, as a function of tilt angle $, for 
various values of Da for fi = 500. 

diffusion and the buoyancy terms. Thus for a given R, when 
Da is small enough the viscous forces have no effects in the 
core. Diffusion effects exist near the walls and the velocity 
profiles in the core follow Darcy's law. At higher Darcy 
numbers the viscous and buoyancy terms are of the same 
magnitude and the vorticity diffuses through the whole cavity. 
As Da is increased further, viscous effects become more im
portant, the buoyancy-induced convection within the cavity is 
reduced, and the velocity profiles approach those in a fluid 

Fig. 4 Tilt angle for maximum Nusselt number, 4>N, as a function of 
Rayleigh number R and Darcy number Da 

cavity. Thus the curves for Da = 10"' and Da = 1 in Fig. 1 (a) 
are below the Darcy profile. The curves in Figs. 1 (a-c) also il
lustrate the fact that, in general, the convection becomes less 
vigorous as the inclination of the cavity is increased. 

Figures 2 and 3 show the variation of \j/c, the stream func
tion at the center of the layer, and the Nusselt number Nu, 
with inclination for various values of Da and a fixed R - 500. 
Since the transformation 0 ~ — $, i/<——1/<, r— T, y y, 
x— —x alters neither the governing equations nor the 
boundary conditions, the flow is symmetric in opposite 
quadrants; thus only results in quadrants 1 and 4 are 
presented. The continuous lines in the first quadrant represent 
natural flow while the dashed lines in the third quadrant repre
sent the anti-natural flow. When D a = l there is only one 
steady state for each inclination. However, for Da = 0.35 or 
larger, three values of \j/c and Nu are possible for inclinations 
around zero. The range of inclinations for multiple steady 
states is a function of both the Darcy number and the Rayleigh 
number. 

Figure 4 shows the variation of the angle 4>N for maximum 
heat transfer across the cavity with Rayleigh number for 
various values of the Darcy number. For small R, i.e., the 
pseudo-conduction regime, the temperature field is conduc
tion dominated. The largest buoyancy force and circulation 
take place when the cavity is vertical, i.e., when the 
temperature gradient is horizontal. Thus all the curves tend 
toward <j>N = 90 deg when R is small enough. As the Darcy 
number is increased the effect of the viscous term is enhanced 
and the pseudo-conduction regime is maintained up to 
relatively high values of R. For intermediate R, i.e., in the 
asymptotic regime, the variation of the angle <f>N with R is 
complex. For all the Darcy numbers considered, when R in
creases, <f>N first decreases down to a value of approximately 
33.5 deg and then starts to increase again. The smaller the 
Darcy number, the smaller the Rayleigh number required to 
reach the minimum value of 4>N. Finally, when R is large 
enough, i.e., in the boundary layer regime, all the curves tend 
again toward 4>N = 90 deg, i.e., the maximum heat transfer oc
curs when the cavity is vertical. A similar trend has been 
reported by other authors while studying numerically the 
natural convection of a fluid in an inclined cavity with two op
posing isothermal walls. 
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Forchheimer Free Convection Over a Nonisothermal 
Body of Arbitrary Shape in a Saturated Porous 
Medium 

A. Nakayama,1 T. Kokudai,2 and H. Koyama1 

Nomenclature 

c = 

f 
F 

I 
k 

K 

Nuv 

Q* = 

r = 

empirical constant associated with 
porous inertia 
dimensionless stream function 
general heat transfer 
function = Nu , / (dm£/dmjc)1/2Rai/4 

acceleration due to gravity 
function defined by equation (10c) 
effective thermal conductivity of a 
porous medium 
permeability 
reference length such as a radius 
and a plate height 
exponent associated with wall 
temperature, defined by equation 
(14) 
local Nusselt number, defined by 
equation (21) 
dimensionless local heat flux de
fined by equation (22) 
function representing a body shape 
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Ra, = 

T = 
u, v = 
x,y = 

a = 
0 = 
V = 

e = 
x = 

tf 

1 for plane flow and r for axisym-
metric flow 
modified Rayleigh number defined 
by equation (10Z>) 
temperature 
Darcian velocity components 
boundary layer coordinates 
equivalent thermal diffusivity 
coefficient of thermal expansion 
similarity variable 
dimensionless temperature 
exponent associated with wall 
temperature 
kinematic viscosity 
variable defined by equation (16) 
peripheral angle 
stream function 

Subscripts 
e = external 
r = reference 

w = wall 

Introduction 
Fand et al. (1986) carried out an experimental investigation 

of free convection from a horizontal circular cylinder embed
ded in porous media, and reported that deviations from the 
Darcy law occur when the Reynolds number based on the pore 
diameter exceeds 1 to 10. Thus, the non-Darcy flow situation 
is more likely to prevail when the Rayleigh number is suffi
ciently high that the boundary layer approximations are rele
vant. Plumb and Huenefeld (1981) considered the non-Darcy 
flow over a vertical flat plate using the Ergun model (Ergun, 
1952), which includes the velocity square term, namely, the 
Forchheimer term (Forchheimer, 1901). However, the Ergun 
model permits similarity solutions only for a limited class of 
boundary conditions. Ingham (1986) argued that the Forch
heimer flow may prevail for large Rayleigh number cases, and 
neglected the Darcy term, which would be small when com
pared with the non-Darcy term. The experimental data 
reported by Fand et al. do suggest existence of such a Forch
heimer flow regime between the Darcy and post-Forchheimer 
flow regimes. Ingham extended Merkin's transformation 
(Merkin, 1979), by dropping the Darcy term, to the Forch
heimer free convection on plane and axisymmetric bodies of 
arbitrary shape. In his analysis, however, the heated bodies 
were assumed to be isothermal. 

In this note, we modify the transformations proposed for 
the Darcy flows (Nakayama and Koyama, 1987) to attack the 
problem of Forchheimer free convection. The body may be 
plane or axisymmetric, and its shape is arbitrary. Further
more, we allow the surface wall temperature to vary in the 
streamwise direction. The overall Nusselt numbers on a 
horizontal circular cylinder estimated by our theory are com
pared against the experimental data of Fand et al. to examine 
the validity of the analysis. 

Governing Equations and Boundary Conditions 
Figure 1 depicts a heated plane or axisymmetric body of ar

bitrary shape embedded in a fluid-saturated porous medium. 
The governing equations for the problem, namely, the con
tinuity equation, the Forchheimer-extended-Darcy law (i.e., 
Ergun model) subjected to the Boussinesq approximation, and 
the energy equation are written as 

dr*u dr*v 
- + —— = 0 

dx dy 
0) 
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flow regimes. Ingham extended Merkin's transformation 
(Merkin, 1979), by dropping the Darcy term, to the Forch
heimer free convection on plane and axisymmetric bodies of 
arbitrary shape. In his analysis, however, the heated bodies 
were assumed to be isothermal. 

In this note, we modify the transformations proposed for 
the Darcy flows (Nakayama and Koyama, 1987) to attack the 
problem of Forchheimer free convection. The body may be 
plane or axisymmetric, and its shape is arbitrary. Further
more, we allow the surface wall temperature to vary in the 
streamwise direction. The overall Nusselt numbers on a 
horizontal circular cylinder estimated by our theory are com
pared against the experimental data of Fand et al. to examine 
the validity of the analysis. 

Governing Equations and Boundary Conditions 
Figure 1 depicts a heated plane or axisymmetric body of ar

bitrary shape embedded in a fluid-saturated porous medium. 
The governing equations for the problem, namely, the con
tinuity equation, the Forchheimer-extended-Darcy law (i.e., 
Ergun model) subjected to the Boussinesq approximation, and 
the energy equation are written as 

dr*u dr*v 
- + —— = 0 

dx dy 
0) 
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Fig. 1 Physical model and its coordinates 

14 + u2=^-(T-Te)gx 
V V 

dT dT d2T 
U — Vv — — = a • dx dy dy2 

where 

and 

«.-'('-(-£)') 
1 : plane flow 

r(x) : axisymmetric flow 

(2) 

(3) 

(4) 

(5) 

Since the viscous shear stress term (Brinkman term) is 
neglected, the validity of the present analysis is restricted to 
comparatively low porosities and permeabilities. For high 
Rayleigh number flows, the Darcy term (the first left-hand-
side term) can be dropped. 

u2 = p/Kgx(T-Te)/C (6)3 

The appropriate boundary conditions for equations (1), (3), 
and (6) are 

y = 0: v = 0 T=Tw(x) 
y-<x>: u = 0, T=Te 

(7a, b) 
(7c, d) 

Transformation 

The continuity equation (1) may automatically be satisfied 
by introducing the stream function \j/ such that 

df 1 
u = 

v = 

dy 

17 

r* 

1 

(8a) 

(8b) 

Strictly speaking, equation (6) is only valid when CK gx& 
(Tw — Te)/v> >1. Practically, this requirement can be relaxed, since the ex
perimental data of Fand et al. (against which the present results will be com
pared) suggest that the assumption is good even when CK gx0(Tw — Te)/v is 
of order unity. 

Let us introduce the following transformations similar to 
those proposed for the Darcy flows (Nakayama and Koyama, 
1987): 

where 

t = ctr*(^xI)"
2f(x,rl) 

y 
i) = — ( V R a x / / ) 1 / 2 

T-Te = ATJ(x,ri) 

ATW=TW-Te 

Rax = y/Kgx(3ATwx2/Ca2 

(9a) 

(9b) 

(9c) 

(10a) 

(10b) 

and 

AT ^2gx
/2r*2dx 

/ = -
AT 5J2gx

/2r*2x 
(10c) 

Rax is the modified Rayleigh number and rj is the proposed 
similarity variable. Substitution of equations (9) into equa
tions (6) and (3) yields 

(f')2 = 6 (11a) 

e"+(T* -nI)fe'-nlf'e=lx(f-^- -B'-^) (nb) 

which are subjected to the boundary conditions transformed 
as 

, = 0: / = 0 , 0=1 

r?-°°: / ' = 0 , 0 = 0 

The Darcian velocities are given by 

u = —VRa^' 

(12a, b) 

(12c, d) 

(13a) 

and 

v = ̂ (SkYx/I)"2[(nI- -^-)f 

V 2 2 din x / 
Ix-

df_ 

dx J 

where 

« = -
din ATw 

dlnx 

(136) 

(14) 

The primes in the above equations denote differentiation with 
respect to 77. 

Similarity Solutions 

The exact solutions of equations (1 la) and (1 lb) are possible 
when the lumped parameter nl remains constant in the stream-
wise direction. One such obvious case in an isothermal body of 
arbitrary shape. The case has been treated by Ingham (1986). 
Our transformation is more general than his, since it can deal 
with nonisothermal bodies of arbitrary shape. To seek possi
ble similarity solutions, let us write the lumped parameter nl 
as 
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Fig. 2 General heat transfer function F{\) = Nux/(dln£Minx)1'2 Raj'4 

nl=-

P ATl/2gl/2r*2dx 
dlnATw Jo 

dlnx AT 5J2gl
x
/2r*2x 

din AT» 
I AT?* 

where 

dn$ Ar5/2^ 

$ = r^yv2^ 

(15) 

(16) 

The second expression in equation (15) suggests that the 
similarity solutions are possible when the wall temperature 
varies according to 

A7"w«^ (17) 

Upon substituting the foregoing relation into equation (15), 
we have 

X 
nl= (18) 

Now, equation (11a) may readily be integrated using the 
boundary condition given by equation (12a) as 

/={>„ (19) 

Upon substituting equations (18) and (19) into equation (lift), 
we obtain 

0" + 2 + X 6' [" VfWij 2—d^2 =0 (20) 
2(2 + 5X) Jo ' 2 + 5X 

The foregoing equation, subjected to equtaions (12ft) and 
(12d), can easily be solved using any standard shooting 
procedure. 

Once the dimensionless temperature distribution 6(-n) is 
known, the local Nusselt number of primary concern may be 
evaluated from 

Nu = J ^ = - r ( 0 ) ( l + 4 x r ( - ^ ) Ra 
ATJc V 2 / V dlnx / 

(21) 

where qw = - k(dT/dy) \y=0 is the local wall heat flux, and the 
relation 1/7= (1 + (5/2)X)(Gun£/etax) is used. 

Results and Discussion 
The present analysis revealed that a certain class of similari

ty solutions exists not only for an isothermal body but also for 
a nonisothermal body of arbitrary shape. The heat transfer 
results are presented in Fig. 2 in terms of the function 
F(\) = N\ix/(dln^/dlnx)l/2Rax

M once for all plane and axisym-
metric bodies. 

In order to illustrate the generality acquired in the present 
similarity transformations, free convection over a vertical flat 
plate, a vertical cone pointing downward, a horizontal circular 
cylinder, and a sphere are considered. The transformed 
variable £ and its derivative dlnij/eflnx for each geometric con
figuration are listed in Appendix A. Similarity solutions exist 
when the surface wall temperature varies according to equa
tion (17). The local surface heat flux distributions for such 
cases are listed in Appendix B, where q* is defined as 

qwLr \/Jk$ATwrgL2\ 
V AT,.,k ) ATwk / ' V Ca2 ) 

(22) 

where ATwr is the wall-ambient temperature difference at a 
trailing edge or a rear stagnation point. Thus, the local wall 
heat flux distributions for the vertical flat plate (given by 
equation (Bl)) may readily be translated to those for the ver
tical cone pointing downward (given by equation (B2)). The 
heat flux and wall temperature distributions given by equa
tions (B3) to (B6) are plotted in Figs. 3 and 4, for a circular 
cylinder and a sphere. The heat fluxes at the front stagnation 
point become infinite when X<2/15 for the circular cylinder 
and X<2/35 for the sphere. For comparatively large values of 
X, on the other hand, the local heat flux vanishes at the front 
and rear stagnation points, and attains its maximum midway. 

Fand et al. (1986) carried out an experimental investigation 
of free convection from a nearly isothermal circular cylinder, 
and reduced the experimental data in terms of the overall 
Nusselt number (based on the diameter D = 2Lr = 0.0145 m), 
which, in our theory, corresponds to 

Nu = 

s2^KgpAjwrDy* 
(23) 

for the case of water and 3-mm-dia glass spheres 
(AT=5.6x 10~9m2 and C=0.64). The empirical constant Cin 
our notation corresponds to C2yfK in their notation. The 
values based on equation (23) are tabulated in Table 1 with the 
experimental data and also the values estimated from Darcy's 
law (Fand et al., 1986), namely, 

Nu = 0.565(Kgl3ATwrD/av)w2 (24) 
Our theory agrees reasonably well with the experimental data. 
This substantiates the validity of our analysis. 
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A P P E N D I X A 

The similarity variable £ is given by 

t = JgLr(x/Lr) (i.e.,X = «) 

for a vertical flat plate 

£ = (g cos y)W2sm2yLUx/Lry/3 (i.e., X = «/3) 

for a vertical cone pointing downward 

£=VgLr sin1/2<W 
Jo 

for a horizontal circular cylinder 

£ = v£L?j sin5/2<fcty 

for a sphere 

(Al) 

(A2) 

(A3) 

(A4) 

The symbol Lr denotes reference lengths such as a plate 
height, a cone slant height (7 = an apex half-angle), and radii 
of a cylinder and a sphere, while <f> is the peripheral angle 
measured from the lower stagnation point such that x = Lr<f>. 

Fig. 3 Wall temperature distributions that permit similarity solutions: Correspondingly, dint/dlnx may be given bv 
(a) a horizontal circular cylinder, (b) a sphere 

dint 

dlnx 

dint 

dlnx 

dln^ 

dlnx 

dint 

dlnx 

= 1 

= 3 

for a vertical flat plate (A5) 

for a vertical cone pointing downward (A6) 

= 4, sin1 /20/ f smy2<j>d4> 

for a horizontal circular cylinder (A7) 

= <j> sin5 / 20/ f sin5/24>d0 

for a sphere (A8) 

Fig. 4 Effect of wall temperature distributions on local heat fluxes: 
(a) a horizontal circular cylinder, (b) a sphere 

Table 1 Nu 
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Present 
results Experiment 

Darcy 's 
law 

10.4 
11.8 
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7.30 
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11.4 
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6.32 
7.95 
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125.0 (2.521) 
197.9 (2.205) 
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A P P E N D I X B 

When A 7^ ocx", the surface heat flux varies locally as 

q*=F{n)(x/Lr) 

and 

-(2-5n)/4 (Bl) 

for a vertical flat plate 

q* = V3F(«/3)cos1/47(x/Lr)-<
2-5">/4 (B2) 

for a vertical cone pointing downward. 

The surface heat flux on a horizontal circular cylinder varies 
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q*=F(\)[ 
sin 4> 

sin1/2</>rf0 
(B3) 

\\ sinl/2</>cty> / \ ( sin1/2<M/> / 
Jo Jo 

when the wall temperature varies as 

ATw/ATwr=([ sin1/2<j>d<j>/\ smxn4>d^j (B4) 

The surface heat flux on a sphere, on the other hand, varies as 
s , 

q'=F(\)[ 
sin3</> 

sin5/2</><# 
(B5) 

\[ sm5/2cf>d<t> / V P s m 5 ' 2 ^ / 
Jo Jo 

when the wall temperature varies as 

ATw/ATwr=(\ sin5/20rf</>/j%in5/2W) (B6) 

x, y = Cartesian coordinates, m 
a. = thermal diffusivity of porous 

medium, m2 /s 
(3 = coefficient of thermal expansion, 

K"1 

7 = angle parameter = 2m/(m+ 1) 
?/ = independent similarity variable 

•qT = dimensionless thermal boundary-
layer thickness 

6 = dimensionless temperature 
X = constant defined in equation (7) 
ii = dynamic viscosity of convective 

fluid, kg/m-s 
v = kinematic viscosity of convective 

fluid, m2 /s 
\j/ = stream function 

Subscripts 

fc = forced convection 
mx = mixed convection 
nc = natural convection 
w = condition at the wall 

oo = condition at infinity 
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defined by equation (14) 
= lateral mass flux parameter de

fined by equation (16) 
= acceleration due to gravity, m/s2 

= gravitational acceleration in x and 
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= local heat transfer coefficient, 
W/m2-K 

= permeability, m2 

= effective thermal conductivity, 
W/m-K 

= constant defined in equation (8) 
= constant defined in equation (7) 
= local Nusselt number = hx/k 
= pressure, Pa 
= local Peclet number = U^x/a 
= modified local Rayleigh 

number = Kg0 \Tw — T„ \x/vu 
= temperature, K 
= free-stream velocity in x direc

tion, m/s 
= Darcy velocity in the x direction, 

m/s 
= Darcy velocity in the y direction, 

m/s 
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Introduction 
For the past decade much work has been done on the study 

of natural convection in saturated porous media, while mixed 
convection, although of equal importance in many engineer
ing applications, receives rather less attention. Wooding 
(1963) made the first attempt to study mixed convection in a 
porous layer, which was later followed by Prats (1966), Sutton 
(1970), and Homsy and Sherwood (1976). Experimental 
results were very limited and reported only by Combarnous 
and Bia (1971) for flow through a horizontal porous layer, and 
by Schrock and Laird (1976) for a laboratory model to 
simulate the geothermal convection loop. By boundary-layer 
formulation and similarity method, Cheng (1977a, 1977b) has 
conducted a series of investigations to study mixed convection 
over vertical, inclined, and horizontal plates. Recently, 
numerical results on mixed convection in vertical and horizon
tal porous layers with nonuniform heating on the boundary 
were reported by Lai et al. (1988a) and Prasad et al. (1988), 
respectively, while experimental results were reported for the 
latter case (Lai and Kulacki, 1988b, 1988c). 

The purpose of this note is to extend the previous study by 
Cheng (1977c) to consider the influence of lateral mass flux on 
mixed convection over inclined surfaces in saturated porous 
media. As pointed out by Cheng (1977c), problems of this type 
are very important in applications of geothermal energy. The 
model, although simple and idealized, does provide some 
useful informations for the estimation of productionr ate. 
Similarity solutions are obtained for the special case where the 
wall temperature, the free-stream velocity, and the injection or 
withdrawal velocity are prescribed power functions of distance 
from the leading edge. The limiting cases of free and forced 
convection are also presented. 

Analysis 
Consider the problem of injection or withdrawal of fluid 

along the surface of an inclined wall embedded in a saturated 
porous medium (Fig. 1). The governing equations based on 
Darcy's law are given by 

du dv 
- + — = 0 (1) dx dy 

K ( dp \ (2) 
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For the past decade much work has been done on the study 

of natural convection in saturated porous media, while mixed 
convection, although of equal importance in many engineer
ing applications, receives rather less attention. Wooding 
(1963) made the first attempt to study mixed convection in a 
porous layer, which was later followed by Prats (1966), Sutton 
(1970), and Homsy and Sherwood (1976). Experimental 
results were very limited and reported only by Combarnous 
and Bia (1971) for flow through a horizontal porous layer, and 
by Schrock and Laird (1976) for a laboratory model to 
simulate the geothermal convection loop. By boundary-layer 
formulation and similarity method, Cheng (1977a, 1977b) has 
conducted a series of investigations to study mixed convection 
over vertical, inclined, and horizontal plates. Recently, 
numerical results on mixed convection in vertical and horizon
tal porous layers with nonuniform heating on the boundary 
were reported by Lai et al. (1988a) and Prasad et al. (1988), 
respectively, while experimental results were reported for the 
latter case (Lai and Kulacki, 1988b, 1988c). 

The purpose of this note is to extend the previous study by 
Cheng (1977c) to consider the influence of lateral mass flux on 
mixed convection over inclined surfaces in saturated porous 
media. As pointed out by Cheng (1977c), problems of this type 
are very important in applications of geothermal energy. The 
model, although simple and idealized, does provide some 
useful informations for the estimation of productionr ate. 
Similarity solutions are obtained for the special case where the 
wall temperature, the free-stream velocity, and the injection or 
withdrawal velocity are prescribed power functions of distance 
from the leading edge. The limiting cases of free and forced 
convection are also presented. 

Analysis 
Consider the problem of injection or withdrawal of fluid 

along the surface of an inclined wall embedded in a saturated 
porous medium (Fig. 1). The governing equations based on 
Darcy's law are given by 
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Fig. 1 Coordinate systems for an inclined surface embedded in a 
saturated porous medium 
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dx2 dy2 

(3) 

(4) 

where the " + " signs in equations (2) and (3) are for the coor
dinate systems shown in Figs. 1(a) and 1(b) while the " - " 
signs are for Figs. 1(c) and 1(d). 

It is clear that the formulations based on Darcy's law do not 
take into account viscous effects, flow inertia, or thermal 
disperison. However, our previous studies (Lai and Kulacki, 
1988d, 1989) have shown that these non-Darcy effects, 
especially the thermal dispersion, are important only when the 
flow inertia becomes prevalent. The solution of the Darcy for
mulation always provides a lower bound for the heat tranfser 
results. Therefore, a first step toward the complete under
standing of non-Darcy convection requires the knowledge of 
basic solutions, i.e., Darcy flow, which is the main concern of 
the present study. 

Having invoked the Boussinesq and boundary-layer approx
imations, the governing equations in terms of stream function 
\p are reduced to 

a V . Kgxp dT 

dy2 

di dT 

dy dx 

v dy 

df dT d2T 
- = ot-

dx dy dy2 

with boundary conditions 

y = 0, Tw = Tm±AxK, v = 
dt 

~dx -ax" 

y-ao, T=T„ 
6V 

= Uoc,=Bx" 

(6) 

(7) 

(8) 

where A > 0 and B > 0. It is clear that a is positive for injection 
of fluid and negative for withdrawal of fluid. For mixed con
vection, we designate the flow as an "aiding" flow when the 
buoyancy force has a component in the direction of the free-
stream velocity, and likewise, as an "opposing" flow when the 
buoyancy component is opposite to the free-stream velocity. 

It has been shown that similarity solutions exist for the case 
when there is no injection or withdrawal of fluid (Cheng, 
1977a). Similarly, it can be shown that equations (5)-(8) also 
permit similarity solutions if \ = m and n = (m- l ) /2. Under 
such a restricted condition, the governing equations are 
transformed into 

' - * ( - # > ' Pe 

X + l 
-fd' + ye 

(9) 

(10) 

with boundary conditions given by 

, = 0, 0 = 1 , / = / „ (11) 

1,-00, 0 = 0, / ' = 1 (12) 

where the similarity variables r\, / , and 0 are defined as 

' uxx\ m 2_ 
a / x "(¥): 

(13) 

/ = 
(aU^xf2 

T-T„ 

T -T 

and the lateral mass flux parameter f„ is given by 

2a 
h=-

(14) 

(15) 

(16) 
(aB)ln 

It is clear that f„ is positive for the withdrawal of fluid and 
negative for injection. With the aid of boundary condition 
(12), equation (9) can be integrated once to give 

' - < % ) 
' +1 (17) 

For the limiting case of forced convection, it is noted that 
the governing equations can be readily derived from equations 
(9) and (10) by simply setting Ra/Pa = 0. Therefore, 

X + l 
-fB'+M (19) 

Results and Discussion 
Equations (10) and (17) with the boundary conditions (11) 

and (12) are solved by numerical integration using the fourth-
order Runge-Kutta method and the shooting technique with a 
systematic guessing of d'(0). Integration has been carried out 
for three cases: (a) X = m = 0 and n = - 1/2, which corresponds 
to a uniform free stream flowing along an isothermal vertical 
wall with the injection (or withdrawal) rate varying with x~ m; 
(b) \ = m=l/3 and n= - 1 / 3 , which corresponds to a free 
stream flowing over an inclined wall (7 = 45 deg) having con
stant heat flux with the injection (or withdrawal) rate varying 
with x"xn; and (c) X = m = 1 and n = 0, which corresponds to a 
stagnation flow normal to a vertical wall with linear 
temperature variation and a constant injection/withdrawal 
rate (Fig. 1(e)). Selective values of -0'(O) and i, r are listed in 
Table 1. As observed, the injection of fluid tends to thicken 
the thermal boundary layer while the withdrawal of fluid 
decreases it, which has a significant influence over the heat 
transfer results. 

The heat transfer coefficient in terms of the Nusselt number 
can be expressed as 

Nu 
- = [ - $' (0) ] nc for free convection (20) Ra1 

Nu 

Pe 
for mixed convection (21) 

Equation (21) is plotted in Figs. 2-4 as a function of Ra/Pe. 
The limiting cases of free and forced convection are also 
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Table 1 Selected values of 0(0) and ijT for mixed convection over an inclined surface in a saturated 
porous medium 

A= 0 

Ra/Pe 

0 (fc) 
0.S 
I .0 
3.0 
I0.0 
20.0 , 

0.2 
0.4 
0.6 
0.8 
I .0 

A = I/3 

Ra/Pe 

0 (fc ) 
0.5 
I .0 
3.0 

IB.8 
20.0 

0.2 
0.4 
0.6 
0.8 
I .0 

A - I 

Ra/Pe 

0 ( fc ) 
0.5 
I .0 
3.0 

I0.0 
20.0 

0.2 
0.4 
0.6 
0.8 
I .0 

fw 

-e'(o) 
0.289I 
0.3720 
0.4446 
0.679I 
I.2334 
I.7807 

0.2517 
0.2109 
0.I655 
0.II09 
0.0380 

fw 

-8'(0) 

0.5160 
0.6459 
0.7587 
I.1211 
1.3724 
2.8102 

0.4572 
0.3926 
C.3I96 
0.2332 
0.1151 

fw 

-e'(o) 
0.7766 
0.9696 
1,1373 
1.6747 
2.9332 
4.1706 

0.6890 
0.5925 
0.4835 
0.3538 
0.1759 

- -1 . 

IT 

4.4H9 
3.9379 
3.6011 
2.8267 
1 .8643 
1.3873 

4.6730 
4.9815 
5.3316 
6.1689 
7.6964 

- -1 

IT 

3.6449 
3.2418 
3.0116 
2.4251 
1.6254 
1.2188 

3.8374 
4.0719 
4.4190 
4.8584 
5.7589 

- -1 

IT 

2.9208 
2.6317 
2.4458 
1.9699 
1.3442 
1.0082 

3.0488 
3.2432 
3.4459 
3.7667 
4.4015 

fw " 

-e'(o) 
0.4152 
0.5000 
0.5739 

. 0.8119 
1.3708 
1.9206 

0.3771 
0.3353 
0.2886 
0.2346 
0.1B77 

fw " 

-e'(o) 
0.6700 
0.8008 
0.9146 
1.2802 
2.1366 
2.9775 

0.61 10 
0.5464 
0.4742 
0.3903 
0.2851 

fw * 

-e'(o) 
0.9909 
1.1848 
1.3537 
1.8954 
3.1617 
4.4036 

0.9032 
0.8072 
0.6997 
0.5749 
0.4182 

Aiding fl 

-0.5 

IT 

4.0170 
3.6260 
3.3495 
2.6704 
1.7967 
1.3477 

Opposing 

4.2171 
4.4641 
4.7714 
5.1507 
5.602B 

Aiding fl 

-0.S 

1, 

3.2930 
2.8786 
2.7803 
2.2652 
1.5525 
1.1736 

Opposing 

3.4377 
3.6184 
3.8337 
4.1363 
4.5688 

Aiding fl 

-0.5 

IT 

2.5759 
2.3631 
2.2137 
1.8165 
1.2609 
0.9621 

Opposing 

2.6818 
2.8048 
2.9655 
3.1627 
3.4776 

0W3 

fw 

-e'(o) 
0,5642 
0.6474 
0.7206 
0.9575 
1.5162 
2.0663 

flows 

0.5270 
0.4866 
0.4421 
0.3919 
0.332E 

ows 

-e'(o) 
0.8541 
0.9816 
1.0938 
1.4568 
2.3119 
3.1569 

flows 

0.7970 
0.7352 
0.6672 
0.5904 
0.5002 

ows 

fw 

-e'(o) 
1.2533 
1 .4419 
1.6078 
2.1446 
3.4081 
4.6499 

flows 

1.1690 
1.0776 
0.9772 
0.8640 
8.7314 

- 0 

IT 

3.6419 
3.3326 
3.0982 
2.5170 
1.7280 
1.3084 

3.7951 
3.9833 
4.2095 
4.4842 
4.8514 

- 0 

IT 

2,9512 
2.7309 
2.5577 
2.1126 
1.4793 
1.0682 

3.0657 
3.1933 
3.3421 
3.5366 
3.7792 

- 0 

IT 

2.2717 
2.1130 
1.9912 
1.6634 
1.1878 
0.9175 

2.3453 
2.4404 
2.5406 
2.6754 
2.8451 

fw " 

-e'(o) 
0.7324 
0.8120 
0.8828 
1.1150 
"1.6694 
2.2177 

0.6972 
0.6595 
0.6187 
0.5737 
0.S229 

fw -

-e'(o) 
1.0649 
1.1867 
1.2951 
1.6503 
2.4981 
3.3362 

1.0112 
0.9536 
0.8913 
0.8228 
0.7458 

fw " 

-e'(o) 
1 .5599 
1 .7387 
1.8981 
2.4217 
3.6726 
4.9096 

1.481 1 
1.3968 
1.3058 
1.2062 
1.0947 

0.5 

n, 
3.2972 
3.0538 
2.8656 
2.3701 
1.6568 
1.2687 

3.4184 
3.S563 
3.7135 
3.9071 
4.1501 

0.S 

IT 

2.6504 
2.4718 
2.3322 
1.9660 
1.4073 
1.0894 

2.7316 
2.8305 
2.9409 
3.0724 
3.2303 

0.5 

2.0031 
1.8840 
1.7901 
1.5262 
1.1161 
0.8735 

2.0595 
2.1261 
2.1995 
2.2804 
2.3825 

fw 

-6'(0) 

0.9164 
0.9916 
1.0590 
1.2836 
1.8298 
2.3745 

0.8837 
0.8491 
0.8122 
0.7724 
0.7289 

fw 

-e'(o) 
1 .2984 
1.4128 
1.5159 
1.8597 
2.6349 
3.5275 

1.2486 
1.1959 
1.1397 
1.0792 
1.0131 

fw 

-e'(o) 
1.9043 
2.0708 
2.2215 
2.7255 
3.9548 
5.1825 

1.8320 
1.7557 
1.6745 
1.5875 
1.4332 

- 1 

n. 
2.9865 
2.7799 
2.6312 
2.2235 
1.5898 
1.2304 

3.0811 
3.1848 
3.3004 
3.4342 
3.5914 

- 1 

IT 

2.3831 
2.2444 
2.1361 
1.8271 
1.3373 
1.0480 

2.4473 
2.5175 
2.5962 
2.6852 
2.7892 

- 1 

Ir 

1.7722 
1 .6827 
1.6089 
1.3990 
1.0492 
0.8317 

1 .8139 
1.8582 
1.9099 
1.9664 
2.0300 

shown as asymptotes in the same figures. The influence of 
lateral mass flux on the heat transfer results of mixed convec
tion can be clearly observed from these figures. As is the case 
for free convection (Cheng, 1977c), the heat transfer rate in
creases with the mass flux parameter fw. However, it should 
be noted that, for opposing flows, an increase in the buoyancy 
parameter Ra/Pe beyond unity would cause flow to reverse 
and boundary layer to separate (equation (17)). 

For the case of impermeable surfaces, i.e., [f„]mx = 0, the 
free convection asymptotes are linear and are given by 

Nu 

"Pe175 = 0.4445 (-
Re 

\ Pe 

= 0.6779 (-
Re 

V Pe 

for A = 0 

for X= 1/3 

= 1.0000 (-£) for A=l (22) 

F° r [f„ ] mx ^ 0, the corresponding free convection asymptotes 
can be obtained by rewriting equation (20) as 

Nu 

- ( • # • ) 

-fl'(0)]# 

and applying the relation between [f„ ] mx and [f„ ], 

Uw J mx 
L/w 

(23) 

(24) 

( • # • ) 

(1 + X) 
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Fig. 2 Effect of lateral mass flux on heat transfer results for mixed con
vection along a vertical wall in a saturated porous medium, X = 0: (a) 
aiding flows, (b) opposing flows 
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Fig. 3 Effects of lateral mass flux on heat transfer results for mixed 
convection over an inclined surface in a saturated porous medium, 
A = 1/3: (a) aiding flows, (b) opposing flows 
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Fig. 4 Effects of lateral mass flux on heat transfer results for mixed 
convection along a vertical wall in saturated porous medium, A = 1: (a) 
aiding flows, (b) opposing flows 

With a given [fw ] mx and Ra/Pe, [fw ] „c can be determined 
through equation (24). Once \fw]„c is specified, [-0'(O)]„C 
can be solved for by the exact manner described by Cheng 
(1977b). Therefore, the free convection asymptote is obtained, 
from equation (23), for each corresponding \fw]mx. 
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With a given [fw ] mx and Ra/Pe, [fw ] „c can be determined 
through equation (24). Once \fw]„c is specified, [-0'(O)]„C 
can be solved for by the exact manner described by Cheng 
(1977b). Therefore, the free convection asymptote is obtained, 
from equation (23), for each corresponding \fw]mx. 
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x, y = streamwise and transverse coor
dinates, respectively 

a = equivalent thermal diffusivity of 
the saturated porous medium 

/3 = thermal expansion coefficient of 
the fluid 

e = porosity 
X = exponent defined in equation (4) 

/i, p = viscosity and density, respectively 
£, Tj = transformed coordinates 

4> = angle of the y axis with respect 
to the vertical • 

4> = stream function 

Superscripts 
' = denotes derivatives with respect 

to r) 

Subscripts 
w, oo = conditions at the wall and in the 

free stream, respectively 
x, y = derivatives with respect to x and 

y, respectively 

Introduction 
In recent years, there has been great interest in the study of 

fluid flow over a horizontal cylinder and a sphere, because 
cylindrical and spherical shapes have been proposed for 
nuclear waste disposal canisters in subseabeds. Also the 
understanding of the heat transfer process about a horizontal 
cylinder embedded in a porous medium is relevant in the 
design of heat exchangers for energy extraction underground, 
as well as for temperature control of a catalytic bed. The 
natural convection about two-dimensional and axisymmetric 
bodies embedded in a saturated porous medium has been 
studied by Merkin (1979), Nilson (1981), and Nakayama and 
Koyama (1987a). The analogous mixed convection problem 
has been investigated by Cheng (1982), Huang et al. (1986), 
and Nakayama and Koyama (1987b). In the foregoing cases, 
similarity solutions were obtained. Furthermore, Minkowycz 
et al. (1985) have considered the mixed convection flow over a 
nonisothermal cylinder or sphere in a saturated porous 
medium. They solved the governing partial differential equa
tions using the local nonsimilarity method. Also, Nakayama 
and Koyama (1987b) have proposed a momentum integral 
method for the solution of the mixed convection flow over a 
curved surface of arbitrary shape. Kumari et al. (1987) have 
studied the mixed convection flow over an isothermal sphere 
in a saturated porous medium and the partial differential 
equations governing the flow were solved by Keller box 
method. In all these studies, the analysis is based on the Darcy 
model. Plumb and Huenfeld (1981) have found that the Darcy 
model is valid for low-speed flow; for high-speed flow the 
non-Darcy model must be used. The non-Darcy free convec
tion flow over two-dimensional and axisymmetric bodies of 
arbitrary shape has been considered by Ingham (1986). 

The aim of the present investigation is to consider the mixed 
convection flow over a nonisothermal horizontal cylinder and 
sphere embedded in a saturated porous medium, using the 
non-Darcy model. Here we have considered the case of an 
assisting flow only, because that of an opposing flow is more 
complicated due to the possible flow separation from the body 
surface. The partial differential equations governing the flow, 
which are of boundary-layer type, have been solved 
numerically using the Keller box method. Particular cases of 
the present results have been compared with those available in 
the literature. 

Fig. 1 Heat-flux ratio <Jw/<J,vo: , X = 0; , X = 1; 

, x=s 

Governing Equations 
We consider a nonisothermal horizontal cylinder and sphere 

of radius r0 and wall temperature Tw(x) immersed in a 
saturated porous medium having temperature Tx and velocity 
ue(x). The physical model is given in the inset of Fig. 1. We 
assume that the properties of the fluid and the porous medium 
are everywhere isotropic and homogeneous, and the convec-
tive fluid and the porous medium are everywhere in local ther
modynamic equilibrium. The Rayleigh number is considered 
to be large and the flow is assumed to be described by the 
Ergun non-Darcy flow model, which is governed by 
u + (p/ix)K*u2= —(K/n)px. The viscous dissipation has been 
neglected. We also assume that the convection takes place 
within a thin layer adjacent to the vertical surface. Hence the 
boundary layer approximation can be used to describe the 
flow motion in this region. Under the foregoing assumptions, 
the boundary layer equations with the non-Darcy flow model 
under the Boussinesq approximation can be expressed as 

-r'"^y + (K*/u)((r-"rPy)
2)y = ^iKp^g sin 0)7; , (1) 

aT„ = r-»W,Tx-1,xT,), (2) 

where 

u = r-"iy, v=-r-"^x (3) 

The boundary conditions are 

y = 0 : ^ = 0, r=T00+cte,,(*))2X 1 
y (4) 

_y-oo: / - » i ^ =A„UX sin <j>, T=T^ J 

Applying the following transformations: 

* = (c,M„)te„(0))2X = (A„nUJ-i(Kpe.gfflTw - T.) J 

c, = (Kp^gcyfaUn), h„{<j>) = (sin 0)"+ 7g„(<« 

r (5*) 
Tw-T„=c(gn(4>))lx, A0 = 2, ,4, =3 /2 
g0 = (l-cos<W1 / 2 , g , = ( l - c o s ^ ) [ ( 2 + cos0) /3] 1 / 2 _ 
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Table 1 Comparison of heat transfer parameter - G' (£, 0) f or 5 = 0 

£ 
0.0 
0.5 
1.0 
2.0 
5.0 

10.0 
15.0 
20.0 
30.0 
50.0 

X = 0.1 

0.6389 
0.7408 
0.8295 
0.9824 
1.3382 
1.7785 
2.1294 
2.4300 
2.9404 
3.7588 

Present analysis 

X = l 

1.1284 
1.3339 
1.5107 
1.8123 
2.5066 
3.3582 
4.0340 
4.6119 
5.5915 
7.1596 

X = 2 

1.5045 
1.7834 
2.0229 
2.4310 
3.3695 
4.5195 
5.4315 
6.2114 
7.5330 
9.6480 

X=10 

3.2020 
3.8041 
4.3204 
5.1997 
7.2187 
9.6899 

11.6489 
13.3232 
16.1595 
20.6954 

Table 2 Heat transfer parameter - G 
£, and X 

B 
£ = 0.5 £ = 5 

X = 0 

£=10 £ = 20 

Minkowycz et al. (1985) 

X = 0.1 

0.6390 
0.7408 
0.8296 
0.9827 
1.339 
1.779 
2.130 
2.431 
2.941 
3.759 

X=l 

1.129 
1.334 
1.512 
1.815 
2.513 
3.368 
4.045 
4.624 
5.605 
7.175 

X = 2 

1.505 
1.784 
2.024 
2.436 
3.381 
4.537 
5.452 
6.234 
7.560 
9.679 

X=10 

3.202 
3.805 
4.324 
5.211 
7.248 
9.738 

. 11.71 
13.39 ' 
16.24 
20.81 

(£, 0) for different values of B, 

£ = 0.5 

X = 

£ = 5 

= 1 

£=10 £ = 20 

0.00 
0.01 
0.10 
1.00 

10.00 
20.00 
50.00 

100.00 

0.6475 
0.6457 
0.6328 
0.5923 
0.5684 
0.5664 
0.5651 
0.5647 

1.1454 
1.1229 
1.0033 
0.7580 
0.6025 
0.5848 
0.5729 
0.5686 

1.5161 
1.4633 
1.2388 
0.8705 
0.6342 
0.6033 
0.5811 
0.5729 

2.0662 
1.9415 
1.5422 
1.0203 
0.6799 
0.6405 
0.5968 
0.5812 

1.3339 
1.3295 
1.2975 
1.1979 
1.1390 
1.1338 
1.1306 
1.1295 

2.5066 
2.4493 
2.1568 
1.5871 
1.2226 
1.1795 
1.1500 
1.1394 

3.3582 
3.2232 
2.6797 
1.8398 
1.2987 
1.2245 
1.1704 
1.1501 

4.6119 
4.2931 
3.3409 
2.1693 
1.4041 
1.3197 
1.2081 
1.1706 

Fig. 2 Velocity and temperature profiles (f, G) for £ = 5: 
, G 

G(r,,$) = (T-T„)/(Tw-Ta) 

B = (K*/L)Re, Re = ueL/v, K=D2
pe/[150(l - e ) 2 

K* = U5Dp/[150(1-e)], 

to equations (1) and (2), they reduce to 

/ " + 2 5 / ' / " - £ G ' = 0 

G" +fG'/2-\f'G = \!j(f'Gi-G'f() 

The boundary conditions are 

T) = 0 : X £ / £ + / / 2 = 0 , G = l , £ > 0 

1,-00:/' = !, G = 0, £>0 

(5c) 

(6) 

(7) 

(8) 

It may be remarked that equations (6) and (7) for B = 0 
(Darcian flow) reduce to those of Minkowycz et al. (1985) who 
considered the Darcy flow. Our results are expected to be valid 
only for small and moderate values of the non-Darcy 
parameter B. For large values of B (say B> 100), the transfor
mations may become irrelevant due to the strong dependence 
of the growth rate of the boundary layer thickness with B. 

Therefore, we have confined our study to 5 < 100. Here £ is a 
measure of buoyancy effects in the forced convective flow and 
£ = 0 corresponds to the case of purely forced convective flow. 
Also, for a given Reynolds number (Re), the non-Darcy 
parameter B is a constant. 

The local surface heat flux can be written as 

qw = -k(Ty)w = k(Tw - Tm)(Anu„/ar0)
l/2hn(<l>)[ - G'(£, 0)] 

(9a) 

and the ratio of local surface heat flux for the mixed convec
tion flow (£ > 0) and the forced convection flow (£ = 0) is given 
by 

? w / ? w o = [ - G ' t t , 0 ) ] / [ - G ' ( 0 , 0 ) ] (,9b) 

Results and Discussion 
The governing equations (6) and (7) under conditions (8) 

have been solved numerically using the Keller box method, 
which is described in great detail by Keller and Cebeci (1971). 
We have compared our heat transfer results ( - G ' ( £ , 0)) for 
Darcian flow (6 = 0) with those of Minkowycz et al. (1985), 
who used the local nonsimilarity method. There is little dif
ference between the two sets of results, which implies that the 
local nonsimilarity method can also be used for the present 
problem. The comparison is given in Table 1. 

The heat transfer parameter - G'(£, 0) for various values of 
the non-Darcy parameter B, buoyancy parameter £, and wall 
temperature parameter X is given in Table 2. The heat transfer 
parameter ( - G ' ( £ , 0)) decreases as B increases, but it in
creases as £ or X increases, because the thermal boundary layer 
thickness becomes thin due to the increase in £ or X. However, 
the opposite trend is observed when B increases. The heat 
transfer is rather insensitive to B when 5 > 5 0 . 

Figure 1 depicts the heat flux ratio q^/q^ versus £ for dif
ferent values of B and X. It is observed that qw/q^ increases 
as £ or X increases, but it decreases as B increases. The reason 
for such behavior has been explained in the previous 
paragraph. For large 5(5=100), qw/qM changes very little 
with the buoyancy parameter £. 

The velocity and temperature profiles ( / ' , G) for different 
values of 5 , £, and X are shown in Fig. 2. It is found that these 
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parameters strongly influence the velocity profiles near the 
wall. The effect of wall temperature X on the temperature pro
file G is more pronounced than that of £ or B. The thermal 
boundary layer thickness grows with B, but it reduces when £ 
or X increases. 

Conclusions 
It is found that heat transfer is reduced by the non-Darcy 

parameter, but enhanced by buoyancy forces and wall 
heating. The heat transfer is rather insensitive to the non-
Darcy parameter when it becomes large. 
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Solidification on a Chilled Continuous Surface Moving 
in a Parallel Free Stream 

F. B. Cheung1 

Introduction 
The growth of a solidified layer on the surface of a chilled 

continuous object traveling steadily through an ambient liquid 
has recently received considerable attention owing to its im
portance in materials manufacturing. This solidification pro
cess, known as freeze coating, finds applications in the chemical 
and electrical industries involving the casting of insulating coat
ings on metal wires and electrical cables. Seeniraj and Bose 
(1981) investigated the freeze-coating problem by assuming the 
moving object ot be isothermal and the liquid to be saturated 
at its freezing point. In reality, however, the temperature of 
the moving object cannot be maintained constant since freezing 
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of the liquid would proceed only at the expense of the sensible 
heat of the wall. Moreover, the liquid is usually superheated 
above its freezing point and as a result, there is convective 
heating of the moving object. Thus the freeze-coating process 
should be treated as a conjugate heat transfer problem. This 
was done by Cheung (1985, 1987) and Moutsoglou (1988) for 
the case of a continuous moving plate and by Cheung and Cha 
(1987, 1988) for the case of a continuous moving cylinder. The 
local freeze-coat thickness and the convective heat flux from 
the warm liquid to the freeze coat were determined simulta
neously with the temperature variation within the moving ob
ject. All of the above studies, however, were based on the 
assumption that the ambient liquid is quiescent and the liquid 
motion is induced entirely by the moving object. In the present 
work, the effect of free-stream velocity on the freezing-coating 
process is investigated theoretically by a combined analytical/ 
numerical technique. 

Mathematical Formulation 
The physical system under consideration is similar to the 

one described by Cheung (1987) except that the liquid velocity 
far away from the moving object is not zero but has a positive 
value. By invoking a similarity transformation, the equations 
governing the behavior of the liquid, freeze-coat, and wall 
regions become 

(/) Liquid Region -q > 1 

f"'+^ff"=0 (1) 

j 

6" + —Prf0'=O (2) 

/ ' ( 1 ) = 0 ( 1 ) = 1 , / ( 1 ) = 1 , / ' ( o o ) = « „ / « „ 0(<x,) = O (3) 

(ii) Freeze-Coat Region 0 < t\ < 1 

r+ f(f)Pr^'=° W 
0(1)= 1, 0(0) = ^(0), 4>'{0) = {kw/kM'(fi) (5) 

(Hi) Wall Region -n < 0 

* " + y ( ^ t ) p r ^ ' = 0 (6) 

(̂O) = 0(O), r(Q) = (K/kw)4>'(Q), M-*) = 0 (7) 
where a is the solidification constant given by 

<r= [ 2 ( j ) P r ~ 1 S t e f* ' ( 1 ) + ^ ' ( 1 ) j ] 1 (8) 
In the above equations, r; is the independent similarity variable, 
/the reduced steam function, (6, 0, f) the dimensionless liquid, 
freeze-coat, and wall temperatures, us the plate velocity, um 
the free-stream velocity, k the thermal conductivity, a the 
thermal diffusivity, Pr the Prandtl number, Ste the Stefan 
number, and /3 the liquid superheat parameter. The primes 
denote total derivatives with respect to 77 whereas the subscripts 
(/, s, w) refer to the liquid, freeze-coat, and wall regions, 
respectively. In terms of the unknown quantity a, equations 
(4)-(7) can be integrated analytically to give 

* ( 1 ) = y + erf* * W ' 7 \KPwCpJ 
(9) 

where p is the density and Cp the specific heat. Equations (1)-
(3) need to be solved simultaneously with equations (8) and 
(9) to determine the values of a and 0'(1). Once these values 
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parameters strongly influence the velocity profiles near the 
wall. The effect of wall temperature X on the temperature pro
file G is more pronounced than that of £ or B. The thermal 
boundary layer thickness grows with B, but it reduces when £ 
or X increases. 

Conclusions 
It is found that heat transfer is reduced by the non-Darcy 

parameter, but enhanced by buoyancy forces and wall 
heating. The heat transfer is rather insensitive to the non-
Darcy parameter when it becomes large. 
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Solidification on a Chilled Continuous Surface Moving 
in a Parallel Free Stream 

F. B. Cheung1 

Introduction 
The growth of a solidified layer on the surface of a chilled 

continuous object traveling steadily through an ambient liquid 
has recently received considerable attention owing to its im
portance in materials manufacturing. This solidification pro
cess, known as freeze coating, finds applications in the chemical 
and electrical industries involving the casting of insulating coat
ings on metal wires and electrical cables. Seeniraj and Bose 
(1981) investigated the freeze-coating problem by assuming the 
moving object ot be isothermal and the liquid to be saturated 
at its freezing point. In reality, however, the temperature of 
the moving object cannot be maintained constant since freezing 
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of the liquid would proceed only at the expense of the sensible 
heat of the wall. Moreover, the liquid is usually superheated 
above its freezing point and as a result, there is convective 
heating of the moving object. Thus the freeze-coating process 
should be treated as a conjugate heat transfer problem. This 
was done by Cheung (1985, 1987) and Moutsoglou (1988) for 
the case of a continuous moving plate and by Cheung and Cha 
(1987, 1988) for the case of a continuous moving cylinder. The 
local freeze-coat thickness and the convective heat flux from 
the warm liquid to the freeze coat were determined simulta
neously with the temperature variation within the moving ob
ject. All of the above studies, however, were based on the 
assumption that the ambient liquid is quiescent and the liquid 
motion is induced entirely by the moving object. In the present 
work, the effect of free-stream velocity on the freezing-coating 
process is investigated theoretically by a combined analytical/ 
numerical technique. 

Mathematical Formulation 
The physical system under consideration is similar to the 

one described by Cheung (1987) except that the liquid velocity 
far away from the moving object is not zero but has a positive 
value. By invoking a similarity transformation, the equations 
governing the behavior of the liquid, freeze-coat, and wall 
regions become 

(/) Liquid Region -q > 1 

f"'+^ff"=0 (1) 

j 

6" + —Prf0'=O (2) 

/ ' ( 1 ) = 0 ( 1 ) = 1 , / ( 1 ) = 1 , / ' ( o o ) = « „ / « „ 0(<x,) = O (3) 

(ii) Freeze-Coat Region 0 < t\ < 1 

r+ f(f)Pr^'=° W 
0(1)= 1, 0(0) = ^(0), 4>'{0) = {kw/kM'(fi) (5) 

(Hi) Wall Region -n < 0 

* " + y ( ^ t ) p r ^ ' = 0 (6) 

(̂O) = 0(O), r(Q) = (K/kw)4>'(Q), M-*) = 0 (7) 
where a is the solidification constant given by 

<r= [ 2 ( j ) P r ~ 1 S t e f* ' ( 1 ) + ^ ' ( 1 ) j ] 1 (8) 
In the above equations, r; is the independent similarity variable, 
/the reduced steam function, (6, 0, f) the dimensionless liquid, 
freeze-coat, and wall temperatures, us the plate velocity, um 
the free-stream velocity, k the thermal conductivity, a the 
thermal diffusivity, Pr the Prandtl number, Ste the Stefan 
number, and /3 the liquid superheat parameter. The primes 
denote total derivatives with respect to 77 whereas the subscripts 
(/, s, w) refer to the liquid, freeze-coat, and wall regions, 
respectively. In terms of the unknown quantity a, equations 
(4)-(7) can be integrated analytically to give 

* ( 1 ) = y + erf* * W ' 7 \KPwCpJ 
(9) 

where p is the density and Cp the specific heat. Equations (1)-
(3) need to be solved simultaneously with equations (8) and 
(9) to determine the values of a and 0'(1). Once these values 
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are known, the local freeze-coat thickness and Nusselt number 
can be obtained respectively as 

"(f) 
1/2 B'(l) 

andNuy = — Rel/2 (10) 

where Rex = usx/vt is the local Reynolds number of the flow. 

Analytical/Numerical Solutions 
For the special case in which the free-stream velocity is the 

same as the velocity of the moving plate, i.e., u^ = us, equa
tions (l)-(3) can be solved analytically to give 

/ = r, and 6 = [1 - erf(Jfij)]/(l - erfJT) (11) 

Substituting the above solution into equations (8) and (10), 
implicit expressions can be derived for the solidification con
stant and the local Nusselt number as 

- -w-y Steexp( -X 2 ) 
1 

Nu,= 
exp(-X2 

V^(l-

7 + erOf 1-erOf 

- s R e l ' W ' 

(12) 

(13) 
-erOf) 

In the absence of freezing, the local Nusselt number Nux at 
the moving surface can be obtained by setting X = 0 in equa
tion (13). This gives 

r /™ \ i/2 
Nu, Rel /2Pr , /2 for <r = 0 (14) 

For the general case of w„ ^ u„ no analytical solution exists 
since the velocity and temperature fields are strongly coupled 
to the solidification process. Equations (1), (2), (3), and (8) 
are solved numerically using a combination of the fourth-order 
Runge-Kutta method and the Secant shooting method. For a 
given set of u„/us, Pr, Ste, (3, y, and a / a , , equations (l)-(3) 
are integrated numerically by assuming a trial value for o. The 
correct value of a is determined iteratively using the Secant 
formula until the condition given by equation (8) is satisfied. 
The accuracy of the above numerical procedure is examined 
by comparing the numerical solution obtained for the case of 
u^/iis = 1 with the special solution determined from equation 
(12). Over the range of parameters considered in this study, 
the error involved in the numerical solution is less than 0.01 
percent. 

Results and Discussion 
In actual practice, the free-stream velocity is smaller than 

the plate velocity. Thus the range of 0 < u„/us < 1 is chosen 
in this study. Figure 1 shows the effect of flow/freezing in
teraction on the local Nusselt number, where Nux/Nux is 
plotted against X for different values of Pr > 0 and 0 s w„/ 
us < 1. Presenting the results this way weakens the dependence 
of the Nusselt number on the free-stream velocity and the 
Prandtl number. Consequently, all the computed values of 
Nuj/Nu* are confined in a thin shaded region as shown in 
the figure. In the absence of freezing, we have a = 0 and Nux 

= Nux . For all values of Pr and u„/us, the heat flux ratio 
approaches unity asymptotically as a —• 0. It follows that the 
deviation of Nux/Nux from unity can be used to measure the 
effect of flow/freezing interaction. For a slow freeze-coating 
process, corresponding to the case of X < 0.1, the flow/ 
freezing interaction is small, and Nti* can be assumed to be 
the same as Nux . On the other hand, for a fast freeze-coating 
process, corresponding to the case of X > 0.1, the flow-
freezing interaction can be quite strong, and Nux can be con
siderably higher than Nux . In this case, the solution of forced 
convection over a moving plate without freezing cannot be 
used to calculate the convective heat flux at the solid-liquid 

SMALL 
FLOW-FREEZING-

INTERACTION 

I J / 2 , ,1/2 
jP, (<VC(/) <r 

Fig. 1 Effect of flow/freezing interaction on the local Nusselt number 
for different values of ujus and Pr 
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Fig. 2 Variations of the coefficients A and B with the liquid Prandtl 
number and the velocity ratio 

interface, since it would greatly underestimate the value of Nux 

and thus substantially overpredict the local freeze-coat thick
ness. From Fig. 1, it is evident that Nux/Nux is a weak function 
of Pr and Uv,/us. It depends mainly on the freezing parameter 
X. For a given value of X, the largest difference in the value 
of Nux occurs between the case of (Pr = 1, «„/« s =0) and 
the case of u„/us = 1. In the latter case, the heat flux ratio 
is a unique function of X, independent of Pr. Note that the 
present results for the case of «„ = 0 are identical to those 
reported by Cheung (1987). 

The relatively weak dependence of Nux/Nux upon u^/us 

and Pr suggests that the heat flux ratio may be correlated with 
the freezing parameter X in a simple form. To do this, the 
value of Nux for the case without freezing is first correlated 
with Rex by 

(15) Nux =y4(a/a,)1 / 2Rey2Pr1 / 2 

where A is a coefficient whose value depends on u„/us and 
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Pr, as shown in Fig. 2. For the case of u^/us = 1, A has a 

constant value of 1A/ x or 0.5642. For the case of u„/us = 
0, on the other hand, A is a weak function of the Prandtl 
number having the values of 0.4438,0.5314,0.5545, and 0.5642 
for Pr = 1, 10, 100, and 1000, respectively. These values are 
the same as those obtained by Erickson et al. (1966) and Tsou 
et al. (1967). For a given Prandtl number; a larger value of A 
is obtained as ua/us is increased. However, the value of A 
always approaches asymptotically to 0.5642 as Pr — oo. Thus 
the coefficient A becomes less and less sensitive to the variation 
of the free-stream velocity as the Prandtl number gets larger 
and larger. In fact, the special solution for the case of u„/us 

= 1 is the same as the infinite-Prandtl-number solution. Phys
ically, the above observation can be explained as follows. Rel
ative to the velocity boundary layer, the thermal boundary 
layer becomes thinner and thinner as the Prandtl number gets 
larger and larger. Therefore, with respect to the thermal bound
ary layer, the liquid velocity approaches the value of us when 
Pr — oo. Since the local heat transfer is dictated by the behavior 
of the thermal boundary layer, the value of Nux for the case 
of Pr — oo is the same as that for ujus = 1. 

We may now develop a correlation for the heat flux ratio 
NuyNux . A useful hint can be obtained from equations (12) 
and (13) for the case of ua/us = 1. Accordingly, we may write 

Nux 
Nu„, 

= B 
exp(-X2) 

1-erOf 
(16) 

where B is a coefficient whose value depends on u„/us, Pr, 
and a, as shown in Fig. 2. For the special case of u„/us = 1, 
B is equal to unity for all values of Pr and a. For the case of 
u„,/us ^ 1, B is always larger than unity, having the maximum 
value at um/us = 0. However, when Pr > 1 and a < 0.4, B 
deviates only slightly from unity. Under these conditions, we 
may assume 5 = 1 . From equations (15) and (16), the local 
Nusselt number at the solid-liquid interface is 

NU;c=y4 
exp(-
1-erOf ©' Rei /2Pr' (17) 

where the coefficient A = A(u^/us, Pr) can be determined 
from Fig. 2. The above correlation can be conveniently used 
as an input quantity and the freeze-coating process can be 
solved as a heat conduction problem with the solidification 
constant a being the only unknown quantity. 

Preventing Water Hammer in Large Horizontal Pipes 
Passing Steam and Water 

T. J. Swierzawski1 and P. Griffith2 

Introduction 

In terms of inlet-water flow rate, the region of condensa
tion-induced water hammer in horizontal pipes experiencing 
the countercurrent flow of steam and subcooled water is 
bound by the "absolute stability limit" at the lower flow 
boundary, and by the pipe-full limit at the upper flow bound
ary. Therefore, one means to prevent condensation-induced 
water hammer is to ensure that the pipe runs full at all times. 
Wallis et al. (1977) studied this problem and expressed in 
terms of a dimensionless Froude number a criterion for the 
minimum water flow rate necessary to run pipe full 

„ 4m 
Fr = ,„_ , ,„ =0.5 (1) irpg' 2DS/2 

where m = inlet liquid mass flow rate, p = liquid density, 
g = gravitational acceleration, and £> = pipe internal diameter. 
The "absolute stability limit" at low flow rates was specified 
by Bjorge and Griffith (1984) and is further analyzed below. 

Bjorge and Griffith presented a one-dimensional, stratified 
flow model that predicts initiation of a water hammer in 
horizontal and nearly horizontal pipes containing steam and 
subcooled water. The flow geometry used in this model is 
shown in Fig. 1. Although the model is appropriate for use in 
the flow geometry represented by Fig. 1, in practice it is possi
ble to simplify an actual system to this form and obtain signifi
cant, albeit less accurate, results. 

Equations presented by Bjorge and Griffith to describe a 
countercurrent flow of water and steam in a pipe are solved by 
using a finite difference method incorporated into the com
puter program CHOP (Countercurrent Horizontal Pipe) 
developed by Bjorge (1982). The condensation-induced water 
hammer in a pipe is not expected to occur when the filling 
water flow rate is below the "absolute stability limit," which 
may be calculated by specifying a very large condensation heat 
transfer coefficient in the program CHOP. Such a procedure, 
however, requires extensive trial and error computations in the 
course of converging on the Taitel-Dukler (1976) stability 
parameter of one. This technical note presents in brief a 
numerical solution to the equations developed by Bjorge and 
Griffith that greatly simplifies the task of determining whether 
the pipe is prone to water hammer as a result of the counter-
current slug-annular flow regime transition. Additional 
details are reported by Swierzawski and Griffith (1989). 
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constant value of 1A/ x or 0.5642. For the case of u„/us = 
0, on the other hand, A is a weak function of the Prandtl 
number having the values of 0.4438,0.5314,0.5545, and 0.5642 
for Pr = 1, 10, 100, and 1000, respectively. These values are 
the same as those obtained by Erickson et al. (1966) and Tsou 
et al. (1967). For a given Prandtl number; a larger value of A 
is obtained as ua/us is increased. However, the value of A 
always approaches asymptotically to 0.5642 as Pr — oo. Thus 
the coefficient A becomes less and less sensitive to the variation 
of the free-stream velocity as the Prandtl number gets larger 
and larger. In fact, the special solution for the case of u„/us 
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layer becomes thinner and thinner as the Prandtl number gets 
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where B is a coefficient whose value depends on u„/us, Pr, 
and a, as shown in Fig. 2. For the special case of u„/us = 1, 
B is equal to unity for all values of Pr and a. For the case of 
u„,/us ^ 1, B is always larger than unity, having the maximum 
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deviates only slightly from unity. Under these conditions, we 
may assume 5 = 1 . From equations (15) and (16), the local 
Nusselt number at the solid-liquid interface is 
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where the coefficient A = A(u^/us, Pr) can be determined 
from Fig. 2. The above correlation can be conveniently used 
as an input quantity and the freeze-coating process can be 
solved as a heat conduction problem with the solidification 
constant a being the only unknown quantity. 
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boundary, and by the pipe-full limit at the upper flow bound
ary. Therefore, one means to prevent condensation-induced 
water hammer is to ensure that the pipe runs full at all times. 
Wallis et al. (1977) studied this problem and expressed in 
terms of a dimensionless Froude number a criterion for the 
minimum water flow rate necessary to run pipe full 
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where m = inlet liquid mass flow rate, p = liquid density, 
g = gravitational acceleration, and £> = pipe internal diameter. 
The "absolute stability limit" at low flow rates was specified 
by Bjorge and Griffith (1984) and is further analyzed below. 

Bjorge and Griffith presented a one-dimensional, stratified 
flow model that predicts initiation of a water hammer in 
horizontal and nearly horizontal pipes containing steam and 
subcooled water. The flow geometry used in this model is 
shown in Fig. 1. Although the model is appropriate for use in 
the flow geometry represented by Fig. 1, in practice it is possi
ble to simplify an actual system to this form and obtain signifi
cant, albeit less accurate, results. 

Equations presented by Bjorge and Griffith to describe a 
countercurrent flow of water and steam in a pipe are solved by 
using a finite difference method incorporated into the com
puter program CHOP (Countercurrent Horizontal Pipe) 
developed by Bjorge (1982). The condensation-induced water 
hammer in a pipe is not expected to occur when the filling 
water flow rate is below the "absolute stability limit," which 
may be calculated by specifying a very large condensation heat 
transfer coefficient in the program CHOP. Such a procedure, 
however, requires extensive trial and error computations in the 
course of converging on the Taitel-Dukler (1976) stability 
parameter of one. This technical note presents in brief a 
numerical solution to the equations developed by Bjorge and 
Griffith that greatly simplifies the task of determining whether 
the pipe is prone to water hammer as a result of the counter-
current slug-annular flow regime transition. Additional 
details are reported by Swierzawski and Griffith (1989). 
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Table 1 Stable-metastabie transition data (absolute stability boundary) 

Pipe 
Diameter 

(In.) 

1 

1.5 
(0.03B1 m> 

5.0 
(0.1270 m) 

10.0 
(0.2S40 mj 

15.0 
(Q.3B10 in) 

20.0 
(0.5080 m) 

40.0 
(1-0160 m) 

Pipe 
L/D 

2 

26.25 
52.49 
78.74 

26.22 
52.52 
78.74 

26.26 
52.48 
78.74 

26.25 
52.49 
78.74 

26.26 
52.4B 
78.72 

26.67 
53.33 
7B.74 

Inlet Water Flow at Stability Limit 

Calculated 
by CHOP 

(kg/s) 
3 

0.0355 
0.0294 
0.0259 

0.5822 
0.4797 
0.4250 

2.650 
2.171 
1.920 

6.300 
5.131 
4.530 

11.550 
9.375 
8.275 

48.420 
39.100 
34.570 

Calculated by 
Proposed Equation 

(kg/s) 

4 

0.0334 
0.0294 
0.0259 

0.5451 
0.4799 
0.4228 

2.466 
2.172 
1.913 

5.828 
5.133 
4.521 

10.651 
9.382 
8.263 

44.335 
38.968 
34.458 

* „ COM3) - Col<4) 
^ ~ Col(3> 

5 

0.059 
0.000 
0.000 

0.064 
-0.0004 

0.005 

0.069 
-0.0005 

0.004 

0.075 
-0.0004 

0.002 

0.07B 
-0.0007 

0.001 

0.0B4 
0.003 
0.003 

Table 2 Coefficient C in proposed equation for various internal pipe 
diameters 

D (in.) 

1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
5.00 
6.00 
8.00 

10.00 
12.00 
14.00 
16.00 

C 

0.01686 
0.01806 
0.01934 
0.02064 
0.02189 
0.02303 
0.02476 
0.02580 
0.02722 
0.02801 
0.02868 
0.02921 
0.02961 

D (in.) 

18.00 
20.00 
22.00 
24.00 
26.00 
28.00 
30.00 
32.00 
34.00 
36.00 
38.00 
40.00 

C 

0.02993 
0.03024 
0.03044 
0.03062 
0.03078 
0.03090 
0.03100 
0.03111 
0.03122 
0.03132 
0.03141 
0.03153 

= CD2exp ( - 0.00484 ) (2) 

where mw is in kg/s, the pipe internal diameter D and the pipe 
length L are in in. (1 in. = 0.0254 m), and the value of the coef
ficient C is taken from Table 2, which provides C for various 
internal pipe diameters. 

Because it is difficult to show in a simple way, as required 
for practical applications, the influence of all system 

parameters on the "absolute stability limit," the effects on the 
water hammer region of certain more important parameters 
should be evaluated. The stable region is that region below the 
absolute stability boundary. Inspection of . Figures V-4 
through V-9 in Bjorge's thesis (1982) reveals that after the pipe 
length L and pipe internal diameter D, the next substantial in
fluence on the "absolute stability limit" is that of inlet-water 
subcooling, which tends to level out at higher subcoolings. As 
the proposed equation is derived for the subcooling of 60 K, it 
is conservative in this respect. Also, the influence of steam 
pressure may be neglected when using the proposed equation 
because the lowest inlet-water flows are required at lowest 
pressures, and the equation is derived for a rather low system 
pressure of 31.5 psia (TSAT = 253.13°F = 396 K). 

Conclusion 

Appropriate operating procedure, when subcooled water is 
admitted into an existing steam-filled piping system, is of great 
importance to plant operators. The inlet-water flow rate is 
often the only parameter that can be easily controlled to pre
vent water hammer. A study of filling strategies to prevent 
water hammer in horizontal pipes containing steam and sub
cooled water has shown that the critical inlet-water flow rates 
specified by the Bjorge-Griffith model can be successfully 
predicted by the proposed equation, which is valid for various 
pipe diameters and pipe lengths. To avoid operator errors, the 
installation of a properly sized flow-restricting orifice in the 
filling system may be considered. The reduction of inlet-water 
subcooling also helps to decrease the probability of a water 
hammer. 
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Nomenclature 

D 
f 

Fi 

G 
G* 

liquid phase specific heat at con
stant pressure 
hydraulic diameter of duct 
Fanning friction factor 
flow inclination number, equation 
(6) 
gravitational acceleration 
mass velocity or flux 
normalized mass flux, equation (4) 
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where mw is in kg/s, the pipe internal diameter D and the pipe 
length L are in in. (1 in. = 0.0254 m), and the value of the coef
ficient C is taken from Table 2, which provides C for various 
internal pipe diameters. 

Because it is difficult to show in a simple way, as required 
for practical applications, the influence of all system 

parameters on the "absolute stability limit," the effects on the 
water hammer region of certain more important parameters 
should be evaluated. The stable region is that region below the 
absolute stability boundary. Inspection of . Figures V-4 
through V-9 in Bjorge's thesis (1982) reveals that after the pipe 
length L and pipe internal diameter D, the next substantial in
fluence on the "absolute stability limit" is that of inlet-water 
subcooling, which tends to level out at higher subcoolings. As 
the proposed equation is derived for the subcooling of 60 K, it 
is conservative in this respect. Also, the influence of steam 
pressure may be neglected when using the proposed equation 
because the lowest inlet-water flows are required at lowest 
pressures, and the equation is derived for a rather low system 
pressure of 31.5 psia (TSAT = 253.13°F = 396 K). 

Conclusion 

Appropriate operating procedure, when subcooled water is 
admitted into an existing steam-filled piping system, is of great 
importance to plant operators. The inlet-water flow rate is 
often the only parameter that can be easily controlled to pre
vent water hammer. A study of filling strategies to prevent 
water hammer in horizontal pipes containing steam and sub
cooled water has shown that the critical inlet-water flow rates 
specified by the Bjorge-Griffith model can be successfully 
predicted by the proposed equation, which is valid for various 
pipe diameters and pipe lengths. To avoid operator errors, the 
installation of a properly sized flow-restricting orifice in the 
filling system may be considered. The reduction of inlet-water 
subcooling also helps to decrease the probability of a water 
hammer. 
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The Discharge of Two-Phase Flashing Flow From an 
Inclined Duct 
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Nomenclature 

D 
f 

Fi 

G 
G* 

liquid phase specific heat at con
stant pressure 
hydraulic diameter of duct 
Fanning friction factor 
flow inclination number, equation 
(6) 
gravitational acceleration 
mass velocity or flux 
normalized mass flux, equation (4) 
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G* 

/^max 

/"jmin 

h 
L 
P 
V 

X 

e 

V 

e 
p 
CO 

= normalized mass flux, equation 
(4) 

= mass flux in a frictionless duct 
= minimum mass flux in downflow 
= specific enthalpy 
= duct length 
= pressure 
= specific volume 
= quality, vapor mass fraction 
= normalized specific volume, 

equation (4) 
= pressure ratio, equation (4) 
= angle of inclination 
= density 
= correlating parameter, equation 

(8) 

Subscripts 
c 

f 
fg 

0 
1 
2 
3 

= choked or critical 
= liquid phase 
= difference between vapor and liq

uid phase property 
= stagnation condition 
= duct inlet 
= duct exit 
= outside duct exit 

cosQ 

JCL.S0O12S B.A 

Fig. 1 Discharge through an inclined duct from a larger reservoir 

Superscripts 
min = minimum flow 
max = corresponding to frictionless duct 

Introduction 
Recently Leung and Grolmes (1987) presented a generalized 

treatment for correlating flashing flow discharge from a 
horizontal duct. This paper extends the above methodology to 
include inclined ducts. Gravity or elevation change takes on a 
much greater significance in two-phase flow than in single-
phase gas flow due to the presence of the liquid phase. Earlier, 
Bilicki and Kestin (1983) and Bilicki et al. (1987) discussed 
mathematical solutions for the upward and downward two-
phase flow in terms of singular points and turning points as 
used in geometric-topologic analysis. They found that chok
ing can only occur at the exit end of the flow channel. This 
paper, instead, presents rather general and complete engineer
ing solutions covering both upflow and downflow discharges. 
As the inclination angle approaches zero the solutions reduce 
to the solution for horizontal flow. 

Consistent with the earlier treatment on two-phase flashing 
flow in dusts (Leung and Grolmes, 1987; Bilicki and Kestin, 
1983; Bilicki et al., 1987), the basic assumptions employed are 
homogeneous equilibrium (equal velocity and equal 
temperature in both phases) flow with negligible heat losses. 
The governing steady-state conservation equations are (refer 
to Fig. 1 for usage of subscripts): 

Mass 

Momentum 

G = const 

vdv + -±-—J + g cos 6dL = 0 

Energy 

h0 = h + -
G2v2 

(1) 

(2) 

(3) 

terms of quality (vapor mass fraction) and phasic properties, 
i.e., h0 = hJ0+x0hfg0, h = hf + xhfg, and v=v/ + xvfg. The third 
term in equation (2) represents the gravitational component, 
and the angle of inclination 9 is measured from the vertical. It 
should be noted that the homogeneous equilibrium flow 
model is not necessarily the most realistic two-phase flow 
model; however, it offers the design engineer a most simplistic 
formulation to get on with his task and is certainly a frequent
ly cited reference model. The procedure for solving this set of 
equations via numerical integration is similar to the horizontal 
flow case (see Leung and Grolmes, 1987, and Perry, 1984). 
However, we shall seek a more generalized solution 
characterized by a minimum number of dimensionless 
physical parameters. 

Correlating Parameter for Elevation Changes 
The appropriate dimensionless parameter for elevation 

change is obtained by first nondimensionalizing the momen
tum equation using the following variables: 

P v _ G 
G* = 

Vr, ^/PQ/VQ VPQPQ 
(4) 

Then equation (2) can be rearranged to yield 
Aj edri + G*2ede 

4/-
D 

-jr(G*e)2 + gD cos 6 
(5) 

4//Vo 
It is seen that the solution of the momentum equation depends 
on a dimensionless "flow inclination number," i.e.,2 

gD cos 6 gL cos 6 
Fi=- (6) 

4fP0v0 (4fL/D)P0v0 

At a constant duct resistance AfL/D, the above flow inclina
tion parameter represents the ratio of the potential energy to 
the flow energy (also known as flow work) and is a measure of 
the departure from the horizontal flow case. 

Here the specific enthalpy and specific volume are expressed in 2This parameter was previously suggested by Leung and Fisher (1989). 
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Approximate Analytical Solution 
An approximate analytical solution can be obtained by 

simply integrating the momentum equation (5) in conjunction 
with an assumed equation of state, first proposed by Epstein 
et al. (1983) for steam-water mixtures and subsequently 
generalized by Leung (1986) for any flashing two-phase mix
ture, namely 

- l = w (-£--) 
or, in terms of the dimensionless variables 

i=„(-L _i) 

(7a) 

(lb) 

Equation (7b) obviates the need to solve the energy equation 
simultaneously with the momentum equation. By assuming an 
isenthalpic (constant enthalpy) expansion process, a par
ticularly good approximation for a long duct where the kinetic 
energy term is necessarily small, the a> can be shown to be 
given entirely in terms of known inlet stagnation properties 
(Leung, 1986) 

v0 v0 \ hfg0 / V hm / 

(8) 

The parameter co is made up of two entirely separable terms: 
the first reflects the compressibility of the mixture due to the 
existing vapor volume fraction (a0) and the second reflects the 
compressibility due to flashing or phase change upon 
depressurization. As expected the flashing component (second 
term in equation (8)) is the dominating term until a0 ap
proaches unity (all-gas inlet). Flashing choked flows of widely 
differing fluids and inlet conditions have been successfully 
correlated with this co parameter (Leung, 1986; Leung and 
Grolmes, 1987, 1988). 

Similar to the classical treatment of gas flow in pipes (Lap-
pie, 1943; Shapiro, 1953; Levenspiel, 1977), the friction factor 
/ i s assumed to be constant along the duct so that the left-hand 
side of equation (5) can be readily integrated. Now, 
substituting equation (lb) into equation (5) to eliminate e in 
favor of TJ, and integrating the result over the length of the 
duct, yields 

[(1 - CO)T/2 + co??] (1 - G*2-^-)dv 

4/_ = - J —, (9) 
G*2 

[(\-w)r) + w]2 + i)2Fi 

The above integral can be evaluated in closed form, as shown 
in the Appendix. By treating the inlet to the duct as frictionless 
flow (see Leung, 1986, equation (3)), the compressible form of 
the Bernoulli equation is obtained based on the chosen equa
tion of state (Leung and Grolmes, 1987) 

G*=-
- 2 [ w l n » / l + ( l - r , 1 ) ( a > - l ) } 

- 1 + 1 (-f-) 
(10) 

The exit condition can be either unchoked, in which case 
ij2 = ??3, or choked where the local choking condition would re
quire (Leung, 1986, equation (10)), 

G=[-l/(dv/dP)]05 (11a) 

or in the normalized form after substituting equation (7a) 

V2 

Fig. 2 
4U./D 

Comparison between analytical and numerical solutions 

G*=-
Vto 

(exit choking) (116) 

Since the exit choking solution is more involved, we shall pre
sent its results first. Here given co, Fi, and 4/L/D values, the 
resulting algebraic equations (A-12), (10), and (lib) are solved 
simultaneously for G*, rj,, and i72. 

Comparison With Exact Solutions 
Exact numerical solutions for the exit choking case (i.e., 

solving equations (1), (2), and (3) based on finite difference in
tegrations) using detailed thermodynamic properties3 were ob
tained for water, propane, and styrene at two selected to values 
and for a wide range of flow inclination numbers. The perti
nent inlet conditions are summarized in Fig. 2. The results are 
presented in terms of the flow reduction factor G/Gmw- versus 
the duct resistance factor 4/L/D. The quantity Gmax is the 
critical mass velocity for frictionless duct (perfect nozzle) 
flow. For the numerical scheme, Gmax is evaluated in a 
rigorous fashion based on the thermodynamic properties. To 
maintain the same assumption of isenthalpic flow, Gmax in the 
analytical scheme is given by equation (lib) with r/2 = 7j[ =7;, 
which in turn satisfies the following transcendental equation 
(this results from equating the right-hand sides of equations 
(10) and (116)): 

i?2 + (co2 - 2co)(l - r,)2 + 2co2 In r, + 2co2(l - y) = 0 (12) 

As can be seen from Fig. 2, the analytical results are found 
to be in remarkable agreement with the corresponding 
numerical solutions for a wide range of flow inclination 
numbers. Apparently the ratio G/Gmitx is not too sensitive to 
the assumption of the flow process as long as consistent 
assumptions are applied throughout. Here the usefulness of 
both co and Fi number in correlating different fluids, inlet con
ditions, and duct orientations is amply demonstrated. Such a 
plot, correlated in terms of the Fi number, clearly displays the 
conditions under which large flow departures from the 
horizontal reference case (Fi = 0) can be expected. 

Minimum Flow Behavior 
Figure 2 also illustrates that in downflow situations 

(negative Fi number), an asymptotic flow behavior is attained 
at a given 4/L/D, beyond which adding pipe length does not 
lead to further reduction in flow. This minimum flow 
behavior is brought about by a balance between the frictional 
pressure drop (negative) and the gravitational pressure drop 
(positive). In many respects, this is similar to the terminal 
velocity achieved by bodies in free fall when the gravitational 
(buoyancy) force is balanced by the frictional drag. 

Local properties were used at the prevailing pressure along the duct. 
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Mathematically this minimum flow behavior can be 
represented by equating the two terms in the denominator of 
equation (5) and evaluating them at the duct inlet. According
ly, the minimum mass flux is given by 

(jmin y/2(-Ff) 

yfP^Vt 
(13) 

This equation together with equation (10) can be used to 
eliminate Gmin, yielding 

« l n i j , + ( « - l ) ( l - i j , ) = F/ (14) 

Expanding the term In T)[(note that t\x is typically close to uni
ty) via a two-term Taylor series, solving for ij, , and 
substituting the result into equation (13), we finally obtain an 
explicit expression for Gmin 

ViV^o 
= V 2 ( - F 0 

r l + £o-Vl+2w(-F / ) "1 

L"l+(w-l )Vl+2w(-Fi) - l 
(15) 

A P P E N D I X 

The integrand in equation (9) is first expanded and rear
ranged to yield 

D G,i 

(•12 

Jrn 

(1 - o>)ri2 + «ij - «(1 — o))G*2 - w2 

12 1J 

rG*2 i 
I — - ( 1 - w)2 -r-Mj 172 + G*2co(l -0)77 + 

G*2a>2 
fify 

(A-l) 

Letting X{rj) denote the denominator of the integrand, we can 
write out the four pertinent integrals as 

4/-^=-f J D J 
12 (l-o)j?2Gfy f 2 wr)dr) 

xiv) 
(•12 

J l l x% 

This expression closely reproduces the asymptotic limits 
predicted with the analytical treatment (to within 1 percent) or 
the "exact" numerical calculations (to within 5 percent) when 
Fi<0 and 4/L/D is large. 

12 w(\-w)G*2d-q fi2 oi2G*2dr) 

,, XM + J „ r,X(r,) 
(A-2) 

I , L 
Discussion on Choking 

Once the exit-choking G or G* is found from the analytical 
solution, the exit pressure P2 (or r/2) is simply obtained by 
equation (11). If this exit pressure corresponding to choking is 
less than the downstream back pressure P3 (or ij3), the flow is 
said to be unchoked and equation (11), representing the exit 
choking condition, will no longer apply. The unchoked G is 
hence obtained by the simultaneous solution of equations 
(A-12) and (10) only. In most situations, the unchoked case 
can be approximated by taking TJ, as unity and one can pro
ceed to solve equation (A-12) for G* directly. 
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J-3 ±4 

Now making use of the integral table (Abramowitz and 
Stegun, 1972), and by denoting 

a = or 
2 

Z> = G*2co(l-co) 

c = - ^ ( l - a ) ) 2 + F / 

(A-3) 

(A-4) 

(A-5) 

q = 4ac-b2 = 2G*2w2Fi (A-6) 

the solution for the fundamental integral, \dt]/X{t}), is given in 
the following form: 

/ofo)-[ 
dr) 

rq 
tan -

In 

2cn + b 
(<7>0 or Fi>0, upflow) (A-7a) 

2c-q + b- "i^q 

let] + b + V - q 
(q<0 or Fi<0, downflow) 

(A-76) 

2cri + b 
(q = 0 or Fi = 0, horizontal flow) (A-7c) 

Via integration by parts, the four pertinent integrals can be 
evaluated as follows: 

I 1 = ( l - u ) [ ^ 
c 

b2-2ac 

b . Xifa) 
—r- In 
2c2 Jr-fo,) 

1 
• l£2 ^IoW-Iofoi))] (A-8) 

•H^^'-i^M-1*™] (A-9) 
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I3 = G*2co(l-W)[I0(1?2)-I0(r?1)] (A-10) 

Mil) b 
L=G*2u2 P-ln. 

L 2a riX(r,2) 2a 
•<Io(i?2)-Io(i?i))](A-H) 

Finally the desired result is 

4 / — = _ I 1 - I 2 + I3 + I4 (A-12) 

For the case when Fi is 0, the above equation reduces exactly 
to the solution for the horizontal case (Leung and Grolmes, 
1987, equation (8); see also the errata). 

A Generalized Correlation for Two-Phase 
Nonflashing Homogeneous Choked Flow 

J. C. Leung1 and M. Epstein1 

Nomenclature 
CP = 

c„ = 
G = 

G* = 
h = 

Mw = 
P = 
R = 
T = 
u = 
V = 
X = 

«o = 

7 = 
r = 
i) = 
p = 

specific heat at constant pressure 
specific heat at constant volume 
mass velocity or flux 
normalized mass velocity 
specific enthalpy 
gas molecular weight 
pressure 
universal gas constant 
temperature 
velocity 
specific volume 
quality or mass fraction of gas 
stagnation inlet void fraction 
gas phase specific heat ratio 
two-phase isentropic exponent 
pressure ratio 
two-phase density 

Subscripts 
c = 
g = 
I = 

0 = 

critical or choked 
gas 
liquid 
stagnation condition 

Introduction 
This paper presents a generalized formulation for 

evaluating the homogeneous choked flow of a nonflashing 
two-phase (gas/liquid such as air/water or gas/solid such as 
air/powder) compressible mixture. The case of interest here is 
one-dimensional isentropic flow in a frictionless nozzle. The 
isentropic expansion law for a two-phase nonflashing mixture 
in thermal equilibrium (rapid heat transfer resulting in equal 
temperature in both phases) was first obtained by Tangren et 
al. (1949). They presented the so-called isothermal-limit solu
tions for the critical pressure ratio as well as the local sonic 
velocity. Later Starkman et al. (1964) proposed a frozen (ther
mal insulated or no heat transfer between the two phases) 
homogeneous model and obtained an expression for the 
critical mass velocity that was intended for high inlet quality 
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or void fraction conditions by neglecting the liquid-phase ac
celeration and by assuming the critical pressure ratio to be 
identical to the all-gas flow case. Henry and Fauske (1971) 
presented the complete critical pressure ratio solution in 
transcendental equation form for the frozen flow case, but 
their approximate solutions were identical to those of 
Starkman et al. The present study seeks a generalized but exact 
homogeneous flow formulation for both frozen and thermal 
equilibrium conditions applicable over the entire range of inlet 
void fractions. The main focus of this paper is to show that the 
choked flow rate is • expressible in terms of only two 
parameters and to introduce for the first time an explicit for
mula for the critical pressure ratio. The present rigorous treat
ment also allows comparisons to be made against the previous
ly proposed limiting solutions. 

Although the present homogeneous flow assumption (i.e., 
complete momentum exchange between phases) is physically 
unrealistic in certain applications, it has proved valuable for 
understanding qualitative features of two-phase discharges, 
inferring approximate scaling laws, and making order-of-
magnitude predictions (Henry, 1979). Moreover, the model 
can now be found in several textbooks on two-phase flow (see, 
e.g., Wallis, 1969, and Hsu and Graham, 1976) where it serves 
as a useful instructional tool and as a reference model against 
which more elaborate models, such as those incorporating 
slip, can be compared. Of course, the model correctly 
represents the flow when the solid or liquid phases are finely 
dispersed (Altman and Carter, 1956). 

Analytical Formulation 
Among the various assumptions imbedded in the following 

treatment of compressible two-phase flow mixtures (see 
Wallis, 1969, p. 207), the key ones are: (1) There are no mass, 
heat, or momentum losses from the flow to the nozzle walls; 
(2) there is no slip between the phases; (3) the gas behaves as a 
perfect gas; and (4) the liquid or solid (particle cloud) is 
incompressible. 

Using the above assumptions, the equations governing the 
flow of a nonflashing compressible two-phase mixture are 

G = pu = u/v 

vdP+udu = 0 

h0=h + —u2 

P = PRT/MW 

h=xhg+ {\-x)ht 

1 x 
(l-x)v, or — = h-

1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
P Pg Pi 

where equations (l)-(3) represent mass velocity, momentum 
conservation, and energy conservation; and equations (4)-(6) 
are the expressions of ideal gas behavior, mixture enthalpy, 
and mixture specific volume or density. In equations (5) and 
(6), x is the quality or the mass fraction of the gas component 
and it remains unchanged in a nonflashing flow process 
(dx=0). 

Critical Mass Velocity and Pressure Ratio 
Equations (l)-(6) can be combined to obtain the following 

expression for the mass velocity of a thermally equilibrated 
two-phase flow as a function of the pressure downstream of 
the stagnation zone: 
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I3 = G*2co(l-W)[I0(1?2)-I0(r?1)] (A-10) 

Mil) b 
L=G*2u2 P-ln. 

L 2a riX(r,2) 2a 
•<Io(i?2)-Io(i?i))](A-H) 

Finally the desired result is 

4 / — = _ I 1 - I 2 + I3 + I4 (A-12) 

For the case when Fi is 0, the above equation reduces exactly 
to the solution for the horizontal case (Leung and Grolmes, 
1987, equation (8); see also the errata). 
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Introduction 
This paper presents a generalized formulation for 

evaluating the homogeneous choked flow of a nonflashing 
two-phase (gas/liquid such as air/water or gas/solid such as 
air/powder) compressible mixture. The case of interest here is 
one-dimensional isentropic flow in a frictionless nozzle. The 
isentropic expansion law for a two-phase nonflashing mixture 
in thermal equilibrium (rapid heat transfer resulting in equal 
temperature in both phases) was first obtained by Tangren et 
al. (1949). They presented the so-called isothermal-limit solu
tions for the critical pressure ratio as well as the local sonic 
velocity. Later Starkman et al. (1964) proposed a frozen (ther
mal insulated or no heat transfer between the two phases) 
homogeneous model and obtained an expression for the 
critical mass velocity that was intended for high inlet quality 
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or void fraction conditions by neglecting the liquid-phase ac
celeration and by assuming the critical pressure ratio to be 
identical to the all-gas flow case. Henry and Fauske (1971) 
presented the complete critical pressure ratio solution in 
transcendental equation form for the frozen flow case, but 
their approximate solutions were identical to those of 
Starkman et al. The present study seeks a generalized but exact 
homogeneous flow formulation for both frozen and thermal 
equilibrium conditions applicable over the entire range of inlet 
void fractions. The main focus of this paper is to show that the 
choked flow rate is • expressible in terms of only two 
parameters and to introduce for the first time an explicit for
mula for the critical pressure ratio. The present rigorous treat
ment also allows comparisons to be made against the previous
ly proposed limiting solutions. 

Although the present homogeneous flow assumption (i.e., 
complete momentum exchange between phases) is physically 
unrealistic in certain applications, it has proved valuable for 
understanding qualitative features of two-phase discharges, 
inferring approximate scaling laws, and making order-of-
magnitude predictions (Henry, 1979). Moreover, the model 
can now be found in several textbooks on two-phase flow (see, 
e.g., Wallis, 1969, and Hsu and Graham, 1976) where it serves 
as a useful instructional tool and as a reference model against 
which more elaborate models, such as those incorporating 
slip, can be compared. Of course, the model correctly 
represents the flow when the solid or liquid phases are finely 
dispersed (Altman and Carter, 1956). 

Analytical Formulation 
Among the various assumptions imbedded in the following 

treatment of compressible two-phase flow mixtures (see 
Wallis, 1969, p. 207), the key ones are: (1) There are no mass, 
heat, or momentum losses from the flow to the nozzle walls; 
(2) there is no slip between the phases; (3) the gas behaves as a 
perfect gas; and (4) the liquid or solid (particle cloud) is 
incompressible. 

Using the above assumptions, the equations governing the 
flow of a nonflashing compressible two-phase mixture are 

G = pu = u/v 

vdP+udu = 0 

h0=h + —u2 

P = PRT/MW 

h=xhg+ {\-x)ht 

1 x 
(l-x)v, or — = h-

1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
P Pg Pi 

where equations (l)-(3) represent mass velocity, momentum 
conservation, and energy conservation; and equations (4)-(6) 
are the expressions of ideal gas behavior, mixture enthalpy, 
and mixture specific volume or density. In equations (5) and 
(6), x is the quality or the mass fraction of the gas component 
and it remains unchanged in a nonflashing flow process 
(dx=0). 

Critical Mass Velocity and Pressure Ratio 
Equations (l)-(6) can be combined to obtain the following 

expression for the mass velocity of a thermally equilibrated 
two-phase flow as a function of the pressure downstream of 
the stagnation zone: 
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G = -
[2^P0^(T-r)[l-(-^-) " j+2(l-x)Vl(P0-P)} 

P \ ~1/r 
XV, •(•a + (l-X)Vi 

(7) 

where T denotes the two-phase isentropic exponent for a ther
mal equilibrium process as first derived by Tangren et al. 
(1949) 

r = 
xCpg+(\-x)Cpl 

xCvg+(l~x)Cpl 
(8) 

To obtain G for an expansion in which the gas phase is ther
mally insulated from the liquid or solid phase (frozen flow) 
one simply replaces T with y = Cpg/Cvg in equation (7). The 
expression for G can be rewritten in a useful nondimensional 
form by first noting for homogeneous flow 

lZ^L = ̂ (}^) (9) 
a0 vg0 \ x ' 

and further defining a normalized mass velocity and a pressure 
ratio, respectively, as 

G G 
G* = 

VP0/«0 *JKio 
The desired dimensionless expression is then obtained 

G*=-
m^>-**&-*-^])' 

+ ( ^ ) 

(10) 
We note from equation (10) that only two gas properties 

enter into the mass velocity evaluation: the stagnation void 
fraction a0 (rather than the quality x) and the isentropic expo
nent. Examination of the above expression shows that as the 
downstream pressure is reduced the mass velocity reaches a 
maximum at the so-called critical pressure ratio ijc (or Pc/P0). 
Figure 1 displays the shape of the G* versus i? curves for 
selected a0 values. As usual, to find the maximum flow condi
tion, we compute the derivative dG*/dr\ and set it equal to 
zero. This gives the transcendental formula for »jc, again only 
a function of a„ and T 

(i^)V,„ r+(^),,^+2(1+_L) 

This equation reduces to Henry and Fauskes' (1971) frozen 
flow result (equation (40) of their paper) by making use of 
equation (9) and substituting for T by y. Numerical solutions 
of equation (11) for t\c can be most conveniently presented 
graphically in terms of the stagnation void fraction and for 
selected Y values, as shown in Fig. 2. Also shown are the nor
malized critical mass velocity G* solutions according to equa
tions (10) and (11). 

Explicit Pressure Ratio Formula 
An approximate, explicit formula for t\c can be obtained by 

recognizing the limiting solutions of equation (11) when a0 ap
proaches either 1.0 (all-gas flow) or 0 (near liquid flow). In the 
limit of all-gas flow we recover the well-known result 

/ 2 \ r / < r - i ) 

Note that V for the thermal equilibrium assumption reduces 
identically to y for the gas at this condition. At the other end, 
as the near liquid flow, regime is approached, equation (11) 
reveals that 

T 2 a- l r / ( r + " n (13) 

However, in most practical situations,as a0 approaches zero 
the flow would become unchoked since ?jc is rapidly converg
ing to zero. In such unchoked flow cases, equation (10) 

0.8 
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Fig. 1 Normalized mass velocity versus exit pressure ratio 
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Fig. 2 Graphic plot of exact solutions for G* and IJC 
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Fig. 3 Comparison of exact solution against the approximate 
solutions 

reduces to the incompressible Bernoulli equation.2 As for an 
explicit formula for ijc, the forms of equations (12) and (13) 
suggest an interpolation formula (Churchill and Usagi, 1972) 

*-L(—) + ( - - ^ f ) J <14> 
where the exponent a is chosen to best match the exact solu
tions. The value a = 4/3 was found to be very successful in this 
regard and yields no more than 5 percent deviation from the 
exact critical pressure ratios from equation (11). Furthermore, 
the corresponding critical mass velocity is predicted to be well 
within 0.05 percent using equation (10) together with the 
above interpolation formula for r\c. The high accuracy 
achieved with respect to Gc is due to the fact that Gc according 
to equation (10) is relatively insensitive to the exact values of 
r)c near its maximum value (see Fig. 1). 

Comparison With Previous Work 
The exact treatment presented here can be compared with 

previously obtained solutions. In the isothermal flow limit 
T—1.0 [i.e., thermal equilibrium with x « 1.0; see equation 
(8)], the critical pressure ratio and the critical mass velocity 
can be deduced from equations (11) and (10), respectively, 

G*=— (16) 

-Ufizs-) 
where use was made of the L'Hopital rule in evaluating the in-
determinates. Equation (15) is essentially the result presented 
by Tangren et al. (1949, i.e., equation (23) in their paper). 

2At a o = 0, equation (10) yields the limit G* = [2( l - i j ) ] 1 / 2 or G = 

[ 2 p , ( P 0 - P ) ] 1 / 2 . 

These solutions are indistinguishable from the curves cor
responding to T = 1.0 in Fig. 2 [actually a T value of 1.001 was 
used in Fig. 2 to avoid the numerical difficulty of division by 
zero in equations (10) and (11)]. 

The approximate solutions for the frozen flow case as given 
by Starkman et al. (1964) and later by Henry and Fauske 
(1971) assume the critical pressure ratio to follow the ideal gas 
case 

Vc = . V 7 + l / 

•YA7-1) 
(17) 

and the critical mass velocity after being normalized by the 
present scheme 

G* = 
JPj^o 

[̂ (̂ r)('-̂ -»") 
(18) 

Comparing this to the exact formulation represented by equa
tion (10) indicates that the liquid acceleration term 
[(1 - a0)/a0](l - 7;) has been neglected. A more transparent 
comparison is shown in Fig. 3 where both exact and approx
imate solutions for G* are plotted. Equation (18) diverges 
rapidly from the exact solution as a0 is decreased. The use of 
equation (18) over the entire quality range has led to the 
prediction of an artificial maximum in the Gc versus inlet 
quality curve as the quality approaches zero (see Fig. 5 of 
Starkman et al., 1964, or Fig. 5 of Henry and Fauske, 1971). 

Another approximate solution was suggested by Wallis 
(1969). His result can be taken directly from the compressible 
gas flow solution with appropriate substitution for the two-
phase specific volume and the modified isentropic exponent T. 
His solution for the frozen case is, therefore, 

G T / 2 \ <7+l)/(T-D "I 1/2 G*=—==bLrr) ] (19) 
VPVS: 

This solution is found to be a better approximation than equa
tion (18) as illustrated in Fig. 3, but again does not exhibit the 
correct behavior as a0 is reduced. Clearly, the previously 
reported, approximate solutions should only be used for inlet 
stagnation void fractions close to unity. 
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